II. Tree Value Conversion Standards for Hardwood Sawtimber

Total Page:16

File Type:pdf, Size:1020Kb

II. Tree Value Conversion Standards for Hardwood Sawtimber II. Tree Value Conversion Standards for Hardwood Sawtimber by Joseph J. Mendel Paul S. DeBald and Martin E. Dale USDA FOREST SERVICE RESEARCH PAPER HE-337 FOREST SERVICE, U. S. DEPARTMENT OF AGRICULTURE NORTH EASTERN FOREST EXPERIMENT STATION 6816 MARKET STREET, UPPER DARBY, PA. 19082 F. BRYAN CLARK, STATkON DIRECTOR HIS fS OSE of a series of papers designed to help the forester T estimate the value of timber stands. We call these papers SETS- Stand E'r7altlation Tc)oI\. The first three papmi are being p~~b'iished concrirrentty, They are: SETS 1, AX I\DI\'IGY41,-TREE 4PPROATII TO X14RIYC STAVD EtrALV- ATTONS (CSD-4 Forest- Sert ice Research Paper NE-3361. which describes a metl~odfor rrsirlg indivicirral tree values to make stand evalrrations. SETS IT. TREEVALUE COW ERSIOV STAYDARDS FOR I-IARD'~\~OODSAW- TIX.IRER (VSDil. Forest Service Research Paper XE-337),which provides values for individual \awtimber trees. SETS 111, CO%~POSITE\OLT_'ZfE AYD \, ZLCE TjRLES FOR IIARDXXvr;OOD PULP\TrOOD I 'C'SDA Forest Ser'r~iceResearch Paper YE-3381, which pro- vides values for irrdit7idual grotving-stock trees. The Authors JOSEPH J. JIENDEL, principal economist, received his bachelor of science degree in forestry from the University of hlichigan in 1941, and his master's degree and Ph.D. in agricultural economics from Ohio State 'Ciniversity in 1963 and 1965 respectively. He also studied at the Uni- versity of Iliisconsin and the U~iiversity of Cincinnati. He joined the Yorthcastern Forest Experiment Station in 1946, worki~~gon forest surveys, and in 1952 transferred to the IVashington OEee of the Forest Service as a photo-interpretation specialist in the Division of Forest Eco- nomics. After 6 years in Tvt'asllington he accepted a positiot~as research forester with the Central States Forest Experiment Station at Columbus, Ohio, and in 1966 transferred to the Northeastern Station, where he is now serving as a specialist in forest ecoriomics, PACL S. DeUALD is a research forester with the Sortheastern Forest Experiment Station's economics project in Delaware, Ohio. A grtiduzite of the Pennsylvania State t'rii.versity, he began his Forest Sert7ice career in 1959. Before taking his presexit assignment, he served on the forcst survey stalls of the Lake States and Centr,zl States Stations. At preserlt he is specializing in forest tree and stand evaluations, LIARTIN E. DALE joined the Forest Service in 1957 and specialized in forest n~anagementand silviculture research at Berea, Kentucky. In 1943, he received a Ph.D. degree in forest biometry from Iowa State t-nii~ersity, and sirtee 1970 has been assigned to the Xortheastern Forest Experinlent Station's reseirrch unit on timber measurement and marlagernent plallning at Delaware, Ohio. Currently, be is specializing in studies of growth and )vield of marlaged upland oak. MAXUSCRIPTRECEIVED FOR PUBLICATION 20 FEBRUARY1975 SETS: Stand Evaluation Tools II. Tree Value Conversion Standards for Hardwood Sawtimber Contents INTRODUCTION ......................................... 1 TREE VALUE CONVERSION STANDARDS .................. 1 What they are ......................................... 1 How they were calculated ............................... 1 How TVCS's differ from stumpage values ................... 3 Adapting TVCS to local conditions ........................ 3 How to use TVCS ..................................... 4 SUMMARY ............................................... 4 REFERENCES ................................... ........ 5 APPENDIX A ............................................. 6 Regression coeficien ts .................................. 6 Tree quality index values and tree value conversion standards .................................. 7 Conversion costs ........................................55 Composite board foot volume table ........................56 APPENDIX B ............................................. 51 Computer program and documentation .................... 57 FOREWORD In the past it has been customary to base estimates of probable profits from the management of lands for the future production of timber in the United States u on the increase of the timber in quantiv. Everyone familiar with the Pumber business knows, however, that the lumber which comes out of large trees is worth more per thousand feet than that which comes from small trees, because the large trees turn out a higher proportion of the choice grades. It is apparent that estimates of profits through careful forest management should take into account this factor of quality increase; but, in the absence of an accurate determina- tion of what this quality increase is, it has hitherto been impossible to do more than state in general terns the fact that such an increase wollld take place and that its effect would be to make the profit from deferred operations greater than that actually shown by the figures indicating the future yield to be ex ected. -~dwarB~.Braniff in the 1904 Yearbook of Agriculture ABSTRACT Tree quatity index tables are presented for 12 important hardwood species of the oak-hickory forest. From these, tree value conversion standards are developed for each species, log grade, merchantable height, and diameter at breast height. The method of calculating tree value con- version standards and adapting them to different conditions is explained. A computer program for calculating tree values for different lumber values and conversion costs is included, Figure t. -- Calculafion of free value conversion sfandards LUMBER-GRADE-RECOVERY TABLE; PRICE REPORTS FOR A 5-YEAR PERIOD PRICE RELATIVES SAMPLE-TREE DATA: REGRESSION D.B.H., MERCHANTABLE LENGTH, LOG GRADES; B1 (D.B.H.) + TREE-TAPER TABLE B2 (MERCH. LENGTH) TREE QUALITY INDEX BASE PRICE 4/4 NO. IC LUMBER/M MULTIPLY GROSS LUMBER VALUE/M CONVERSION COSTS CURVED BY D.B.H. ) SUBTRACT TREE VOLUME/ 1,000 ] MULTIPLY TREE VALUE CONVERSION STANDARDS INTRODUCTION conversion standards included in this publi- cation. We also define the circumstances in N RECENT YEARS the USDA Forest which those standards fit. I Service has published a series of papers In general, the inputs were regional, and that deal with the rates of value increase for the resulting standards may be applied re- most of the important hardwood species (see gionally. But local differences may occur References). An important part of these com- within a region, and changes may take place putations is a system for generating indi- throughout a region over a period of time. vidual values for sawtimber trees. The system Thus you may want to develop local value and the values both have a lot of potential standards of your own or adjust our regional uses for evaluating timber stands and their ones. development. And so, in this paper we: a) describe fully the value system, b) present How They Were Calculated a set of samtimber tree values, c) show how We used the quality index (Q.I.) approach the values can be applied, and d) describe a to calculating tree value conversion standards computer program for generating tree vol- (He?*riefc1956). This approach was a series umes and tree value conversion standards. of index values to calculate the net value of In doing so, our aim is to provide researchers the 4/4 lumber that can be sawed from the and practitioners with a means for making tree's logs. The process is shown in figure 1. rigorous timber evaluations. We developed Q.I.'s for individual logs, by To further that aim, we are publishing species, log grade, and log diameter, using concurrently two other papers - COMPOSITE the formula : VOLUME AND VALUE TABLES FOR HARDWOOD Log Q.I.=( rjc FAS x P.R.p,zs) + PULPWOOD and AN INDIVIDUAL-TREE APPROACH ( % SELx P.R.sE1,) TO MAKING STAND EVALUATIONS. These three + (rjt #lCxP.R.$lc) + . papers combined make a useful set of work- + (Cjo #3BxP.It.lf'3U). ing tools. The percentages are the proportion of a TREE VALUE log's lumber that would meet the specifica- tions for each lumber grade. We obtained CONVERSION STANDARDS. this information by hand-curving data from HARDWOODLUMBER GRADES FOR STANDARD What They Are LUMBER (Vazcghn et at. 1966). Tree value conversion standards (TVCS) The P.R.'s are price relatives or price in- are a measure of a tree's worth in dollars, dexes that express the price of each lumber based on the quantity and quality of its ex- grade as a proportion of that of No. 1 Corn- pected yield of 4 '4 (1-inch) lumber. They mon (table 1) . The price relatives given here are standards, not in the sense that they are are based on the average prices of 4/4 plain- fixed and absolute values, but in the sense sawed No. 1 Comnlon lumber of each species that they are criteria for gaging tree value over the 5-year period 1964 through 1968, within a given frame~vorkof circumstances. f.0.b. mills in the Johnson City, Tennessee In the following section we describe the area, as reported in HARDWOODMARKET RE- system that we used to generate the tree value PORT (Lemskg 2964-68). Table I. - Lumber Price relafives Lumber Grade 2C Species FAS SEL SAPS IC 2.4. 2B 3A 3B iq'hite ash Beech BIack cherry Elm Hickory Red maple Sugar maple Black oak& Chestnut oaks Red oak White oak Yellow-poplar Prices for chestnut oak and black oak were not available. Because lumber of these species is intermixed with white oak and red oak respectively, prices of the latter species were used to calculate the price relatives. We developed tree &.I.%for a sample of relative stability in the economy. Prices since trees, using the formula : that time have been distorted by inflation and recession. Tree &.I.= ( $L of tree volume in 1st log We then converted gross tree values per x Q-Io~st log) thousand to net tree values per thousand by ( 70 of tree volume in 2nd log x Q.I.and log) + subtracting conversion cost - the cost of Cjc +. + ( of tree volume in nth log x converting standing timber into 4/4 lumber. Q.I.rtth log) It includes the costs of labor and materials The percentage of tree volume in each log used in felling and bucking the trees, skid- is based on a tree volume table, which pro- ding and loading, other logging costs, trans- vides the volume of each log in a tree of given portation, and milling.
