SETI and Democracy

Total Page:16

File Type:pdf, Size:1020Kb

SETI and Democracy SETI and Democracy Peter Hatfielda,∗, Leah Truebloodb,c aAstrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK bFaculty of Law, University of Oxford, St Cross Building, St Cross Road, Oxford, OX1 3UL, UK cWorcester College, 1 Walton St, Oxford OX1 2HB, UK Abstract There is a wide-ranging debate about the merits and demerits of searching for, and sending messages to, extrater- restrial intelligences (SETI and METI). There is however reasonable (but not universal) consensus that replying to a message from an extraterrestrial intelligence should not be done unilaterally, without consultation with wider society and the rest of the world. But how should this consultation actually work? In this paper we discuss various ways that decision making in such a scenario could be done democratically, and gain legitimacy. In particular we consider a scientist-led response, a politician-led response, deciding a response using a referendum, and finally using citizens' assemblies. We present the results of a survey of a representative survey of 2,000 people in the UK on how they thought a response should best be determined, and finally discuss parallels to how the public is responding to scientific expertise in the COVID-19 Pandemic. Keywords: SETI 1. Introduction Universe [14, 15], and the practicalities of sending mes- sages, and how they might be decoded, are fields in and Search for Extraterrestrial Intelligence (SETI) is the of themselves[16]. SETI and METI remain speculative en- process of searching for intelligent life forms in the Uni- terprises, but have grown as disciplines over time, partic- verse beyond planet Earth. There are many such searches ularly since the discovery that exoplanets are ubiquitous underway [1], conventionally using large astronomical tele- throughout the Galaxy[17]. 1 scopes. The current scientific consensus is that there is There is considerable debate in the literature about the no life (intelligent or otherwise) beyond planet Earth in merits and demerits of METI[18, 19, 20, 21, 22, 23, 24, 25]. our Solar System [3]; whether there is life elsewhere in Those against typically would argue that METI risks `re- the Milky Way or indeed the Universe remains an open vealing' the location and existence of our planet, and that question[4, 5]. Alongside SETI, sometimes researchers con- it might attract the attention of a hostile species, with po- sider the prospect of actively Messaging Extraterrestrial tentially civilisation ending consequences. The arguments Intelligence (METI, sometimes called active SETI) - send- in favour typically counter that Earth's regular electro- ing messages out into the Universe with the intention of an magnetic signals (TV etc.) have already revealed our lo- as-of-yet unknown intelligence finding and understanding cation if that was a reasonable worry, and furthermore the message[6]. that First Contact might bring unimaginable benefits if Modern SETI projects are generally considered to start they are friendly2. Perhaps the consequences and nature with Project Ouzma in 1960[7, 8]. Notable contemporary of First Contact would simply be so beyond our current examples include Breakthrough Listen[9] and Search for frame of reference that inevitably any predictions will have Extraterrestrial Radio Emissions from Nearby Developed been made in vain[26, 27]. The purpose of this paper is not Intelligent Populations (SERENDIP)[10]. METI conven- to discuss these arguments, but instead to focus on the is- tionally takes either the form of physical artefacts (e.g. sue of how that decision ought to be made. Opponents have the Voyager Golden Records[11]) or electromagnetic sig- arXiv:2007.13515v2 [physics.pop-ph] 11 Dec 2020 proposed banning or regulating METI[24, 28], so the ques- nals beamed at astrophysical bodies (e.g. radio signals tion is not completely hypothetical - and would rapidly be- like the Arecibo Message [12] or perhaps with pulsed laser come imperative if there ever was a real life First Contact signals [13]). There is an extensive literature considering scenario. There are a few suggested protocols, but little how many extraterrestrial species there might be in the discussion of how these decision making processes might acquire legitimacy - how can METI be made democratic (if indeed it needs to be). ∗Corresponding author Email address: [email protected] (Peter Hatfield) 2There are many more details to these arguments, better sum- 1At least until very recently[2] marised elsewhere. Preprint submitted to Acta Astronautica December 14, 2020 2. Previous Democratic Processes in SETI that they should try to have some international consulta- tion in the determination of any message5. This trend has Outer space has presented democratic, political, legal continued into the 2010's6, a 2012 follow-up to the `Wow!' and governance issues for decades e.g. regulating satel- signal consisted of 10,000 Twitter messages7, and in 2016 lite ownership and liability and managing ownership issues the European Space Agency message `A Simple Response of mining asteroids. For example, legally a key plank in to an Elemental Message' included 3775 messages from the the international framework for space is the Outer Space worldwide public8. Treaty of 1967[29], which limits the types of weapon that can be placed in space, forbids governments from making 2.2. Composing Replies claims over the Moon or other bodies in the Solar System, In terms of replying to received messages, there is no and regulates ownership of objects launched into space. universally endorsed approach, but probably the most pop- Politically, exploration of outer space has been charged ular/well recognised outlook is the 1989 International Academy since the dawn of spaceflight e.g. who is chosen to be an of Astronautics SETI Post-Detection Protocols. The pro- astronaut[30, 31, 32]. Here we discuss various democratic tocols lay out some guiding principles to be followed in the processes that have been relevant for SETI and METI to event of a detection, and gives an outline of a procedure to date. be followed, namely to not publicly announce the detec- tion until it has been independently verified, and to then 2.1. Composing Messages inform other observers through the International Astro- Early 1970's METI effects were typically led by an in- nomical Union, and the Secretary General of the United dividual, or small group of individuals, who then took a se- Nations (in accordance with Article XI of the Outer Space ries of consultations to improve and clarify their proposed Treaty). In particular the 8th protocol proposes `No re- message, before sending. The Pioneer Plaques (launched sponse to a signal or other evidence of extra-terrestrial 1972 and 1973) were essentially developed just by Carl intelligence should be sent until appropriate international Sagan, Frank Drake and Linda Salzman Sagan[33] over consultations have taken place. The procedures for such three weeks. Similarly the 1974 Arecibo message similarly consultations will be the subject of a separate agreement, was developed by a team of about four people led by Frank declaration or arrangement.'910 More recently, on the 13th Drake[34]. A few years later for Voyager Golden Records February 2015, SETI experts met at an annual meeting of (1977) NASA required a more formal process over the the American Association for the Advancement of Science, much longer period of a year. The images and music (and and released a declaration concluding that: `A worldwide message from US President Carter) that went on the discs scientific, political and humanitarian discussion must oc- were selected by a six person committee chaired by Carl cur before any message is sent.'11 The question of what Sagan, selected by NASA. NASA is known to have vetoed amounts to an `international consultation' or a `world- some choices of the committee, so there was effectively wide scientific political and humanitarian discussion' is left an oversight process[11]. Making a plaque/record/message unanswered in the IAA protocol and the AAAS declara- that is representative of all humanity is an incredibly chal- tion12. It is the aim of this paper to discuss what such lenging task[35, 28], and the contents of the record have a process might involve and how it might become to be been debated substantially in the subsequent decades[36]. perceived as legitimate. In all these cases, the number of humans directly con- tributing to the development of the message was less than ten, with arguably with some informal oversight from a 5Also increasingly felt in the literature[21, 24] larger number of people from NASA. 6See [38] for a comprehensive summary of METI messages 7 IRM Cosmic Call 2 was sent to 5 Sun-like stars in https://www.space.com/17151-alien-wow-signal-response. html 2003 and contained messages composed by citizens of the 8https://blogs.esa.int/artscience/2017/02/17/paul-quast- USA, Canada and Russia3 [37], likely the first interna- man-with-a-simple-message/ tional METI effort. More recent METI attempts have ex- 9https://iaaseti.org/en/declaration-principles- concerning-activities-following-detection/ panded the number of people involved in determining the 10There are a few revisions and drafted new versions of the content of any message to extraterrestrials. In 2008 `A Protocol; one modified version instead states `No communication Message From Earth' was sent towards Gliese 581 c, and to extraterrestrial intelligence should be sent by any State until the content of the message was determined by online sub- appropriate international consultations have taken place. States 4 should not cooperate with attempts to communicate with ex- missions and votes on social media website Bebo . Bebo traterrestrial intelligence that do not conform to the principles of at the time had 12 million users who in principle could this Declaration' https://iaaspace.org/wp-content/uploads/iaa/ have voted, and half a million actually participated.
