SETI in VIVO: TESTING the WE-ARE-THEM HYPOTHESIS ∗ MAXIM A.MAKUKOV1 and VLADIMIR I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life-Centered Ethics and the Human Future in Space Michael Noah Mautner Virginia Commonwealth University, [email protected]
Virginia Commonwealth University VCU Scholars Compass Chemistry Publications Dept. of Chemistry 2009 Life-Centered Ethics and the Human Future in Space Michael Noah Mautner Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/chem_pubs Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Social and Behavioral Sciences Commons © 2008 The Author. Journal compilation © 2008 Blackwell Publishing Ltd. Downloaded from http://scholarscompass.vcu.edu/chem_pubs/77 This Article is brought to you for free and open access by the Dept. of Chemistry at VCU Scholars Compass. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Bioethics ISSN 0269-9702 (print); 1467-8519 (online) doi:10.1111/j.1467-8519.2008.00688.x Volume 23 Number 8 2009 pp 433–440 ARTICLES LIFE-CENTERED ETHICS, AND THE HUMAN FUTURE IN SPACE MICHAEL N. MAUTNER Keywords bioethics, ABSTRACT life-centered ethics, In the future, human destiny may depend on our ethics. In particular, biotic ethics, biotechnology and expansion in space can transform life, raising profound panbiotic ethics, questions. Guidance may be found in Life-centered ethics, as biotic ethics genetic engineering, that value the basic patterns of organic gene/protein life, and as panbiotic biophilia, ethics that always seek to expand life. These life-centered principles can be life in space, based on scientific insights into the unique place of life in nature, and the astroethics biological unity of all life. Belonging to life then implies a human purpose: to safeguard and propagate life. -
Searching for Extraterrestrial Intelligence
THE FRONTIERS COLLEctION THE FRONTIERS COLLEctION Series Editors: A.C. Elitzur L. Mersini-Houghton M. Schlosshauer M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely The Biological Evolution of Religious Mind and Behaviour Edited by E. Voland and W. Schiefenhövel Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-To-Classical Transition By M. Schlosshauer The Nonlinear Universe Chaos, Emergence, Life By A. Scott Symmetry Rules How Science and Nature are Founded on Symmetry By J. Rosen Quantum Superposition Counterintuitive Consequences of Coherence, Entanglement, and Interference By M.P. -
Appendix Relations with Alien Intelligences – the Scientific Basis of Metalaw1
Appendix Relations with Alien Intelligences – The Scientific Basis of Metalaw1 Ernst Fasan DK 340.114:341.229:2:133 1 The appendix was previously published by Berlin Verlag Arno Spitz in 1970. © Springer International Publishing Switzerland 2016 181 P.M. Sterns, L.I. Tennen (eds.), Private Law, Public Law, Metalaw and Public Policy in Space, Space Regulations Library 8, DOI 10.1007/978-3-319-27087-6 Contents Foreword by Wernher von Braun ����������������������������������������������������������������� 185 Introduction ����������������������������������������������������������������������������������������������������� 187 I: The Possibility of Encountering Nonhuman Intelligent Beings �������������� 189 Opinions in Ancient Literature ��������������������������������������������������������������������� 189 The Results of Modern Science �������������������������������������������������������������� 191 II: The Physical Nature of Extraterrestrial Beings �������������������������������������� 205 The Necessary Characteristics ��������������������������������������������������������������������� 205 Origin and Development of Protoplasmic Life ��������������������������������������� 209 Intelligent Machines – The Question of Robots �������������������������������������� 210 III: The Concept, Term, and Literature of Metalaw ����������������������������������� 213 Selection and Definition of the Term ����������������������������������������������������������� 213 A Survey of Literature ����������������������������������������������������������������������������� -
The Drake Puzzle by Shane L
The Drake Puzzle by Shane L. Larson Department of Astronomy, Adler Planetarium “Our sun is one of 100 billion stars in our galaxy. Our galaxy is one of billions of galaxies populating the universe. It would be the height of presumption to think that we are the only living things in that enormous immensity.” ∼ Wernher von Braun Introduction The Search for Extraterrestrial Intelligence (SETI) has long been of interest to humankind. The problem is how would we communicate with extraterrestrial biological entities (EBEs) if we met them? It is said that in 1820, the famous German mathematician Karl Friedrich Gauss recommended that a giant right triangle of trees be planted in the Russian wilderness, an exercise that would demonstrate to EBEs that the inhabitants of Earth were civilized enough to understand geometry. It is also said that 20 years later, the Viennese astronomer Joseph von Littrow proposed digging a twenty-mile-long ditch in the Sahara, filling it with kerosene, and lighting it at night, again to communicate that there was intelligent life down here. In the modern era, the American radio astronomer Frank Drake is generally credited with beginning the first serious efforts geared toward communication with possible extraterrestrial intelligences. In 1960, at the Green Bank radio astronomy facility in West Virginia, he began the first modern search for radio signals of extraterrestrial origin, called Project Ozma. Communication without preamble In the years that followed Project Ozma, there was a great deal of debate as to whether or not we could actually decode a message if we received it, and even more to the point, whether or not an EBE could decode a message from us if it received one. -
FRANK D. DRAKE Education 1952 Cornell University BA, Engineering
Biographical Sketch FRANK D. DRAKE Education 1952 Cornell University B.A., Engineering Physics (with honors) 1956 Harvard University M.S., Astronomy 1958 Harvard University Ph.D., Astronomy Professional Employment 1952-1956 U.S. Navy, Electronics Officer 1956-1958 Agassiz Station Radio Astronomy Project, Harvard University 1958-1963 National Radio Astronomy Observatory, Green Bank, West Virginia - Head of Telescope Operations & Scientific Services Division - Conducted planetary research and cosmic radio source studies 1963-64 Jet Propulsion Laboratory, Chief of Lunar & Planetary Sciences 1964-1984 Cornell University - Associate Professor of Astronomy (1964); then Full Professor (1966) - Associate Director, Center for Radiophysics & Space Research (1964-75) - Director, Arecibo Observatory, Arecibo, Puerto Rico (1966-1968) - Chairman, Astronomy Department, Cornell University (1969-71) - Director, National Astronomy & Ionosphere Center, part of which is the Arecibo Observatory (from its creation in 1970 until July 1981) - Goldwin Smith Professor of Astronomy, Cornell University (1976-84) 1984-Present University of California, Santa Cruz - Dean, Natural Sciences Division (1984-1988) - Acting Associate Vice Chancellor, University Advancement (1989-90) - Professor of Astronomy & Astrophysics (1984 – 1996) - Professor Emeritus of Astronomy & Astrophysics, (1996 –present) 1984-Present SETI Institute, Mountain View, California: - President (1984-2000) - Chairman, Board of Trustees, (1984-2003) - Chairman Emeritus, Board of Trustees, 2003- present - Director, Carl Sagan Center for the Study of Life in the Universe, 2004-present Professional Achievements 1959 Shared in the discovery of the radiation belts of Jupiter, and conducted early pulsar observational studies 1960 Conducted Project OZMA at NRAO, Green Bank, WV -- the first organized search for ETI signals 1961 Devised widely-known Drake Equation, giving an estimate of the number of communicative extraterrestrial civilizations that we might find in our galaxy. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
Ethics from Wikipedia, the Free Encyclopedia for Other Uses, See Ethics (Disambiguation)
Ethics From Wikipedia, the free encyclopedia For other uses, see Ethics (disambiguation). Philosophy Plato – – Kant Kant – – Nietzsche Nietzsche Philosophers Aestheticians Epistemologists Ethicists Logicians Metaphysicians Social and political philosophers Traditions Analytic Continental Eastern Islamic Platonic Scholastic Periods Ancient Medieval Modern Contemporary Literature Aesthetics Epistemology Ethics Logic Metaphysics Political philosophy Branches Aesthetics Epistemology Ethics Legal philosophy Logic Metaphysics Political philosophy Social philosophy Lists Index Outline Years Problems Publications Theories Glossary Philosophers Philosophy portal V T E Ethics, sometimes known as moral philosophy, is a branch of philosophy that involves systematizing, defending and recommending concepts of right and wrong conduct, often addressing disputes of moral diversity.[1] The term comes from the Greek word ἠθικόςethikos from ἦθος ethos, which means "custom, habit". The superfield within philosophy known as axiology includes both ethics andaesthetics and is unified by each sub-branch's concern with value.[2] Philosophical ethics investigates what is the best way for humans to live, and what kinds of actions are right or wrong in particular circumstances. Ethics may be divided into three major areas of study:[1] Meta-ethics, about the theoretical meaning and reference of moral propositions and how their truth values (if any) may be determined Normative ethics, about the practical means of determining a moral course of action Applied ethics draws upon ethical theory in order to ask what a person is obligated to do in some very specific situation, or within some particular domain of action (such as business) Related fields are moral psychology, descriptive ethics, and value theory. Ethics seeks to resolve questions dealing with human morality—concepts such as good and evil, right and wrong, virtue and vice, justice and crime. -
Communication with Extraterrestrial Intelligence Through Radio Signals and Messages 1A