Recommended publications
  • Stand Visualization System Version 3.30
    Stand Visualization System Version 3.30 Robert J. McGaughey -- USDA Forest Service -- Pacific Northwest Research Station The Stand Visualization System (SVS) was developed by Robert J. McGaughey, USDA Forest Service, Pacific Northwest Research Station. SVS is public domain software and can be freely distributed. For additional information, contact the author via email: [email protected] Information describing SVS and the latest version of the software are also available on the World Wide Web at: http://forsys.cfr.washington.edu/svs.html Contents SVS Overview ........................................................................................................... 6 SVS menu selections ................................................................................................ 6 Display ................................................................................................................... 7 Right Mouse Button Menu ......................................................................................... 8 Specifying SVS preferences...................................................................................... 8 Image size preferences........................................................................................ 11 Tree legend preferences...................................................................................... 13 Working with SVS Tree Lists ................................................................................... 14 Tree Lists ............................................................................................................
    [Show full text]
  • Individual-Tree Diameter Growth and Mortality Models for Bottomland
    Forest Ecology and Management 199 (2004) 307–322 Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley Dehai Zhaoa,*, Bruce Bordersb, Machelle Wilsona aSavannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 USA bWarnell School of Forest Resources, University of Georgia, Athens, GA 30602 USA Received 19 November 2003; received in revised form 4 February 2004; accepted 16 May 2004 Abstract Individual-tree diameter growth and mortality models were developed for the bottomland mixed-species hardwood stands in the Lower Mississippi Alluvial Valley (LMAV). Data came from 5-year remeasurements of continuous forest inventory plots. Six species groups were created according to diameter structure, tree growth, mortality, recruitment and light demand of species. A 5-year basal area increment model and logistic mortality model were calibrated for species groups. Potential predictor variables at tree-level and stand-level were selected based on the available data and their biological significance to tree growth and mortality. The resulting models possess desirable statistical properties and model behaviors, and can be used to update short- term inventory. # 2004 Elsevier B.V. All rights reserved. Keywords: Individual-tree growth model; Distance-independent; Mixed-species; Bottomland hardwoods; Mortality 1. Introduction have been developed and evaluated for more complex mixed-species stands (Burkhart and Tham, 1992). Recently, active management of mixed-species Mixed-species forests with a high diversity of tree stands is becoming more prevalent and seems to be species exhibit a huge range of life forms and stem a worldwide trend. This change from pure, single sizes.