Recommended publications
  • A Direct Communication Proposal to Test the Zoo Hypothesis
    Space Policy 38 (2016) 22e26 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Viewpoint A direct communication proposal to test the Zoo Hypothesis Joao~ Pedro de Magalhaes~ Institute of Integrative Biology, University of Liverpool, Biosciences Building, Room 245, Crown Street, Liverpool, L69 7ZB, UK article info abstract Article history: Whether we are alone in the universe is one of the greatest mysteries facing humankind. Given the >100 Received 3 March 2016 billion stars in our galaxy, many have argued that it is statistically unlikely that life, including intelligent Accepted 16 June 2016 life, has not emerged anywhere else. The lack of any sign of extraterrestrial intelligence, even though on a Available online 26 July 2016 cosmic timescale extraterrestrial civilizations would have enough time to cross the galaxy, is known as Fermi's Paradox. One possible explanation for Fermi's Paradox is the Zoo Hypothesis which states that Keywords: one or more extraterrestrial civilizations know of our existence and can reach us, but have chosen not to Active SETI disturb us or even make their existence known to us. I propose here a proactive test of the Zoo Hy- Astrobiology fi Fermi's Paradox pothesis. Speci cally, I propose to send a message using television and radio channels to any extrater- Messaging to extraterrestrial intelligence restrial civilization(s) that might be listening and inviting them to respond. Even though I accept this is METI unlikely to be successful in the sense of resulting in a response from extraterrestrial intelligences, the possibility that extraterrestrial civilizations are monitoring us cannot be dismissed and my proposal is consistent with current scientific knowledge.
    [Show full text]
  • Searching for Extraterrestrial Intelligence
    THE FRONTIERS COLLEctION THE FRONTIERS COLLEctION Series Editors: A.C. Elitzur L. Mersini-Houghton M. Schlosshauer M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely The Biological Evolution of Religious Mind and Behaviour Edited by E. Voland and W. Schiefenhövel Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-To-Classical Transition By M. Schlosshauer The Nonlinear Universe Chaos, Emergence, Life By A. Scott Symmetry Rules How Science and Nature are Founded on Symmetry By J. Rosen Quantum Superposition Counterintuitive Consequences of Coherence, Entanglement, and Interference By M.P.
    [Show full text]
  • Appendix Relations with Alien Intelligences – the Scientific Basis of Metalaw1
    Appendix Relations with Alien Intelligences – The Scientific Basis of Metalaw1 Ernst Fasan DK 340.114:341.229:2:133 1 The appendix was previously published by Berlin Verlag Arno Spitz in 1970. © Springer International Publishing Switzerland 2016 181 P.M. Sterns, L.I. Tennen (eds.), Private Law, Public Law, Metalaw and Public Policy in Space, Space Regulations Library 8, DOI 10.1007/978-3-319-27087-6 Contents Foreword by Wernher von Braun ����������������������������������������������������������������� 185 Introduction ����������������������������������������������������������������������������������������������������� 187 I: The Possibility of Encountering Nonhuman Intelligent Beings �������������� 189 Opinions in Ancient Literature ��������������������������������������������������������������������� 189 The Results of Modern Science �������������������������������������������������������������� 191 II: The Physical Nature of Extraterrestrial Beings �������������������������������������� 205 The Necessary Characteristics ��������������������������������������������������������������������� 205 Origin and Development of Protoplasmic Life ��������������������������������������� 209 Intelligent Machines – The Question of Robots �������������������������������������� 210 III: The Concept, Term, and Literature of Metalaw ����������������������������������� 213 Selection and Definition of the Term ����������������������������������������������������������� 213 A Survey of Literature �����������������������������������������������������������������������������
    [Show full text]
  • The Drake Puzzle by Shane L
    The Drake Puzzle by Shane L. Larson Department of Astronomy, Adler Planetarium “Our sun is one of 100 billion stars in our galaxy. Our galaxy is one of billions of galaxies populating the universe. It would be the height of presumption to think that we are the only living things in that enormous immensity.” ∼ Wernher von Braun Introduction The Search for Extraterrestrial Intelligence (SETI) has long been of interest to humankind. The problem is how would we communicate with extraterrestrial biological entities (EBEs) if we met them? It is said that in 1820, the famous German mathematician Karl Friedrich Gauss recommended that a giant right triangle of trees be planted in the Russian wilderness, an exercise that would demonstrate to EBEs that the inhabitants of Earth were civilized enough to understand geometry. It is also said that 20 years later, the Viennese astronomer Joseph von Littrow proposed digging a twenty-mile-long ditch in the Sahara, filling it with kerosene, and lighting it at night, again to communicate that there was intelligent life down here. In the modern era, the American radio astronomer Frank Drake is generally credited with beginning the first serious efforts geared toward communication with possible extraterrestrial intelligences. In 1960, at the Green Bank radio astronomy facility in West Virginia, he began the first modern search for radio signals of extraterrestrial origin, called Project Ozma. Communication without preamble In the years that followed Project Ozma, there was a great deal of debate as to whether or not we could actually decode a message if we received it, and even more to the point, whether or not an EBE could decode a message from us if it received one.
    [Show full text]
  • SETI in VIVO: TESTING the WE-ARE-THEM HYPOTHESIS ∗ MAXIM A.MAKUKOV1 and VLADIMIR I
    PREPRINT VERSION JULY 12, 2017. ACCEPTED IN THE INTERNATIONAL JOURNAL OF ASTROBIOLOGY Preprint typeset using LATEX style emulateapj v. 01/23/15 DOI: 10.1017/S1473550417000210 SETI IN VIVO: TESTING THE WE-ARE-THEM HYPOTHESIS ∗ MAXIM A. MAKUKOV1 and VLADIMIR I. SHCHERBAK2 ABSTRACT After it was proposed that life on Earth might descend from seeding by an earlier extraterrestrial civilization motivated to secure and spread life, some authors noted that this alternative offers a testable implication: microbial seeds could be intentionally supplied with a durable signature that might be found in extant organisms. In particular, it was suggested that the optimal location for such an artifact is the genetic code, as the least evolving part of cells. However, as the mainstream view goes, this scenario is too speculative and cannot be meaningfully tested because encoding/decoding a signature within the genetic code is something ill-defined, so any retrieval attempt is doomed to guesswork. Here we refresh the seeded-Earth hypothesis in light of recent observations, and discuss the motivation for inserting a signature. We then show that “biological SETI” involves even weaker assumptions than traditional SETI and admits a well-defined methodological framework. After assessing the possibility in terms of molecular and evolutionary biology, we formalize the approach and, adopting the standard guideline of SETI that encoding/decoding should follow from first principles and be convention-free, develop a universal retrieval strategy. Applied to the canonical genetic code, it reveals a nontrivial precision structure of interlocked logical and numerical attributes of systematic character (previously we found these heuristically). To assess this result in view of the initial assumption, we perform statistical, comparison, interdependence, and semiotic analyses.
    [Show full text]
  • FRANK D. DRAKE Education 1952 Cornell University BA, Engineering
    Biographical Sketch FRANK D. DRAKE Education 1952 Cornell University B.A., Engineering Physics (with honors) 1956 Harvard University M.S., Astronomy 1958 Harvard University Ph.D., Astronomy Professional Employment 1952-1956 U.S. Navy, Electronics Officer 1956-1958 Agassiz Station Radio Astronomy Project, Harvard University 1958-1963 National Radio Astronomy Observatory, Green Bank, West Virginia - Head of Telescope Operations & Scientific Services Division - Conducted planetary research and cosmic radio source studies 1963-64 Jet Propulsion Laboratory, Chief of Lunar & Planetary Sciences 1964-1984 Cornell University - Associate Professor of Astronomy (1964); then Full Professor (1966) - Associate Director, Center for Radiophysics & Space Research (1964-75) - Director, Arecibo Observatory, Arecibo, Puerto Rico (1966-1968) - Chairman, Astronomy Department, Cornell University (1969-71) - Director, National Astronomy & Ionosphere Center, part of which is the Arecibo Observatory (from its creation in 1970 until July 1981) - Goldwin Smith Professor of Astronomy, Cornell University (1976-84) 1984-Present University of California, Santa Cruz - Dean, Natural Sciences Division (1984-1988) - Acting Associate Vice Chancellor, University Advancement (1989-90) - Professor of Astronomy & Astrophysics (1984 – 1996) - Professor Emeritus of Astronomy & Astrophysics, (1996 –present) 1984-Present SETI Institute, Mountain View, California: - President (1984-2000) - Chairman, Board of Trustees, (1984-2003) - Chairman Emeritus, Board of Trustees, 2003- present - Director, Carl Sagan Center for the Study of Life in the Universe, 2004-present Professional Achievements 1959 Shared in the discovery of the radiation belts of Jupiter, and conducted early pulsar observational studies 1960 Conducted Project OZMA at NRAO, Green Bank, WV -- the first organized search for ETI signals 1961 Devised widely-known Drake Equation, giving an estimate of the number of communicative extraterrestrial civilizations that we might find in our galaxy.
    [Show full text]
  • An Evolving Astrobiology Glossary
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.
    [Show full text]
  • Communication with Extraterrestrial Intelligence Through Radio Signals and Messages 1A
    ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print) IJECT VOL . 5, ISSU E SPL - 2, JAN - MAR C H 2014 Communication with Extraterrestrial Intelligence Through Radio Signals and Messages 1A. B. Bhattacharya, 2A. Sarkar 1,2Dept. of Physics, University of Kalyani, Kalyani, WB, India Abstract hundred yards wide could delineate twenty-mile wide shapes and The paper summarizes the present day research knowledge based then the trenches would be filled with water after which enough on communication with extraterrestrial intelligence through four kerosene could be poured on top of the water to burn for six hours. distinct means covering mathematical languages, pictorial systems Using this technique, a different signal could be sent every night. like the Arecibo message, algorithmic communication systems and In the mean time other astronomers were looking for signs of life computational approaches for detecting and deciphering ‘natural’ on other planets. In 1822, Franz von Gruithuisen [Cattermole and language communication. Moore, 1997] imagined a giant city and evidence of agriculture on the moon and believed evidence of life on Venus but astronomers Keywords using more sophisticated instruments refuted his claims. By the Arecibo Message, Communication, Extraterrestrial Intelligence, late 1800s, Astronomers believed the Kant-Laplace hypothesis, Resonant Receiver which stated that the farthest planets from the sun are the oldest and so Mars was more likely to have advanced civilizations than I. Introduction Venus. Subsequent investigations focused on contacting Martians. Communication with Extraterrestrial Intelligence (CETI) is Charles Cros [Ley, 1958] was convinced that pinpoints of light a subject matter under the SETI (Search for Extraterrestrial observed on Mars and Venus were the lights of large cities and Intelligence) research which focuses on composing and was attempted to get funding for a giant mirror with which to deciphering messages that could be understood theoretically signal the Martians.
    [Show full text]
  • A Profile of Humanity: the Cultural Signature of Earth's Inhabitants
    International Journal of A profile of humanity: the cultural signature of Astrobiology Earth’s inhabitants beyond the atmosphere cambridge.org/ija Paul E. Quast Beyond the Earth foundation, Edinburgh, UK Research Article Abstract Cite this article: Quast PE (2018). A profile of The eclectic range of artefacts and ‘messages’ we dispatch into the vast expanse of space may humanity: the cultural signature of Earth’s become one of the most enduring remnants of our present civilization, but how does his pro- inhabitants beyond the atmosphere. tracted legacy adequately document the plurality of societal values and common, cultural heri- International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550418000290 tage on our heterogeneous world? For decades now, this rendition of the egalitarian principle has been explored by the Search for Extra-Terrestrial Intelligence community in order to draft Received: 18 April 2018 theoretical responses to ‘who speaks for Earth?’ for hypothetical extra-terrestrial communica- Revised: 13 June 2018 tion strategies. However, besides the moral, ethical and democratic advancements made by Accepted: 21 June 2018 this particular enterprise, there remains little practical exemplars of implementing this gar- Key words: nered knowledge into other experimental elements that could function as mutual emissaries Active SETI; data storage; deep time messages; of Earth; physical artefacts that could provide accessible details about our present world for eternal memory archives; future archaeology; future archaeological observations by our space-faring progeny, potential visiting extrasolar long-term communication strategies; SETI; time capsules denizens or even for posterity. While some initiatives have been founded to investigate this enduring dilemma of humanity over the last half-century, there are very few comparative stud- Author for correspondence: ies in regards to how these objects, time capsules and transmission events collectively dissem- Paul E.
