Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD

Total Page:16

File Type:pdf, Size:1020Kb

Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD Current Awareness in Clinical Toxicology Editors: Damian Ballam MSc and Allister Vale MD June 2017 CONTENTS General Toxicology 9 Metals 34 Management 17 Pesticides 35 Drugs 19 Chemical Warfare 36 Chemical Incidents & 28 Plants 36 Pollution Chemicals 29 Animals 37 CURRENT AWARENESS PAPERS OF THE MONTH Is mannitol the treatment of choice for patients with ciguatera fish poisoning? Mullins ME, Hoffman RS. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1327664: Context Ciguatera fish poisoning arises primarily from consumption of carnivorous reef fish caught in tropical and sub-tropical waters. Ciguatoxins, a class of tasteless, heat-stable, polycyclic toxins produced by dinoflagellates, accumulate through the food chain and concentrate in various carnivorous fish, such as groupers, barracudas, wrasses, amberjack, kingfishes, and eels. Characteristics of ciguatera fish poisoning include early nausea, vomiting, and diarrhea in the first one to two days post ingestion, followed by the appearance of sensory disturbances. The classic dysaesthesia is cold allodynia, often described as reversal of hot and cold sensation, but a more accurate description is burning pain on exposure to cold. Objective To discuss and appraise the evidence regarding the use of mannitol or other drugs in treating ciguatera framed in the historical context of the last four decades. Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units. The NPIS is commissioned by Public Health England 2 Methods We searched PubMed and Embase for all years from 1966 to March 31, 2017 with search terms "ciguatera", "mannitol", and "treatment". These searches identified 85 articles, of which 36 were relevant to the review question. We searched Google Scholar to supplement the primary search and reviewed the references of articles for sources overlooked in the original searches. These secondary searches identified another 23 references. We excluded six clinical reports (two case series and four case reports) which did not clearly describe ciguatera or which lacked information on treatment or outcome. Fifty-three clinical articles remained for review. We searched PubMed using "ciguatera" AND "treatment" NOT "mannitol" to better identify reports describing other treatments. The search identified 128 articles, of which nine described specific pharmacological treatments and their outcomes. We combined our findings into a consensus review of the evidence both for and against the use of mannitol or other medications for ciguatera fish poisoning. Early human evidence of effectiveness of mannitol A 1988 report described an unexpected discovery that intravenous mannitol could rapidly and effectively treat ciguatera fish poisoning. Several other uncontrolled case series and case reports appeared to support the use of mannitol. In 2002, a small randomized, controlled trial reported no significant difference between mannitol and normal saline. Subsequent case reports have cited this study as the reason for or to withhold mannitol. Thus, some controversy exists regarding whether mannitol is useful or not for treating ciguatera fish poisoning. Basic science and animal research on ciguatera and mannitol In vitro experiments of isolated neurons demonstrate that ciguatoxins produce neuronal edema, open certain sodium channels, block potassium channels, cause uncontrolled and repetitive action potentials after a stimulus. Addition of mannitol decreases the edema and reduces the uncommanded action potentials. However, intraperitoneal injection of ciguatoxin in rats increases neuronal refractory period and slows nerve conduction velocity. Treatment with mannitol fails to correct these effects. Comparative trials of mannitol Evidence supporting mannitol for ciguatera fish poisoning includes four uncontrolled case series, one prospective, unblinded comparative trial and several case reports. Evidence against mannitol consists of one RCT, which has a small sample size and several potential limitations. Empirical human experience with other treatments Evidence regarding other treatments consists only of ten case reports and three overlapping case series that describe using amitriptyline, fluoxetine, duloxetine, gabapentin, pregabalin, or tocainide. For each of these, a long duration of treatment appears to be necessary to maintain symptomatic improvement. None of these treatments has been shown to be superior to mannitol. Conclusions It is reasonable to consider using intravenous mannitol in cases of acute ciguatera fish poisoning. Medications used in other neuropathic syndromes appear to suppress the paresthesiae of persistent ciguatera cases. However, the human evidence is of low quality for all treatments. Full text available from: http://dx.doi.org/10.1080/15563650.2017.1327664 3 A review of vilazodone exposures with focus on serotonin syndrome effects Heise CW, Malashock H, Brooks DE. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1332369: Background Vilazodone is an antidepressant with selective serotonin reuptake inhibition and partial 5HT1A agonism. Serotonin syndrome is believed to be due to excessive stimulation of 5- HT2A and 5-HT1A receptors, resulting in the clinical triad of altered mentation, autonomic instability and neuromuscular abnormalities. The goal of this study is to define serotonergic effects after vilazodone exposure. Methods A retrospective review of two databases: the American Association of Poison Controls Centers' National Poison Data System (NPDS) and the American College of Medical Toxicology's Toxicology Investigators Consortium (ToxIC Registry). A case series of four patients from one medical toxicology service is also presented. Results During the 52-month study period, a total of 3192 vilazodone human exposures were reported to NPDS. Of these, 1734 (54%) were isolated vilazodone cases. The clinical effects of vilazodone toxicity included drowsiness (20%), vomiting (14%), tachycardia (11%) and agitation (10%). Most patients (71%) had symptoms for between 2 and 24 h, though some (14%) remained symptomatic for more than 24 h. The most common treatment was intravenous fluids (15%) and the most serious intubation (2%). From the ToxIC Registry, a total of 23 cases of vilazodone exposures were identified. Of these, 17 (74%) had vilazodone listed as the first (primary) agent and 10 (43%) involved vilazodone-only ingestions. Nine (39%) cases documented serotonin syndrome; and most (8/9; 89%) listed vilazodone as the primary agent. All (n = 4) subjects in the case series with acute vilazodone toxicity had serotonin syndrome. Conclusions Vilazodone overdose, including vilazodone-only ingestions, are associated with serotonin syndrome. Serotonergic toxicity and appropriate treatments should be considered when caring for patients with vilazodone ingestions. Full text available from: http://dx.doi.org/10.1080/15563650.2017.1332369 Hepatotoxicity evaluation of traditional Chinese medicines using a computational molecular model Zhao P, Liu B, Wang C, Acute Liver Failure Study Team (ALFST). Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1333123: Background Liver injury caused by traditional Chinese medicines (TCMs) is reported from many countries around the world. TCM hepatotoxicity has attracted worldwide concerns. Objective This study aims to develop a more applicable and optimal tool to evaluate TCM hepatotoxicity. Methods A quantitative structure-activity relationship (QSAR) analysis was performed based on published data and U.S. Food and Drug Administration's Liver Toxicity Knowledge Base (LTKB). 4 Results Eleven herbal ingredients with proven liver toxicity in the literature were added into the dataset besides chemicals from LTKB. The finally generated QSAR model yielded a sensitivity of 83.8%, a specificity of 70.1%, and an accuracy of 80.2%. Among the externally tested 20 ingredients from TCMs, 14 hepatotoxic ingredients were all accurately identified by the QSAR model derived from the dataset containing natural hepatotoxins. Conclusions Adding natural hepatotoxins into the dataset makes the QSAR model more applicable for TCM hepatotoxicity assessment, which provides a right direction in the methodology study for TCM safety evaluation. The generated QSAR model has the practical value to prioritize the hepatotoxicity risk of TCM compounds. Furthermore, an open-access international specialized database on TCM hepatotoxicity should be quickly established. Full text available from: http://dx.doi.org/10.1080/15563650.2017.1333123 Relationship between blood toxin level and clinical features in patients with grayanotoxin poisoning – six clinical cases Choi HL, Park KH, Park JS, Choi HY, Kim H, Kim SM. Clin Toxicol 2017; online early: doi: 10.1080/15563650.2017.1331448: Background The purpose of this study was to investigate grayanotoxin (GTX) levels in the blood of patients with GTX intoxication and in the consumed Rhododendron liqueur, and to determine whether there was an association between blood GTX level and the patient's clinical status. Methods In September 2015, six patients were concurrently presented to the emergency department with various toxicity symptoms, which occurred after the consumption of Rhododendron liqueur at the same toxin concentration. Liquid chromatography-tandem mass spectrometry analysis was conducted on blood samples
Recommended publications
  • Review of Market for Octane Enhancers
    May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado NREL Technical Monitor: K. Ibsen Prepared under Subcontract No. TXE-0-29113-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S.
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Snake Bite Protocol
    Lavonas et al. BMC Emergency Medicine 2011, 11:2 Page 4 of 15 http://www.biomedcentral.com/1471-227X/11/2 and other Rocky Mountain Poison and Drug Center treatment of patients bitten by coral snakes (family Ela- staff. The antivenom manufacturer provided funding pidae), nor by snakes that are not indigenous to the US. support. Sponsor representatives were not present dur- At the time this algorithm was developed, the only ing the webinar or panel discussions. Sponsor represen- antivenom commercially available for the treatment of tatives reviewed the final manuscript before publication pit viper envenomation in the US is Crotalidae Polyva- ® for the sole purpose of identifying proprietary informa- lent Immune Fab (ovine) (CroFab , Protherics, Nash- tion. No modifications of the manuscript were requested ville, TN). All treatment recommendations and dosing by the manufacturer. apply to this antivenom. This algorithm does not con- sider treatment with whole IgG antivenom (Antivenin Results (Crotalidae) Polyvalent, equine origin (Wyeth-Ayerst, Final unified treatment algorithm Marietta, Pennsylvania, USA)), because production of The unified treatment algorithm is shown in Figure 1. that antivenom has been discontinued and all extant The final version was endorsed unanimously. Specific lots have expired. This antivenom also does not consider considerations endorsed by the panelists are as follows: treatment with other antivenom products under devel- opment. Because the panel members are all hospital- Role of the unified treatment algorithm
    [Show full text]
  • Toluene Poisoning (Accidental Ingestion of Evostik) Summary
    Toluene Poisoning (Accidental Ingestion of Evostik) *Solarin A.U1, Aremu E.O1, Gbelee O.H1, Animasahun A.B1, Akinola A.O1, Ogunlana A.T1, Nwakpele O.T1, Olugbade O1 1. Department of Paediatrics, Lagos State University Teaching Hospital, Ikeja Lagos. Corresponding Author: Solarin A.U. Email address: [email protected] Summary INTRODUCTION Childhood poisoning is one of the causes of high morbidity and mortality especially among under-five children in low income countries. The home and its surroundings may harbour poisonous substances which might be ingested by adventurous children. Evo-stik glue is a modified silane (MS) polymer based high performance adhesive. It contains toluene, a colourless, sweet-smelling liquid with detrimental effects on virtually every organ in the body especially brain and kidneys. Toluene is a component of household items such as gasoline, shoe and nail polish. AIM / OBJECTIVES From a few reported cases of toluene poisoning worldwide there was need to create awareness on the possibility of toluene poisoning as well as its deleterious effects. This is a case report on exposure to the effects of toluene by accidental ingestion that set the platform to emphasize the importance of prompt and appropriate management of toluene poisoning. METHODOLOGY This case report is about a 2year old girl who accidentally ingested 15-20ml evostik glue stored in an attractive container in the home. QH was presented at the Lagos State University Teaching Hospital Paediatric Emergency Unit with a one day history of persistent spontaneous, non-projectile and non-bilous vomiting. On admission, she was conscious, moderately dehydrated with dry buccal mucosa.
    [Show full text]
  • Organocatalytic Asymmetric N-Sulfonyl Amide C-N Bond Activation to Access Axially Chiral Biaryl Amino Acids
    ARTICLE https://doi.org/10.1038/s41467-020-14799-8 OPEN Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids Guanjie Wang1, Qianqian Shi2, Wanyao Hu1, Tao Chen1, Yingying Guo1, Zhouli Hu1, Minghua Gong1, ✉ ✉ ✉ Jingcheng Guo1, Donghui Wei 2 , Zhenqian Fu 1,3 & Wei Huang1,3 1234567890():,; Amides are among the most fundamental functional groups and essential structural units, widely used in chemistry, biochemistry and material science. Amide synthesis and trans- formations is a topic of continuous interest in organic chemistry. However, direct catalytic asymmetric activation of amide C-N bonds still remains a long-standing challenge due to high stability of amide linkages. Herein, we describe an organocatalytic asymmetric amide C-N bonds cleavage of N-sulfonyl biaryl lactams under mild conditions, developing a general and practical method for atroposelective construction of axially chiral biaryl amino acids. A structurally diverse set of axially chiral biaryl amino acids are obtained in high yields with excellent enantioselectivities. Moreover, a variety of axially chiral unsymmetrical biaryl organocatalysts are efficiently constructed from the resulting axially chiral biaryl amino acids by our present strategy, and show competitive outcomes in asymmetric reactions. 1 Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China. 2 College
    [Show full text]
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Approach to the Poisoned Patient
    PED-1407 Chocolate to Crystal Methamphetamine to the Cinnamon Challenge - Emergency Approach to the Intoxicated Child BLS 08 / ALS 75 / 1.5 CEU Target Audience: All Pediatric and adolescent ingestions are common reasons for 911 dispatches and emergency department visits. With greater availability of medications and drugs, healthcare professionals need to stay sharp on current trends in medical toxicology. This lecture examines mind altering substances, initial prehospital approach to toxicology and stabilization for transport, poison control center resources, and ultimate emergency department and intensive care management. Pediatric Toxicology Dr. James Burhop Pediatric Emergency Medicine Children’s Hospital of the Kings Daughters Objectives • Epidemiology • History of Poisoning • Review initial assessment of the child with a possible ingestion • General management principles for toxic exposures • Case Based (12 common pediatric cases) • Emerging drugs of abuse • Cathinones, Synthetics, Salvia, Maxy/MCAT, 25I, Kratom Epidemiology • 55 Poison Centers serving 295 million people • 2.3 million exposures in 2011 – 39% are children younger than 3 years – 52% in children younger than 6 years • 1-800-222-1222 2011 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System Introduction • 95% decline in the number of pediatric poisoning deaths since 1960 – child resistant packaging – heightened parental awareness – more sophisticated interventions – poison control centers Epidemiology • Unintentional (1-2
    [Show full text]
  • Toxicological Profile for Toluene
    TOXICOLOGICAL PROFILE FOR TOLUENE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2000 Additional Resources http://www.atsdr.cdc.gov/toxprofiles/tp56.html TOLUENE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. TOLUENE iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 TOLUENE vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepared toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on October 21, 1999 (64 FR 56792). For prior versions of the list of substances, see Federal Register notices dated April 17, 1987 (52 FR 12866); October 20, 1988(53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); February 28, 1994 (59 FR 9486); April 29, 1996 (61 FR 18744); and November 17, 1997 (62 FR 61332).
    [Show full text]
  • Ciguatera: Current Concepts
    Ciguatera: Current concepts DAVID Z. LEVINE, DO Ciguatera poisoning develops unraveling the diagnosis may prove difficult. after ingestion of certain coral reef-asso­ Although the syndrome has been known for at ciated fish. With travel to and from the least hundreds of years, its mechanisms are tropics and importation of tropical food only beginning to be elucidated. Effective treat­ fish increasing, ciguatera has begun to ments have just begun to emerge. appear in temperate countries with more Ciguatera is a major public health prob­ frequency. The causative agents are cer­ lem in the tropics, with probably more than tain varieties of the protozoan dinofla­ 30,000 poisonings yearly in Puerto Rico and gellate Gambierdiscus toxicus, but bacte­ the US Virgin Islands alone. The endemic area ria associated with these protozoa may is bounded by latitudes 37° north and south. have a role in toxin elaboration. A specif­ Ciguatera in temperate countries is a concern ic "ciguatoxin" seems to cause the symptoms, because people returning from business trips, but toxicosis may also be a result of a fam­ vacations, or living in the tropics may have ily of toxins. Toxicosis develops from 10 been poisoned through food they had eaten. minutes to 30 hours after ingestion of poi­ The development of worldwide marketing of soned fish, and the syndrome can include fish from a variety of ecosystems creates a dan­ gastrointestinal and neurologic symptoms, ger of ciguatera intoxication in climates far as well as chills, sweating, pruritus, brady­ removed from sandy beaches and waving·palms. cardia, tachycardia, and long-lasting weak­ Outbreaks have been reported in Vermont, ness and fatigue.
    [Show full text]
  • Supranuclear and Internuclear Ocular Motility Disorders
    CHAPTER 19 Supranuclear and Internuclear Ocular Motility Disorders David S. Zee and David Newman-Toker OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF THE MEDULLA THE SUPERIOR COLLICULUS Wallenberg’s Syndrome (Lateral Medullary Infarction) OCULAR MOTOR SYNDROMES CAUSED BY LESIONS OF Syndrome of the Anterior Inferior Cerebellar Artery THE THALAMUS Skew Deviation and the Ocular Tilt Reaction OCULAR MOTOR ABNORMALITIES AND DISEASES OF THE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN BASAL GANGLIA THE CEREBELLUM Parkinson’s Disease Location of Lesions and Their Manifestations Huntington’s Disease Etiologies Other Diseases of Basal Ganglia OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN THE PONS THE CEREBRAL HEMISPHERES Lesions of the Internuclear System: Internuclear Acute Lesions Ophthalmoplegia Persistent Deficits Caused by Large Unilateral Lesions Lesions of the Abducens Nucleus Focal Lesions Lesions of the Paramedian Pontine Reticular Formation Ocular Motor Apraxia Combined Unilateral Conjugate Gaze Palsy and Internuclear Abnormal Eye Movements and Dementia Ophthalmoplegia (One-and-a-Half Syndrome) Ocular Motor Manifestations of Seizures Slow Saccades from Pontine Lesions Eye Movements in Stupor and Coma Saccadic Oscillations from Pontine Lesions OCULAR MOTOR DYSFUNCTION AND MULTIPLE OCULAR MOTOR SYNDROMES CAUSED BY LESIONS IN SCLEROSIS THE MESENCEPHALON OCULAR MOTOR MANIFESTATIONS OF SOME METABOLIC Sites and Manifestations of Lesions DISORDERS Neurologic Disorders that Primarily Affect the Mesencephalon EFFECTS OF DRUGS ON EYE MOVEMENTS In this chapter, we survey clinicopathologic correlations proach, although we also discuss certain metabolic, infec- for supranuclear ocular motor disorders. The presentation tious, degenerative, and inflammatory diseases in which su- follows the schema of the 1999 text by Leigh and Zee (1), pranuclear and internuclear disorders of eye movements are and the material in this chapter is intended to complement prominent.
    [Show full text]
  • Ph.D. AC1.H3 5016 R.Pdf
    UNIVERSITY OF HAWAI'I LIBRARY EVALUATING THE RISK OF CIGUATERA FISH POISONING FROM REEF FISH IN HAWAI'I: DEVELOPMENT OF ELISA APPLICATIONS FOR THE DETECTION OF CIGUATOXIN A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CELL AND MOLECULAR BIOLOGY MAY 2008 By Cara Empey Campora Dissertation Committee: Yoshitsugi Hokama, Chairperson Martin Rayner Andre Theriault Kenichi Yabusaki Clyde Tamaru We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Cell and Molecu1ar Biology. DISSERTATION COMMITTEE 1~cb:io~A ~dL tiL!Z;~ LL- L:--6/ ii Acknowledgements The author wishes to express sincere appreciation to her major professor, Dr. Yoshitsugi Hokama, for his continual support, encouragement, and guidance throughout this entire project and beyond. The author also gratefully thanks all current and former committee members, Dr. Martin Rayner, Dr. John Bertram, Dr. Andre Theriault, Dr. Kenichi Yabusaki and Dr. Clyde Tamaru, for their valuable comments, criticism and involvement through the duration of this project. I wish to acknowledge and thank the technical staff who gave their time and energy in support of this project, as well as the many individuals including Jan Dierking, Gary Dill, and Dr. Clyde Tamaru who helped obtain fish specimens to test. Without their help, this study could not have been completed. Special appreciation is extended to my husband Cory Campora and my three daughters, as well as my extended family for their patience and understanding in my pursuit of this goal.
    [Show full text]
  • Snake Bite Prevention What to Do If You Are Bitten
    SNAKE BITE PREVENTION It has been estimated that 7,000–8,000 people per year are bitten by venomous snakes in the United States, and for around half a dozen people, these bites are fatal. In 2015, poison centers managed over 3,000 cases of snake and other reptile bites during the summer months alone. Approximately 80% of these poison center calls originated from hospitals and other health care facilities. Venomous snakes found in the U.S. include rattlesnakes, copperheads, cottonmouths/water moccasins, and coral snakes. They can be especially dangerous to outdoor workers or people spending more time outside during the warmer months of the year. Most snakebites occur when people accidentally step on or come across a snake, frightening it and causing it to bite defensively. However, by taking extra precaution in snake-prone environments, many of these bites are preventable by using the following snakebite prevention tips: Avoid surprise encounters with snakes: Snakes tend to be active at night and in warm weather. They also tend to hide in places where they are not readily visible, so stay away from tall grass, piles of leaves, rocks, and brush, and avoid climbing on rocks or piles of wood where a snake may be hiding. When moving through tall grass or weeds, poke at the ground in front of you with a long stick to scare away snakes. Watch where you step and where you sit when outdoors. Shine a flashlight on your path when walking outside at night. Wear protective clothing: Wear loose, long pants and high, thick leather or rubber boots when spending time in places where snakes may be hiding.
    [Show full text]