CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Hindawi Publishing Corporation Advances in Bioinformatics Volume 2012, Article ID 975783, 17 pages doi:10.1155/2012/975783 Research Article A Topology-Based Metric for Measuring Term Similarity in the Gene Ontology Gaston K. Mazandu and Nicola J. Mulder Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa Correspondence should be addressed to Nicola J. Mulder,
[email protected] Received 13 December 2011; Revised 29 February 2012; Accepted 13 March 2012 Academic Editor: Satoru Miyano Copyright © 2012 G. K. Mazandu and N. J. Mulder. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations.