A Bony Canal in the Basilar Part of Occipital Bone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery. -
Entrapment Neuropathy of the Central Nervous System. Part II. Cranial
Entrapment neuropathy of the Cranial nerves central nervous system. Part II. Cranial nerves 1-IV, VI-VIII, XII HAROLD I. MAGOUN, D.O., F.A.A.O. Denver, Colorado This article, the second in a series, significance because of possible embarrassment considers specific examples of by adjacent structures in that area. The same entrapment neuropathy. It discusses entrapment can occur en route to their desti- nation. sources of malfunction of the olfactory nerves ranging from the The first cranial nerve relatively rare anosmia to the common The olfactory nerves (I) arise from the nasal chronic nasal drip. The frequency of mucosa and send about twenty central proces- ocular defects in the population today ses through the cribriform plate of the ethmoid bone to the inferior surface of the olfactory attests to the vulnerability of the optic bulb. They are concerned only with the sense nerves. Certain areas traversed by of smell. Many normal people have difficulty in each oculomotor nerve are pointed out identifying definite odors although they can as potential trouble spots. It is seen perceive them. This is not of real concern. The how the trochlear nerves are subject total loss of smell, or anosmia, is the significant to tension, pressure, or stress from abnormality. It may be due to a considerable variety of causes from arteriosclerosis to tu- trauma to various bony components morous growths but there is another cause of the skull. Finally, structural which is not usually considered. influences on the abducens, facial, The cribriform plate fits within the ethmoid acoustic, and hypoglossal nerves notch between the orbital plates of the frontal are explored. -
Morfofunctional Structure of the Skull
N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V. -
MBB: Head & Neck Anatomy
MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina -
Download PDF Clinical Significance of a Mysterious Clival Canal
Romanian Journal of Morphology and Embryology 2007, 48(4):427–429 CASE REPORT Clinical significance of a mysterious clival canal S. R. NAYAK, VASUDHA V. SARALAYA, LATHA V. PRABHU, MANGALA M. PAI, A. KRISHNAMURTHY Department of Anatomy, Centre for Basic Sciences, Kasturba Medical College, Bejai, Mangalore, Karnataka, India Abstract During routine osteology demonstration of the posterior cranial fossa we noticed a transverse bony canal in the middle third of the clivus of an adult male skull. The canal was situated 1.8 cm in front the anterior border of the foramen magnum. The length of the canal was 0.6 cm long. The possible embryological basis and clinical significance of the variation was discussed. Keywords: clival canal, cranial fossa, bony canal, clinical significance. Introduction Discussions Postnatal age up to 11 years of life is the crucial time Knowledge of anatomic variations of the dural of the development of the clivus, when the final adult venous sinuses, are of importance in cases of width of the clivus is first reached, followed by the thrombophlebitis, not only for determining the surgical finalization of its growth in length [1]. management but also for understanding unusual Jalsovec D and Vinter I (1999) described a clival symptoms and signs [4]. canal in the posterior third of the clivus [2]. In this case, the bony canal of clivus, continued on The canal was longitudinally placed in the clivus both sides with the groove for IPS (Figure 1), which and the width of the canal was 1.2 mm. The boundary of suggest a vein in the clival canal connecting the IPS of the head and neck corresponds to the boundary between both sides. -
Endoscopic Endonasal Management of Cerebrospinal Fluid
DOI: 10.1590/0004-282X20160087 VIEW AND REVIEW Endoscopic endonasal management of cerebrospinal fluid rhinorrhea after anterior clinoidectomy for aneurysm surgery: changing the paradigm of complication management Endoscopia endonasal no tratamento da fístula liquórica após clinoidectomia anterior na cirurgia de aneurisma: mudando o paradigma no manejo desta complicação Andre Beer-Furlan1,2, Leonardo Balsalobre1,2,3, Eduardo de Arnaldo Silva Vellutini1,2, Aldo Cassol Stamm1,2,3, Felix Hendrik Pahl1,2, Andre Felix Gentil4 ABSTRacT Resection of the anterior clinoid process results in the creation of the clinoid space, an important surgical step in the exposure and clipping of clinoidal and supraclinoidal internal carotid artery aneurysms. Cerebrospinal fluid rhinorrhea is an undesired and potentially serious complication. Conservative measures may be unsuccesful, and there is no consensus on the most appropriate surgical treatment. Two patients with persistent transclinoidal CSF rhinorrhea after aneurysm surgery were successfully treated with a combined endoscopic transnasal/transeptal binostril approach using a fat graft and ipsilateral mucosal nasal septal flap. Anatomical considerations and details of the surgical technique employed are discussed, and a management plan is proposed. Keywords: aneurysm; cerebrospinal fluid leak; endoscopy. RESUMO A ressecção da clinóide anterior resulta na criação do espaço clinoideo, um passo cirúrgico importante na exposição e clipagem de aneurismas dos segmentos clinoideo e supraclinoideo da artéria carótida interna. Fístula liquórica é uma das complicaçoes mais indesejadas e é potencialmente grave. O manejo com medidas conservadoras pode ser bem sucedido, e não há consenso sobre o tratamento cirúrgico mais adequado. Dois pacientes com rinorréia persistente secundária a fistula liquórica transclinoidal após cirurgia de aneurisma foram tratados com sucesso por uma abordagem endoscópica combinada transnasal/transseptal binostril usando um enxerto de gordura e retalho de mucosa naso-septal ipsilateral. -
Pathogenesis of Chiari Malformation: a Morphometric Study of the Posterior Cranial Fossa
Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa Misao Nishikawa, M.D., Hiroaki Sakamoto, M.D., Akira Hakuba, M.D., Naruhiko Nakanishi, M.D., and Yuichi Inoue, M.D. Departments of Neurosurgery and Radiology, Osaka City University Medical School, Osaka, Japan To investigate overcrowding in the posterior cranial fossa as the pathogenesis of adult-type Chiari malformation, the authors studied the morphology of the brainstem and cerebellum within the posterior cranial fossa (neural structures consisting of the midbrain, pons, cerebellum, and medulla oblongata) as well as the base of the skull while taking into consideration their embryological development. Thirty patients with Chiari malformation and 50 normal control subjects were prospectively studied using neuroimaging. To estimate overcrowding, the authors used a "volume ratio" in which volume of the posterior fossa brain (consisting of the midbrain, pons, cerebellum, and medulla oblongata within the posterior cranial fossa) was placed in a ratio with the volume of the posterior fossa cranium encircled by bony and tentorial structures. Compared to the control group, in the Chiari group there was a significantly larger volume ratio, the two occipital enchondral parts (the exocciput and supraocciput) were significantly smaller, and the tentorium was pronouncedly steeper. There was no significant difference in the posterior fossa brain volume or in the axial lengths of the hindbrain (the brainstem and cerebellum). In six patients with basilar invagination the medulla oblongata was herniated, all three occipital enchondral parts (the basiocciput, exocciput, and supraocciput) were significantly smaller than in the control group, and the volume ratio was significantly larger than that in the Chiari group without basilar invagination. -
Level I to III Craniofacial Approaches Based on Barrow Classification For
Neurosurg Focus 30 (5):E5, 2011 Level I to III craniofacial approaches based on Barrow classification for treatment of skull base meningiomas: surgical technique, microsurgical anatomy, and case illustrations EMEL AVCı, M.D.,1 ERINÇ AKTÜRE, M.D.,1 HAKAN SEÇKIN, M.D., PH.D.,1 KUTLUAY ULUÇ, M.D.,1 ANDREW M. BAUER, M.D.,1 YUSUF IZCI, M.D.,1 JACQUes J. MORCOS, M.D.,2 AND MUSTAFA K. BAşKAYA, M.D.1 1Department of Neurological Surgery, University of Wisconsin–Madison, Wisconsin; and 2Department of Neurological Surgery, University of Miami, Florida Object. Although craniofacial approaches to the midline skull base have been defined and surgical results have been published, clear descriptions of these complex approaches in a step-wise manner are lacking. The objective of this study is to demonstrate the surgical technique of craniofacial approaches based on Barrow classification (Levels I–III) and to study the microsurgical anatomy pertinent to these complex craniofacial approaches. Methods. Ten adult cadaveric heads perfused with colored silicone and 24 dry human skulls were used to study the microsurgical anatomy and to demonstrate craniofacial approaches in a step-wise manner. In addition to cadaveric studies, case illustrations of anterior skull base meningiomas were presented to demonstrate the clinical application of the first 3 (Levels I–III) approaches. Results. Cadaveric head dissection was performed in 10 heads using craniofacial approaches. Ethmoid and sphe- noid sinuses, cribriform plate, orbit, planum sphenoidale, clivus, sellar, and parasellar regions were shown at Levels I, II, and III. In 24 human dry skulls (48 sides), a supraorbital notch (85.4%) was observed more frequently than the supraorbital foramen (14.6%). -
Effects of Morphological Changes in Sella Turcica: a Review
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020 1662 EFFECTS OF MORPHOLOGICAL CHANGES IN SELLA TURCICA: A REVIEW Chandrakala B1, Govindarajan Sumathy2, Bhaskaran Sathyapriya*, Pavishwarya P3, Sweta Jain3 1. Senior Lecturer, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 2. Professor and Head, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 3. Graduate student, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research *Professor, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. Corresponding author: Dr. Bhaskaran Sathyapriya Professor, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. ABSTRACT Sella turcica is a saddle shaped bony structure present on the sphenoid bone. The pituitary gland is seated at the inferior aspect of the sella turcica, called hypophyseal fossa. Sella turcica serves as a cephalometric landmark, that being said any morphological changes can affect the overall craniometry of the individual as well as alter the function of the structures it lodges. The following review emphasis on the possible morphological changes of sella turcica and its effects on the individual. Keywords: Pituitary gland, morphology, bridge, foramen, bone. 1662 European Journal of Molecular -
Canalis Basilaris Medianus and Related Defects of the Basiocciput
208 Canalis Basilaris Medianus and Related Defects of the Basiocciput Guido Currarino 1 Anatomic variants and developmental defects of the basi related to this disorder, including release of the coronal suture and occiput are uncommon. The best known include transverse advancement of the frontoorbital complex first at age 2V2 months segmentation, longitudinal segmentation, "key-hole defect," and again at age 4 months. A follow-up CT scan of the head at age and canalis basilaris medianus (CBM). Transverse segmen 8 years included several cuts of the basiocciput that revealed a small, round defect in the center of the basiocciput (Fig. 2). In a coronal tation [1-3] may be complete or incomplete. In the complete reconstruction of the area the defect was found to be located on the form the basiocciput is divided by a transverse fissure into an pharyngeal surface of the basiocciput and to end blindly superiorly. anterior part, sometimes called os basioticum, and a posterior It was not clearly demonstrated in a sagittal reconstruction and could part. In the incomplete form there is a transverse cleft in the not be identified in any of the available skull films. No submentovertical lateral aspect of the basiocciput on one or both sides. In a views or midline sagittal tomograms were obtained. case of unilateral cleft of the basiocciput reported by Kruyff [2] there was an associated partial absence of the basiocci putal-exoccipital synchondrosis on the same side. In longitu Discussion dinal segmentation [3], a longitudinal fissure divides the basi These two patients had a deep recess in the inferior surface occiput in two lateral segments. -
Inferior View of Skull
human anatomy 2016 lecture sixth Dr meethak ali ahmed neurosurgeon Inferior View Of Skull the anterior part of this aspect of skull is seen to be formed by the hard palate.The palatal process of the maxilla and horizontal plate of the palatine bones can be identified . in the midline anteriorly is the incisive fossa & foramen . posterolaterlly are greater & lesser palatine foramena. Above the posterior edge of the hard palate are the choanae(posterior nasal apertures ) . these are separated from each other by the posterior margin of the vomer & bounded laterally by the medial pterygoid plate of sphenoid bone . the inferior end of the medial pterygoid plate is prolonged as a curved spike of bone , the pterygoid hamulus. the superior end widens to form the scaphoid fossa . posterolateral to the lateral pterygoid plate the greater wing of the sphenoid is pieced by the large foramen ovale & small foramen spinosum . posterolateral to the foramen spinosum is spine of the sphenoid . Above the medial border of the scaphoid fossa , the sphenoid bone is pierced by pterygoid canal . Behind the spine of the sphenoid , in the interval between the greater wing of the sphenoid and the petrous part of the temporal bone , there is agroove for the cartilaginous part of the auditory tube. The opening of the bony part of the tube can be identified. The mandibular fossa of the temporal bone & the articular tubercle form the upper articular surfaces for the temporomandibular joint . separating the mandibular fossa from the tympanic plate posteriorly is the squamotympanic fissure, through the medial end of which (petrotympanic fissure ) the chorda tympani exits from the tympanic cavity .The styloid process of the temporal bone projects downward & forward from its inferior aspect. -
Pterional Craniotomy Via a Transcavernous Approach for the Treatment of Low-Lying Distal Basilar Artery Aneurysms
Pterional craniotomy via a transcavernous approach for the treatment of low-lying distal basilar artery aneurysms Stephen L. Nutik, M.D., Ph.D. Department of Neurosurgery, Kaiser Foundation Hospital, Redwood City, California Object. The author describes a surgical procedure in which pterional craniotomy is performed via a transcavernous approach to treat low-lying distal basilar artery (BA) aneurysms. This intradural procedure is compared with the extradural procedure described by Dolenc, et al. Methods. The addition of a transcavernous exposure to the standard pterional intradural transsylvian approach allows a lower exposure of the distal BA behind the dorsum sellae. The technical steps involved in this procedure are as follows: 1) removal of the anterior clinoid process; 2) entry into the cavernous sinus medial to the third nerve; 3) packing of the venous channels of the cavernous sinus lying between the carotid artery and the pituitary gland to open this space; 4) removal of the posterior clinoid process and the portion of the dorsum sellae that is exposed from within the cavernous sinus; and 5) removal of the exposed dura mater to obtain additional exposure of the perimesencephalic cistern. Eight cases of aneurysms of the distal BA are presented to illustrate how this approach can help in their surgical treatment. Conclusions. Using the standard pterional approach, these distal BA aneurysms were found to be either too low relative to the posterior clinoid process for adequate exposure or there was insufficient room for temporary clipping of the BA proximal to the lesion. The addition of a transcavernous exposure eliminated these technical problems and aneurysm clipping could be accomplished in each case.