    [Show full text]
  • Vol 11 No 2, Spring 2005
    SearchLites Vol. 11 No. 2, Spring 2005 The Quarterly Newsletter of The SETI League, Inc. Offices: 433 Liberty Street Scaling Back on SETICon PO Box 555 Little Ferry NJ Little Ferry, NJ.., 19 February 2005 -- Five years after initiating its SETICon Technical 07643 USA Symposium, the nonprofit, membership-supported SETI League has had to scale back the annual membership event to more modest proportions. Because The SETI League chose Phone: to make its meetings affordable and accessible to a wide range of amateur radio astrono- (201) 641-1770 Facsimile: mers, the events have proved a steady drain on the grassroots science group's limited fi- (201) 641-1771 nancial resources. Hence, the organization's 2005 annual meeting will be held in conjunc- Email: tion with another, much larger and well-established conference. [email protected] Web: "The last few SETICons cost us about $4,000 each to put on," notes Dr. H. Paul www.setileague.org Shuch, volunteer executive director of The SETI League. "Depending as we do upon President: membership dues and individual contributions, we thought our limited funding would be Richard Factor better spent on SETI science than on hosting scientific meetings." Consequently, Shuch Registered Agent: announced, The SETI League's 2005 Annual Membership Meeting will be held on the Marc Arnold, Esq. campus of The College of New Jersey, in conjunction with the annual Trenton Computer Secretary/Treasurer: A. Heather Wood Festival. Executive Director: H. Paul Shuch, Ph.D. This year's Trenton Computer Festival is scheduled to run the weekend of 16-17 April, 2005, with The SETI League's membership meeting to be held there on Sunday morning, 17 April, from 10 AM until Noon.
    [Show full text]
  • On James Gunn's
    C/SETI as Fiction: On James Gunn’s The Listeners 539 CHAPTER 28 C/SETI as Fiction: On James Gunn’s THE LISTENERS De Witt Douglas Kilgore Astronomy compels the soul to look upwards and leads us from this world to another. —Plato, The Republic, 529 ver the past four decades the search for extraterrestrial intelligence (SETI) has Otaken a small but significant place in American culture.Walter Sullivan, Frank Drake, and David Grinspoon, among many others, have written popular accounts of the science. Motion pictures such as Contact (997) and Species (995) have visualized the field with the tools available to filmmakers.The SETI Institute’s radio programAre WeAlone, hosted by astronomer Seth Shostak, makes the science a part of the heavily mediated environment of popular entertainment.There is also the small,robust field of historical and critical scholarship.It is in fiction,however,that SETI has found its most effective expression for general audiences.This medium provides literary arguments for why the science matters in contemporary life. I argue that it is fiction about SETI that helps us model the societal implications of extraterrestrial contact. Fiction writers such as James Gunn and writer-scientists such as Carl Sagan have produced a literary subgenre that I call the CETI (communication with extraterrestrial intelligence) novel.2 These writers take the science seriously and share an interest in . Plato, The Republic (New York:Vintage Books, 99), p. 274. 2. For the purpose of distinguishing it from the science (SETI),I use for the fiction the original acronym for the project: CETI or communication with extraterrestrial intelligence.
    [Show full text]
  • Is Anybody out There? Julia Bandura, Michael Chong, Ross Edwards
    Is Anybody Out There? Julia Bandura, Michael Chong, Ross Edwards ISCI 3A12 - LUE March 23rd, 2017 -graphic of scientists believe that with our rapid technological advancement, there may be ways to “We stand on a great communicate with them. This article will explore attempts to transmit threshold in the human messages to potential intelligent life forms, history of space attempts to search for incoming alien signals, and analyze explanations for the silence that we have exploration” (Sara Seager, 2014) insofar encountered. However, before considering any form of communication, whether receiving or radiation levels (since high UV radiation can be transmitting, we must first consider where to look. damaging to replication molecules like DNA), and Where is Life in the Universe? liquid water. Water is especially important: all known life on Earth requires liquid water to Logically, a scientist that hopes to communicate survive. As such, within a solar system, the with extraterrestrial beings must assume that: 1) traditional ‘habitable zone’ is defined as the extraterrestrial intelligent life exists in the universe, imaginary disc around the host star where water 2) it exists in high enough abundance that radio will remain in liquid form. A significant number of communication is possible, 3) a transmitted radio exoplanets have been discovered within this zone signal from Earth will be picked up by a receiver, around their host star, but only a fraction of them and 4) the message will be translated successfully. are considered ‘Earth-like’, meaning that their Each assumption comes with challenges that make surface conditions and sizes are similar to Earth’s the process of creating a radio message appropriate (Rekola, 2009).
    [Show full text]