Clinical and Translational Science Institute Centers 5-15-2018 K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics Jie Lin Fujian Normal University Donald A. Adjeroh West Virginia University Bing-Hua Jiang University of Iowa Yue Jiang Fujian Normal University Follow this and additional works at: https://researchrepository.wvu.edu/ctsi Part of the Medicine and Health Sciences Commons Digital Commons Citation Lin, Jie; Adjeroh, Donald A.; Jiang, Bing-Hua; and Jiang, Yue, "K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics" (2018). Clinical and Translational Science Institute. 957. https://researchrepository.wvu.edu/ctsi/957 This Article is brought to you for free and open access by the Centers at The Research Repository @ WVU. It has been accepted for inclusion in Clinical and Translational Science Institute by an authorized administrator of The Research Repository @ WVU. For more information, please contact
[email protected]. Bioinformatics, 34(10), 2018, 1682–1689 doi: 10.1093/bioinformatics/btx809 Advance Access Publication Date: 15 December 2017 Original Paper Sequence analysis * K2 and K2 : efficient alignment-free sequence similarity measurement based on Kendall statistics Jie Lin1, Donald A. Adjeroh2, Bing-Hua Jiang3 and Yue Jiang1,* 1Department of Software engineering, College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350108, China, 2Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA and 3Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA *To whom correspondence should be addressed. Associate Editor: John Hancock Received on September 8, 2017; revised on December 11, 2017; editorial decision on December 12, 2017; accepted on December 14, 2017 Abstract Motivation: Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods.