Morphometric Analysis of Sella Turcica and Its

Total Page:16

File Type:pdf, Size:1020Kb

Morphometric Analysis of Sella Turcica and Its International Journal of Dental and Health Sciences Original Article Volume 04,Issue 01 MORPHOMETRIC ANALYSIS OF SELLA TURCICA AND ITS CLINICAL SIGNIFICANCE Priya Damodaran1, Yuvaraj.M2, Priyadarshini.A3, Sankaran.P.K4, Kalaiarasi.P5, Madhu Radhakrishnan6 1. Student, Compulsory Rotarory Residential Internship, Ragas dental college and hospital, Tamil nadu 2. Tutor, Department of Anatomy, Saveetha medical college and hospital, Thandalam, Tamil nadu 3. Tutor, Department of Anatomy, Saveetha medical college and hospital, Thandalam, Tamil nadu 4. Associate professor, Department of Anatomy, Saveetha medical college and hospital, Thandalam, Tamil nadu 5. Student, Compulsory Rotarory Residential Internship, Ragas dental college and hospital, Tamil nadu 6. Student, Compulsory Rotarory Residential Internship, Ragas dental college and hospital, Tamil nadu ABSTRACT: Sella turcica is an important and commonly used cranial landmark in many ventures. This work aims to measure and study sella turcica size and shape variations which is important for neurologists and neurosurgeons to avoid any damage to the sellar region and in identifying any pathological signs involving pituitary gland. The study was done with 102 dried human skulls where the gender of the skulls was not taken into consideration. The study was mainly concentrated to analyze the parameters of sella turcica. The average of sella turcica length, breadth and depth were calculated to be 10.59mm, 10.76mm and 9.23mm respectively. Most commonly found shape of sella turcica is normal (56.8%). These observations are essential in providing reference standard values. Keywords: Sella turcica, Sella size, Sella shape, Hypophyseal fossa INTRODUCTION The Sella turcica, a saddle shaped chiasma, inferiorly by sphenoid sinus, depression, is an important bony entity medially by cavernous sinus, oculomotor which is located in the body of the nerve, trochlear nerve, abducent nerve, sphenoid bone of the middle cranial ophthalmic nerve, maxillary nerve, fossa and is bounded by the two anterior internal carotid artery. and two posterior clinoid processes. The seat of the saddle, the deepest part of The prenatal and postnatal formation of the sella turcica, known as the pituitary gland and sella turcica are hypophyseal fossa along with complex processes. During prenatal tuberculum sellae and dorsum sellae formation, pituitary gland and sella forms the whole of the sella turcica. The turcica, the two important structures are hypophyseal fossa lodges the Pituitary located in the boundary region, gland, the master endocrine gland also separating tissues of different origin and known as the ‘conductor of endocrine development. Origin of the pituitary orchestra’. The roof is diaphragm sella, gland is a result of interaction between which is circular fold of duramater oral ectoderm which gives rise to attached to anterior clinoid process and anterior pituitary and neural ectoderm posterior clinoid process. [1] Sella turcica gives rise to posterior pituitary. The is surrounded anteriorly by optic pituitary fossa differentiates directly from the hypophyseal cartilage which in *Corresponding Author Address: Dr. Priya Damodaran. E-mail: [email protected] Priya D.et al, Int J Dent Health Sci 2017; 4(1):77-84 turn is derived from the cranial neural Department of Anatomy of Ragas Dental crest cells of the early chondrocranium. College and Hospital, Uthandi, Chennai, Tamilnadu. Sex of the skulls was not During embryological development, sella taken into consideration but skulls of turcica area is the key point for the extreme ages were avoided. Any migration of the neural crest cells to the abnormalities or fusion of anterior, fronto nasal and maxillary middle and posterior clinoid processes developmental fields. Formation and were noted and excluded. development of the anterior part of the pituitary gland, sella turcica, and teeth The morphometric parameters share in common, the involvement of concentrated in this study are the neural crest cells, and dental epithelial length, breadth, depth (in mid-sagittal progenitor cells differentiate through plane) and also the shape variations of sequential and reciprocal interaction sella turcica. The linear measurements with neural crest-derived mesenchyme. are calculated with Digimatic vernier Posterior part of the pituitary gland caliper and scale. And the measurements develops from the paraxial mesoderm from columella to hypophyseal fossa and which is closely related to notochordal glabella to hypophyseal fossa are also induction. [2] measured. These values are vital to the neurosurgeons operating in that area. During the postnatal development, deposition of bone on the anterior part SIZE OF SELLA TURCICA: of the interior surface of the sella turcica ceases at an early age, whereas Numerous studies have been done on resorption on the distal part of the sella the size of sella turcica, however the floor and on the posterior wall continues methods differ widely. Due to difference for a longer period of time. Deposition of in the method of measurement, bone was seen on the tuberculum sellae comparisons to other studies should be and resorption at the posterior boundary done with caution. of sella turcica up to 16-18 years of In this current study the parameters are age.[2] determined with the reference methods The purpose of this study is to analyze of Silverman. Figure 1(a) and (b) predominant morphological parameters Sella turcica length is obtained by and various shapes and abnormalities of measuring the distance between the sella turcica and contributing to establish midpoint of tuberculum sellae and reference standard values. midpoint of dorsum sellae. [3] MATERIALS AND METHODS Sella turcica depth is measured at the The study was conducted on 102 dried deepest part of the sella and is at right human skulls obtained from the 78 Priya D.et al, Int J Dent Health Sci 2017; 4(1):77-84 angles to the direction of the length of Shape of sella turcica: sella turcica. The morphological variations in sella Sella turcica breadth is measured from turcica have been reported by many the midpoint of the medial margin of researchers through time. The study carotid sulcus of both sides. done by Axelsson[4] in 2004 is used as comparative standards for this study and SHAPE OF SELLA TURCICA: the variations in shape of sella turcica is observed in our study skulls. Frequency The study by Axelsson[4] was used to of each shape is tabulated in Table 3. determine the shape of sella turcica, according to which 5 variations in DISCUSSION : morphology of sella turcica are described apart from normal The anatomy of sellar region is very morphology. much vital for neurosurgeons and the discussion about the parameters The different morphological types of measured in our study is done below. sella turcica are (a) normal sella turcica (b) oblique anterior wall (c) double Size of sella turcica: contour of the floor (d) irregularity in the posterior part of sella turcica (e) A microsurgical anatomical study on 250 pyramidal shape of dorsum sellae. spheroidal blocks from cadavers of Illustrated in figure 2. different ages was performed by Quakinine and Hardy and found that the OBSEVATION AND RESULTS: average transverse width of sella turcica was 12 mm, length was 8 mm, and the Size of sella turcica: average height was 6 mm.[5] Silverman [3] in his extensive longitudinal radiographic The morphometric parameters of the investigation of 320 subjects from 1 sella were measured on 102 study skulls month to 18 years of age reported that in terms of millimeters. Sex comparison sella turcica was larger in males than in or age factors were not noted in this females except during puberty. study. Measurements were taken and Axelsson[4] studied the size of Norwegian mean values and standard deviation males and females longitudinally from 6 were calculated in table 1. to 21 years of age with normal facial The measurements needed for trans appearance and normal occlusion. The nasal and trans sphenoidal approach depth and diameter in males and (needed during surgery) is also taken in females were similar but the length was this study and their average values and larger in males. Alkofide [6] studied the standard deviation were calculated and lateral cephalograms of 180 Saudi tabulated in table 2. subjects with an age range of 11-26 years with different skeletal types. 79 Priya D.et al, Int J Dent Health Sci 2017; 4(1):77-84 Diameter of sella turcica was larger in hypophyseal fossa were measured and class III subjects and smaller in class II the average was found to be 85 mm and subjects. It was found that there were no 80 mm respectively. These statistically significant differences measurements are very helpful to the between males and females in all the surgeons during procedure. three linear dimensions. When linear dimensions were compared with age, Shape of sella turcica: the size of sella turcica was larger in The shape of sella turcica was classified older age group than in the younger age by Gorden and Bell in 1922 by group. According to Preston, [7] pituitary examining radiographs of children of age fossa increased in size with age and ranging from 1 year to 12 years as found a positive correlation of the area circular, oval, and flattened or saucer- of the sella to age. After 26 years of age, shaped and majority of the subjects had no significant increase was observed on either a circular or oval shaped sella.[17] the size. The dimensional changes in the Other classifications were based on the sella turcica had a significant positive contours of the sella floor, the angles linear trend to length, depth, and formed by the contours of anterior and diameter until 25 years of age. posterior clenoid processes and Our current study gives the mean of sella tuberculum sellae and the fusion of both turcica length, breadth and depth which clenoid processes as sella turcica [2] aids in obtaining the morphological bridge. In a recent study by Axelsson et knowledge of sella.
Recommended publications
  • The Normal Dimensions of the Sella Turcica in North Karnataka Region- a Computed Tomographic Study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi***
    Original Article Pravara Med Rev 2018;10(3) The normal dimensions of the Sella Turcica in North Karnataka region- A Computed tomographic study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi*** Abstract Aim of the study: Sella turcica is an important structure in middle cranial fossa. It is a saddle shaped concavity in the body of sphenoid bone. It is bounded by dura of cavernous sinuses bilaterally, the lamina dura and dorsum sellae posteriorly and the tuberculum sellae and planum sphenoidale anteriorly. The present study was undertaken to study the normal dimensions of sella turcica morphometry. Material and methods: This observational study was conducted in S Nijalingappa medical college and HSK hospital, Bagalkot. 1650 computed tomographic images of healthy Indians aged 21-70 years were collected. Radiant Dicom viewer software was used to determine the linear dimensions of sella turcica. Data was analysed using t test and ANOVA with Epi Info software. Results: The mean values (in millimeter) of length, width and height of sella turcica in different age groups was 8.80 ± 1.65, 10.83 ± 1.35 and 8.52 ± 1.50. Conclusion: The dimensions of sella turcica vary in different populations and these findings could form an initial database for Indian population which may provide a good anatomical knowledge during objective evaluation and detection of pathological conditions of sella turcica and hypophysis cerebri. Key words: Sphenoid bone, Linear dimensions, Hypophysis cerebri Introduction Sella turcica is an important structure in middle cranial fossa. It is safe treatment of various pituitary disorders such as a saddle shaped concavity in the body of sphenoid bone.
    [Show full text]
  • Entrapment Neuropathy of the Central Nervous System. Part II. Cranial
    Entrapment neuropathy of the Cranial nerves central nervous system. Part II. Cranial nerves 1-IV, VI-VIII, XII HAROLD I. MAGOUN, D.O., F.A.A.O. Denver, Colorado This article, the second in a series, significance because of possible embarrassment considers specific examples of by adjacent structures in that area. The same entrapment neuropathy. It discusses entrapment can occur en route to their desti- nation. sources of malfunction of the olfactory nerves ranging from the The first cranial nerve relatively rare anosmia to the common The olfactory nerves (I) arise from the nasal chronic nasal drip. The frequency of mucosa and send about twenty central proces- ocular defects in the population today ses through the cribriform plate of the ethmoid bone to the inferior surface of the olfactory attests to the vulnerability of the optic bulb. They are concerned only with the sense nerves. Certain areas traversed by of smell. Many normal people have difficulty in each oculomotor nerve are pointed out identifying definite odors although they can as potential trouble spots. It is seen perceive them. This is not of real concern. The how the trochlear nerves are subject total loss of smell, or anosmia, is the significant to tension, pressure, or stress from abnormality. It may be due to a considerable variety of causes from arteriosclerosis to tu- trauma to various bony components morous growths but there is another cause of the skull. Finally, structural which is not usually considered. influences on the abducens, facial, The cribriform plate fits within the ethmoid acoustic, and hypoglossal nerves notch between the orbital plates of the frontal are explored.
    [Show full text]
  • Neurocranial Histomorphometrics
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biological and Physical Anthropology Commons Recommended Citation Trammell, Lindsay Hines, "Neurocranial Histomorphometrics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1359 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lindsay Hines Trammell entitled "Neurocranial Histomorphometrics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Anthropology. Murray K. Marks, Major Professor We have read this dissertation and recommend its acceptance: Joanne L. Devlin, David A. Gerard, Walter E. Klippel, David G. Anderson (courtesy member) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange.
    [Show full text]
  • Perinate and Eggs of a Giant Caenagnathid Dinosaur from the Late Cretaceous of Central China
    ARTICLE Received 29 Jul 2016 | Accepted 15 Feb 2017 | Published 9 May 2017 DOI: 10.1038/ncomms14952 OPEN Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China Hanyong Pu1, Darla K. Zelenitsky2, Junchang Lu¨3, Philip J. Currie4, Kenneth Carpenter5,LiXu1, Eva B. Koppelhus4, Songhai Jia1, Le Xiao1, Huali Chuang1, Tianran Li1, Martin Kundra´t6 & Caizhi Shen3 The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. 1 Henan Geological Museum, Zhengzhou 450016, China. 2 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada T2N 1N4. 3 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. 4 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9. 5 Prehistoric Museum, Utah State University, 155 East Main Street, Price, Utah 84501, USA.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Investigating the Various Shapes of Sella Turcica in Nigerian Children Using Lateral Skull Radiographs
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Investigating the Various Shapes of Sella Turcica in Nigerian Children Using Lateral Skull Radiographs Bello A., Usman J.D. Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria. Corresponding Author: Bello A ABSTRACT The knowledge of the normal radiographic anatomy of the sella turcica and sella point is of great importance to clinicians in enabling them quickly recognize, investigate or evaluate any deviation from normal as well as any pathological situation related to the pituitary gland. This study investigated the various shapes of the sella turcica in children. A total of 250 lateral skull radiographs taken in the Department of Radiology, Usmanu Danfodiyo University Teaching Hospital (UDUTH), Sokoto from January 2013 to December 2014 were retrieved for the purpose of this study. Radiographs were mounted on the viewing box and variants of the anatomical shapes of the sella turcica were studied and classified. Of the 162 radiographs used in this study, 114 (70.4%) sella turcica were round shaped while 48 (29.6%) oval in shaped. This observed difference was statistically significant (p<0.001). Meanwhile, the floor of the sella turcica of the study participants showed a concave outline in 130 (80%) of the children and flat outline in 32 (20%) of the children. Sexual dimorphism was seen in this study with respect to shape of sella turcica. Round shaped sella turcica was predominant in Nigerian children used in this study. The prevalence and the relative frequencies of the normal variants of the anatomical shapes of the sella turcica of male Nigerian children differ significantly from those of their female counterparts.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • Single‑Staged Resections and 3D Reconstructions of the Nasion, Glabella, Medial Orbital Wall, and Frontal Sinus and Bone
    OPEN ACCESS Editor: James I. Ausman, MD, PhD For entire Editorial Board visit : University of California, Los http://www.surgicalneurologyint.com Angeles, CA, USA SNI: Skull Base, a supplement to Surgical Neurology International Case Report Single‑staged resections and 3D reconstructions of the nasion, glabella, medial orbital wall, and frontal sinus and bone: Long‑term outcome and review of the literature Jeremy Ciporen, Brandon P. Lucke‑Wold1, Gustavo Mendez2, Anton Chen3, Amit Banerjee4, Paul T. Akins4, Ben J. Balough3 Department of Neurological Surgery, and 2Department of Diagnostic Radiology, Oregon Health and Science University, Portland, Oregon, 1Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, 3Departments of ENT, and 4Neurosurgery, Kaiser Permanente, Sacramento, California, USA E‑mail: *Jeremy Ciporen ‑ [email protected]; Brandon P. Lucke‑Wold ‑ [email protected]; Gustavo Mendez ‑ [email protected]; Anton Chen ‑ [email protected]; Amit Banerjee ‑ [email protected]; Paul T. Akins ‑ [email protected]; Ben J. Balough ‑ [email protected] *Corresponding author Received: 11 March 16 Accepted: 10 September 16 Published: 26 December 16 Abstract Background: Aesthetic facial appearance following neurosurgical ablation of frontal fossa tumors is a primary concern for patients and neurosurgeons alike. Craniofacial reconstruction procedures have drastically evolved since the development of three‑dimensional computed tomography imaging and computer‑assisted programming. Traditionally, two‑stage approaches for resection and reconstruction were used; however, these two‑stage approaches have many complications including cerebrospinal fluid leaks, necrosis, and pneumocephalus. Case Description: We present two successful cases of single‑stage osteoma resection and craniofacial reconstruction in a 26‑year‑old female and 65‑year‑old male.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • A Bony Canal in the Basilar Part of Occipital Bone
    eISSN 1308-4038 International Journal of Anatomical Variations (2010) 3: 112–113 Case Report A bony canal in the basilar part of occipital bone Published online August 9th, 2010 © http://www.ijav.org Navneet Kumar CHAUHAN ABSTRACT Jyoti CHOPRA Clivus is a gradual slopping process behind the dorsum sellae that runs obliquely backwards. An unusual 6 mm Anita RANI long and 1 mm wide bony canal was observed on the lower one third of clivus in an adult human dry skull. The Archana RANI internal end of the canal was opening in the midline. The canal was directed downwards, forwards and laterally. Ajay Kumar SRIVASTAVA The external opening was present antero-lateral to the pharyngeal tubercle on the left side. Presence of any canal in the clivus is a rare occurrence. There could be two possible explanations for its formation. It could be because of presence of a connecting vein or it might have contained the remnant of notochord. We believe that in the present case more likely a venous communication existed between the basilar Department of Anatomy, Chhatrapati Shahuji Maharaj Medical University, Lucknow, and pharyngeal venous plexuses, which led to the formation of this bony canal. The canal of the clivus might INDIA. interfere with the neurosurgical operations in the clival region or can be confused for a fracture of clivus. © IJAV. 2010; 3: 112–113. Dr. Navneet Kumar Chauhan Associate Professor Department of Anatomy Chhatrapati Shahuji Maharaj Medical University (Upgraded King George’s Medical College) Lucknow, 226003, U.P, INDIA. +91 941 5083580 [email protected] Received December 19th, 2009; accepted July 11th, 2010 Key words [clivus] [clival canal] [occipital bone] [notochord remnant] Introduction Discussion The clivus (Latin: slope) is a curved sloppy surface Presence of any canal in the clivus is a rare occurrence.
    [Show full text]