manuscript submitted to JGR: Space Physics 1 Do statistical models capture the dynamics of the 2 magnetopause during sudden magnetospheric 3 compressions? 1 1 1 2 3 4 F. A. Staples , I. J. Rae , C. Forsyth , A. R. A. Smith , K.R. Murphy , K. 4 5 6 7 6 5 M. Raymer , F. Plaschke , N. A. Case , C. J. Rodger , J. A. Wild , S. E. 4 4 6 Milan , S. M. Imber 1 7 Mullard Space Science Laboratory, University College London, London, UK 2 8 School of GeoSciences, University of Edinburgh, Edinburgh, UK 3 9 NASA Goddard Space Flight Centre, Greenbelt, MD, USA 4 10 Department of Physics and Astronomy, University of Leicester, Leicester, UK 5 11 Space Research Institute, Austrian Academy of Sciences, Graz, Austria. 6 12 Department of Physics, Lancaster University, Lancaster, UK 7 13 Department of Physics, University of Otago, Dunedin, New Zealand 14 Key Points: 15 • Measured magnetopause location is statistically closer to the Earth than Shue et 16 al. (1998) modelled for storm sudden commencements (SYM-H ≥ 15 nT). 17 • When the magnetopause is compressed below 8 RE, the average measured loca- 18 tion is > 1 RE inside of the Shue et al. (1998) model location. 19 • Extreme magnetopause compressions rarely reach the outer radiation belt, there- 20 fore rapid outward radial transport is required to fully explain most shadowing 21 events. Corresponding author: Frances A. Staples,
[email protected] {1{ manuscript submitted to JGR: Space Physics 22 Abstract 23 Under periods of strong solar wind driving, the magnetopause can become compressed, 24 playing a significant role in draining electrons from the outer radiation belt.