Ann. Geophys., 34, 303–311, 2016 www.ann-geophys.net/34/303/2016/ doi:10.5194/angeo-34-303-2016 © Author(s) 2016. CC Attribution 3.0 License. A statistical study on the shape and position of the magnetotail neutral sheet Sudong Xiao1, Tielong Zhang1,2, Yasong Ge3, Guoqiang Wang1, Wolfgang Baumjohann2, and Rumi Nakamura2 1CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China 2Space Research Institute, Austrian Academy of Sciences, Graz, Austria 3Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China Correspondence to: Tielong Zhang (
[email protected]) Received: 2 July 2015 – Revised: 17 January 2016 – Accepted: 10 February 2016 – Published: 26 February 2016 Abstract. We study the average shape and position of the 1 Introduction magnetotail neutral sheet based on magnetic field data ob- tained by Cluster, Geotail, TC-1, and THEMIS from the years 1995 to 2013. All data in the aberrated GSM (geocen- The neutral sheet of the magnetotail is located in the middle tric solar magnetospheric) coordinate system are normalized of the plasma sheet, lying between two lobes (Ness, 1965; to the same solar wind pressure 2 nPa and downtail distance Baumjohann and Treumann, 2012). It is characterized by a X ∼ −20RE. Our results show characteristics of the neutral weak magnetic field, strong cross tail current, and a reversal sheet, as follows. (1) The neutral sheet assumes a greater de- of the magnetic field direction across it. The neutral sheet is gree of curve in the YZ cross section when the dipole tilt in- important for the formation of the magnetotail, and the dy- creases, the Earth dipole tilt angle affects the neutral sheet namics of the Earth’s magnetosphere are greatly influenced configuration not only in the YZ cross section but also in the by physical processes that occur near the neutral sheet.