ISSN : 2230-7109 (Online) | ISSN : 2230-9543 (Print) IJECT VOL . 5, ISSU E SPL - 2, JAN - MAR C H 2014 Communication with Extraterrestrial Intelligence Through Radio Signals and Messages 1A. B. Bhattacharya, 2A. Sarkar 1,2Dept. of Physics, University of Kalyani, Kalyani, WB, India Abstract hundred yards wide could delineate twenty-mile wide shapes and The paper summarizes the present day research knowledge based then the trenches would be filled with water after which enough on communication with extraterrestrial intelligence through four kerosene could be poured on top of the water to burn for six hours. distinct means covering mathematical languages, pictorial systems Using this technique, a different signal could be sent every night. like the Arecibo message, algorithmic communication systems and In the mean time other astronomers were looking for signs of life computational approaches for detecting and deciphering ‘natural’ on other planets. In 1822, Franz von Gruithuisen [Cattermole and language communication. Moore, 1997] imagined a giant city and evidence of agriculture on the moon and believed evidence of life on Venus but astronomers Keywords using more sophisticated instruments refuted his claims. By the Arecibo Message, Communication, Extraterrestrial Intelligence, late 1800s, Astronomers believed the Kant-Laplace hypothesis, Resonant Receiver which stated that the farthest planets from the sun are the oldest and so Mars was more likely to have advanced civilizations than I. Introduction Venus. Subsequent investigations focused on contacting Martians. Communication with Extraterrestrial Intelligence (CETI) is Charles Cros [Ley, 1958] was convinced that pinpoints of light a subject matter under the SETI (Search for Extraterrestrial observed on Mars and Venus were the lights of large cities and Intelligence) research which focuses on composing and was attempted to get funding for a giant mirror with which to deciphering messages that could be understood theoretically signal the Martians. -
On James Gunn's
C/SETI as Fiction: On James Gunn’s The Listeners 539 CHAPTER 28 C/SETI as Fiction: On James Gunn’s THE LISTENERS De Witt Douglas Kilgore Astronomy compels the soul to look upwards and leads us from this world to another. —Plato, The Republic, 529 ver the past four decades the search for extraterrestrial intelligence (SETI) has Otaken a small but significant place in American culture.Walter Sullivan, Frank Drake, and David Grinspoon, among many others, have written popular accounts of the science. Motion pictures such as Contact (997) and Species (995) have visualized the field with the tools available to filmmakers.The SETI Institute’s radio programAre WeAlone, hosted by astronomer Seth Shostak, makes the science a part of the heavily mediated environment of popular entertainment.There is also the small,robust field of historical and critical scholarship.It is in fiction,however,that SETI has found its most effective expression for general audiences.This medium provides literary arguments for why the science matters in contemporary life. I argue that it is fiction about SETI that helps us model the societal implications of extraterrestrial contact. Fiction writers such as James Gunn and writer-scientists such as Carl Sagan have produced a literary subgenre that I call the CETI (communication with extraterrestrial intelligence) novel.2 These writers take the science seriously and share an interest in . Plato, The Republic (New York:Vintage Books, 99), p. 274. 2. For the purpose of distinguishing it from the science (SETI),I use for the fiction the original acronym for the project: CETI or communication with extraterrestrial intelligence. -
Limits on Interstellar Messages
Limits on Interstellar Messages Seth Shostak 1.0. Introduction While SETI experiments designed to find radio and optical signals intentionally sent from other worlds have been conducted for more than four decades, there has never been a sustained, deliberate broadcasting effort. Arguments against a transmitting project range from the practical (cost) and the philosophical (our communication technology is less than a century old, so we should listen first), to the paranoid (it might be dangerous to betray our location with a signal). A summary of some of the arguments for and against terrestrial broadcasting efforts is given by Ekers, Cullers, Billingham, and Scheffer (2002). Although we are not beaming signals to other star systems ourselves, there has nonetheless been considerable thought given to how we might reply to, or even initiate, any extraterrestrial communication. Various suggestions (Vakoch 1998) have included encoding our message with mathematics, music, or graphics. The last has some precedent in the pictorial messages affixed to the Pioneer 10 and 11 spacecraft, as well as the analog records carried by Voyager 1 and 2. In addition, a simple graphic was also used in the first, deliberate high-powered transmission to deep space, the Arecibo broadcast (Staff of the Arecibo Observatory 1975). Irrespective of coding schemes, one might argue that exercises in message construction for replies are superfluous, given that mankind has long been transmitting information to the stars inadvertently. Indeed, high-powered broadcasting at frequencies above ~100 MHz will traverse the ionosphere and continue into space. The earliest television signals have already reached several thousand star systems. -
Is There Life out There?
IS THERE LIFE OUT THERE? Larry Haug Former NASA Contractor - Apollo Moon Landing Team Member - Hubble Space Telescope Ground Data Systems Manager SOURCES • “The Search for Life in the Universe” by Neil deGrasse Tyson, Director, Hayden Planetarium in NYC • “The Search for Life Across the Universe” by Amy Crawford, Science Journalist for Smithsonian Magazine • “Would We Know Alien Life If We Saw It?” by Trudy E. Bell, Science Journalist for Scientific American • “Life Among the Gas Giants” by Craig Mellow, American biologist and professor of molecular medicine at the University of Massachusetts Medical School • “Astrobiology: Possibility of Life Out There” by Dr. Tim Kral, Associate Professor of Microbiology at U of A In order to determine if extraterrestrial life exists we need to answer three questions: • What is life? • What is needed for life to exist? • Where do we look for extraterrestrial life? WHAT IS LIFE? What Is Life? • Species # 1 • Species # 2 • Species # 3 • Species # 4 SPECIES #1 • Can exist in extreme hot and cold environments • Can live in water • Has no arms or legs or any other external appendages but is able to move on the ground at speeds up to 2 feet/second • Can swallow other creatures up to 5 times the size of its mouth • Some kill their prey with a poisonous excretion and then eat their poisoned victims • Periodically sheds their outer covering which protects them from their environment What Is Life? • Species # 1 - Snake • Species # 2 • Species # 3 • Species # 4 SPECIES #2 • Can exist in extreme environments • -
SETI Nanjing Univ
SETI - Search for Extra-terrestrial Intelligence - Perspectives of an Earth Scientist Donna M. Jurdy Page 1 of 1 Northwestern University NASA/JPL htt ://msnbcmedia.msn.com/i/msnbc/Com onents/Photos/071012/071012 telesco e hme... 4/24/2009 PERCIVAL LOWELL at his 24” Refractor, Flagstaff, Arizona observing Mars during the favorable perihelic opposition, 1894. Below, a globe constructed from his sketches. H.G. Wells The War of the Worlds (1898) Viking composite of Mars mid 1970’s ALH84001 thin section – Martian fossils? Page 1 of 1 htt ://www.karencarr.com/auto ima e/auto ima e mid/Smithsonian Bur ess Shale. 4/24/2009 Image Credit: Woods Hole Oceanographic Institution Vertebrates’ view of ‘Tree of Life’ c. 1960 © 2014 Pearson Education, Inc. The Miller-Urey Experiment Above: Harold C. Urey (1893-1981) Left: Stanley L. Miller (1930-2007) with a reproduction of the experimental setup he first used in the 1950’s to study pathways to the origin of life. Life in the Solar System? Pole-to-Equator Temperature Difference on Other Planets ~ 0 K ~ 4 K a few 10 K a few (more) 10 K Thicker Atmosphere Needed for Habitability? Solid surface Atmosphere Liquid on surface: Need not be water PHI – Planetary Habitability Index: Schulze-Makuch et al., 2011 Habitability Index Earth = 0.96 Titan = 0.64 Mars = 0.59 Gliese 581d = 0.43 Credit: Popular Science Early View of Venus Europa Enceladus Titan Huygens Landing Site Landed January 14, 2005 at 10.2S, 192.4W Discovered small “rocks”, possibly made of water ice, at the landing site.