    [Show full text]
  • An Improved Weise's Rule for Efficient Estimation of Stand Quadratic Mean
    Forests 2015, 6, 2545-2559; doi:10.3390/f6082545 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Article An Improved Weise’s Rule for Efficient Estimation of Stand Quadratic Mean Diameter Róbert Sedmák 1,2,*, Ľubomír Scheer 1, Róbert Marušák 2, Michal Bošeľa 2,3, Denisa Sedmáková 4 and Marek Fabrika 1 1 Faculty of Forestry, Technical University in Zvolen, Zvolen 96053, Slovakia; E-Mails: [email protected] (L.S.); [email protected] (M.F.) 2 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 6 165 21, Czech Republic; E-Mail: [email protected] 3 National Forest Centre––Forest Research Institute in Zvolen, Zvolen 96053, Slovakia; E-Mail: [email protected] 4 Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen 96053, Slovakia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +421-455-206-305, Fax: +421-455-332-654. Academic Editor: Maarten Nieuwenhuis Received: 1 June 2015 / Accepted: 22 July 2015 / Published: 27 July 2015 Abstract: The main objective of this study was to explore the accuracy of Weise’s rule of thumb applied to an estimation of the quadratic mean diameter of a forest stand. Virtual stands of European beech (Fagus sylvatica L.) across a range of structure types were stochastically generated and random sampling was simulated. We compared the bias and accuracy of stand quadratic mean diameter estimates, employing different ranks of measured stems from a set of the 10 trees nearest to the sampling point. We proposed several modifications of the original Weise’s rule based on the measurement and averaging of two different ranks centered to a target rank.
    [Show full text]
  • Land at Newton Croft, Bucksburn 5.2 Site Address Land At
    5. Site Details 5.1 What name would you like the Land at Newton Croft, Bucksburn site to be known by? (Please note if the site is currently included within the ALDP2017 please use the OP site number) 5.2 Site Address Land at Newton Croft, Bucksburn 5.3 Postcode AB21 9PD 5.4 Have you any information for No the site on the internet? If so please provide the web address: 5.5 Is the site currently being The land is under option to Mactaggart & Mickel marketed? Homes Ltd, an established national housebuilder. 5.6 Site Location Map OS Base Map attached. (Please include an OS Map with the Boundary of the site clearly marked) 5.7 Please provide the National Grid reference of the site. 5.8 What is the current use of the Grazing land site? 5.9 Has there been any previous No development on the site? If yes please provide details 6. Legal and Planning History 6.1 Please indicate the Sole owner relationship to the Part owner Proposer or Person / Option to purchase Organisation they are working on No legal interest behalf of, has with the site. 6.2 Is the site under Yes, the site is under option to Mactaggart & option to a Mickel Homes Ltd, an established national developer? housebuilder. 6.3 Is the proposed site No included in the ALDP2017? 6.4 Is the proposed site N/A included in the Aberdeen City Centre Masterplan? 6.5 Has the site been Yes, through previous LDP processes. subject of previous discussions with the Council or any agent there of? 6.6 Has the site been No subject of previous Planning Applications? (Please 6.7 Has the site been Yes, Partially.
    [Show full text]
  • Bay Village Tree Inventory Executive Summary| 2020
    Bay Village Tree Inventory Executive Summary| 2020 Submitted by: Bartlett Tree Experts Eric Hinzman, Division Inventory Arborist ISA Board Certified Master Arborist #OH-6027B, ISA Tree Risk Assessment Qualified Chad Clink, Arborist Representative Registered Consulting Arborist #589, ISA Board Certified Master Arborist & Municipal Specialist #OH-6204BM, ISA Tree Risk Assessment Qualified Bartlett Tree Experts Cleveland Office 575 Golden Oak Parkway Oakwood Village, Ohio 44146 614.239.7558 www.bartlett.com © 2019 The F.A. Bartlett Tree Expert Company. All rights reserved TABLE OF CONTENTS INTRODUCTION ...................................................................................................................... 1 Who's Who .............................................................................................................................. 1 Subject Trees ........................................................................................................................... 2 Definitions & Bolded Terms ................................................................................................... 2 EXECUTIVE SUMMARY ........................................................................................................ 3 BACKGROUND ........................................................................................................................ 4 DATA COLLECTION & TREE INSPECTION METHODOLOGY ........................................ 4 Data Collection Equipment & Attribute Data ........................................................................
    [Show full text]
  • Modelling Mixed Forest Growth: a Review of Models for Forest Management
    Ecological Modelling 150 (2002) 141–188 www.elsevier.com/locate/ecolmodel Modelling mixed forest growth: a review of models for forest management A. Porte´ a,*, H.H. Bartelink b a INRA Mediterranean Forest Research, A6enue A. Vi6aldi, 84000 A6ignon, France b Sil6iculture and Forest Ecology Group, Department of En6ironmental Sciences, Wageningen Uni6ersity, P.O. Box 342, 6700 AH Wageningen, The Netherlands Received 16 April 2001; received in revised form 24 October 2001; accepted 31 October 2001 Abstract Most forests today are multi-specific and heterogeneous forests (‘mixed forests’). However, forest modelling has been focusing on mono-specific stands for a long time, only recently have models been developed for mixed forests. Previous reviews of mixed forest modelling were restricted to certain categories of models only and were generally not considering application and suitability. The purpose of this paper is to give an overview of the models designed for or applied to modelling mixed forest growth and dynamics and to review the suitability of the different model types according to their intended purposes. The first part of the paper gives an overview of previous classifications, after which a new and overall classification scheme is presented. Next, the characteristics of the six modelling approaches that were distinguished are described: distance-dependent stand models, distribution models, average tree models, distance-dependent tree models, distance-independent tree models and gap models. All, except gap models, are close to mono-specific stands modelling approaches. The second part of the paper describes the main applications of these modelling approaches and presents a critical analysis of their suitability.
    [Show full text]
  • Illegal Logging in SEE and EE (Governance, Implementation and Enforcement) Illegal Logging Activities in Bosnia and Herzegovina
    Illegal Logging in SEE and EE (Governance, Implementation and Enforcement) Illegal logging activities in Bosnia and Herzegovina A. FACT-FINDING STUDY January 2010 BOSNIA AND HERZEGOVINA 2 BOSNIA AND HERZEGOVINA Table of content Table of content .................................................................................................................. 3 List of acronyms ................................................................................................................. 4 Project background ............................................................................................................. 6 1. INTRODUCTION ...................................................................................................... 7 1.1. Bosnia and Herzegovina –physical and socioeconomic structure ........................... 7 1.2. Forestry overview .................................................................................................... 9 1.2.1. Organizational Aspects ................................................................................... 13 1.3. Forestry and Economic Development – Wood Industry........................................ 14 1.4. International commitments and support to the forestry sector............................... 15 1.5. Corruption Perception Index (CPI) of Transparency International (TI)................ 17 1.6. Main drivers of illegal logging .............................................................................. 17 2. DEFINITIONS OF ILLEGAL LOGGING .............................................................
    [Show full text]
  • French Hall Study
    SUNY Canton Study of French Hall Sidewalks, Stairs, and Plazas, and Campus Trees Along Cornell Drive SUCF Project Number: 231029001 Spring 2019 SUNY Canton | Study of French Hall, Roselle Plaza, and Cornell Drive Table of Contents I. Overview ............................................................................................................................................. 1-2 • Cornell Drive • Roselle Plaza II. Purpose & Goals .......................................................................................................................... 3 III. Inventory and Analysis ............................................................................................................ 4-12 • Cornell Drive • Bartlett’s Summary • Roselle Plaza • Pedestrian Pavements and Curbs • Accessibility • Retaining Walls • Stairs • Landscaping • Lighting • Signage • Seating • Trash Receptacles IV. Design Concepts ......................................................................................................................... 13-31 • Cornell Drive • Alternative Concepts • Selected Concepts • Roselle Plaza • Alternative Concepts • Selected Concepts • Site Amenities • Conceptual Estimates • Cornell Drive • Roselle Plaza V. References & Appendix ........................................................................................................... 32 • SUNY Canton BIS Tree Inventory and Management Plan The L.A. Group, P.C. SUNY Canton | Study of French Hall, Roselle Plaza, and Cornell Drive Overview Overview Introduction The State
    [Show full text]
  • Modelling Post-Disturbance Successional Dynamics of the Canadian Boreal Mixedwoods
    Article Modelling Post-Disturbance Successional Dynamics of the Canadian Boreal Mixedwoods Kobra Maleki 1,* , Mohamadou Alpha Gueye 1, Benoit Lafleur 1, Alain Leduc 2 and Yves Bergeron 1,2 1 Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada; [email protected] (M.A.G.); Benoit.Lafl[email protected] (B.L.); [email protected] (Y.B.) 2 Centre d’étude de la forêt, Département des sciences biologiques, Université de Québec à Montréal, Montréal, QC H3C 3P8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-819-762-0971 (ext. 2462) Received: 31 October 2019; Accepted: 14 December 2019; Published: 18 December 2019 Abstract: Natural disturbances, such as fire and insect outbreaks, play important roles in natural forest dynamics, which are characterized over long time scales by changes in stand composition and structure. Individual-based forest simulators could help explain and predict the response of forest ecosystems to different disturbances, silvicultural treatments, or environmental stressors. This study evaluated the ability of the SORTIE-ND simulator to reproduce post-disturbance dynamics of the boreal mixedwoods of eastern Canada. In 1991 and 2009, we sampled all trees (including seedlings and saplings) in 431 (256 m2) plots located in the Lake Duparquet Research and Teaching Forest (western Quebec). These plots were distributed in stands originating from seven wildfires that occurred between 1760 and 1944, and which represented a chronosequence of post-disturbance stand development. We used the 1991 inventory data to parameterize the model, and simulated short- to long-term natural dynamics of post-fire stands in both the absence and presence of a spruce budworm outbreak.
    [Show full text]
  • 72676 FSPLT3 1447394.Pdf
    Table of Contents Introduction ................................................................................................................................. 1 Silvicultural Overview ................................................................................................................ 1 Need for action ........................................................................................................................ 1 Project objectives..................................................................................................................... 2 Regulatory Framework ............................................................................................................ 2 Effects Analysis Methodology ........................................................................................................ 4 Background ............................................................................................................................. 4 Specific Assumptions .............................................................................................................. 7 Affected Environment/Environmental Consequences ........................................................... 11 Environmental Consequences ....................................................................................................... 17 Alternative 1 - No Action .......................................................................................................... 21 Direct and Indirect Effects ....................................................................................................
    [Show full text]
  • D07-06-15-0003 Tree Conservation Report
    March 2015 REPORT ON Tree Conservation Report in Support of Draft Plan Approval of the Former CFB Rockcliffe Lands Submitted to: Canada Lands Company CLC Limited 30 Metcalfe Street, Suite 601 Ottawa, ON K1P 5L4 Report Number: 1418293 Distribution: REPORT 2 copies - Canada Lands Company CLC Ltd. 1 CD - Canada Lands Company CLC Ltd. 11 copies - City of Ottawa 1 copy - Golder Associates Ltd. TREE CONSERVATION REPORT FORMER CFB ROCKCLIFFE LANDS Table of Contents 1.0 INTRODUCTION ............................................................................................................................................................... 1 2.0 GENERAL INFORMATION .............................................................................................................................................. 2 3.0 CURRENT DESIGNATIONS AND STATUS OF PLANNING APPLICATION .................................................................. 3 4.0 PROPOSED WORKS AND SCHEDULE .......................................................................................................................... 4 5.0 EXISTING TREE COVER ON-SITE .................................................................................................................................. 5 6.0 NATURAL ENVIRONMENT FEATURES ON-SITE ........................................................................................................ 12 6.1 Species at Risk and Significant Wildlife Habitat ................................................................................................
    [Show full text]
  • This Is an Author Produced Version of a Paper Published in International Journal of Remote Sensing
    This is an author produced version of a paper published in International Journal of Remote Sensing. This paper has been peer-reviewed and is proof-corrected, but does not include the journal pagination. Citation for the published paper: Eva Lindberg, Johan Holmgren, Kenneth Olofsson, Jörgen Wallerman & Håkan Olsson. (2010) Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods. International Journal of Remote Sensing. Volume: 31, Number: 5, pp 1175-1192. http://dx.doi.org/10.1080/01431160903380649. Access to the published version may require journal subscription. Published with permission from: Taylor & Francis. Standard set statement from the publisher: This is an Author's Accepted Manuscript of an article published in INTERNATIONAL JOURNAL OF REMOTE SENSING, 30 March 2010, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/01431160903380649. Epsilon Open Archive http://epsilon.slu.se Estimation of tree lists from airborne laser scanning by combining single- tree and area-based methods Eva Lindberg*†, Johan Holmgren†, Kenneth Olofsson†, Jörgen Wallerman † and Håkan Olsson † † Swedish University of Agricultural Sciences, Department of Forest Resource Management, SE-90183 Umeå, Sweden *Corresponding author. Email address: [email protected] Published in 2010 in International Journal of Remote Sensing 31(5), 1175-1192 Abstract Individual tree crown segmentation from airborne laser scanning (ALS) data often fails to detect all trees depending on the forest structure. This paper presents a new method to produce tree lists consistent with unbiased estimates at area level. First, a tree list with height and diameter at breast height (DBH) was estimated from individual tree crown segmentation.
    [Show full text]