Anatomical Considerations of the Endonasal Transsphenoidal

Total Page:16

File Type:pdf, Size:1020Kb

Anatomical Considerations of the Endonasal Transsphenoidal 48 Artigo Original Anatomical Considerations of the Endonasal Transsphenoidal Approach Considerações anatômicas na abordagem transesfenoidal endonasal Alvaro Campero1,2 Abraham Campero2 Carolina Martins1 Alexandre Yasuda1 Albert Rhoton1 ABSTRACT RESÚMEN The sellar contents are separated from the sphenoidal sinus by Los contenidos de la silla turca se encuentran separados del a tiny sheath of bone that compris es the sellar floor, making seno esfenoidal por una delgada lámina de hueso que es el the transsphenoidal approach the most used surgical route to piso selar, haciendo que la vía transesfenoidal sea la ruta qui- intrasellar lesions. The transsphenoidal approach can be ini- rúrgica más utilizada para lesiones intraselares. El abordaje tiated in three different ways: 1) cutting the mucosa over the transesfenoidal puede ser iniciado de tres diferentes maneras: alveolar part of maxilla (sublabial transsphenoidal), 2) cut- 1) cortando la mucosa sobre la parte alveolar del maxilar su- ting along the anterior nasal mucosa adjacent to the columella perior (sublabial transesfenoidal), 2) cortando la mucosa na- (transeptal transsphenoidal), and 3) cutting the mucosa over sal anterior, adyacente a la columena (transseptal transesfe- the sphenoidal rostrum (endonasal transsphenoidal). Each noidal), y 3) cortando la mucosa sobre el rostro del esfenoides cavernous sinus has four dural walls. The lateral, superior (endonasal transesfenoidal). Cada seno cavernoso tiene 4 pa- and posterior walls are composed of endosteal and periosteal redes durales. Las paredes lateral, superior y posterior están dura leaflets. Unlike the other dural walls, the medial wall is compuestas por dos hojas (endosteal y perióstica), mientras formed of a single, thin dural sheath, an anatomical fact that que la pared medial posee una sola hoja dural, muy delgada, help explains the lateral expansion of a pituitary adenoma. In un hecho anatómico que podría explicar la expansión lateral the center, the diaphragm sellae has an opening through whi- de los adenomas hipofisarios. En el centro, el diafragma selar ch the infundibulum courses, linking the pituitary gland to the tiene una abertura a través de la cual el infundíbulo transcur- floor of the third ventricle. The morphology of this opening is re, uniendo la glándula pituitaria con el tercer ventrículo. La quite variable among individuals. On average, the anteropos- morfología de dicha abertura es muy variable. En promedio, terior distance of the diaphragm opening was 7.26 mm + 1.99 la distancia anteroposterior de la abertura es de 7.26 mm + mm, varying from 3.4 mm up to 10.7 mm. The lateral distance 1.99 mm, variando desde 3.4 mm hasta 10.7 mm. La distancia of the diaphragm opening was 7.33 mm + 2.79 mm, varying lateral de la abertura del diafragma es de 7.33 mm + 2.79 mm, from 2.8 mm up to 14.1 mm. variando desde 2.8 mm hasta 14.1 mm. Key-words : anatomy, diaphragma sellae, pituitary gland, Palabras-clave : abordaje transesfenoidal, anatomía, sphenoid sinus, transsphenoidal approach. diafragma selar, glándula hipófisis, seno esfenoidal. 1 Department of Neurological Surgery, University of Florida, Gainesville, Florida 2 Magister of Surgical Anatomy, School of Medicine, University of Tucumán, Argentina Recebido em fevereiro de 2008. Aceito em março de 2008. CAMPERO A, CAMPERO A, MARTINS C, YASUDA A, RHOTON A - Anatomical Considerations of the Endonasal Transsphenoidal Approach J Bras Neurocirurg 19 (2): 48-53, 2008 49 Artigo Original INTRODUCTION The pituitary gland and sella are located below the center of the brain in the center of the cranial base1. The sellar contents are separated from the sphenoidal sinus by a tiny sheath of bone that comprises the sellar floor, making the transsphenoi- dal approach the most used surgical route to intrasellar lesions. Herman Schloffer, in Austria, was the first in operate a patient with a pituitary tumor by a transsphenoidal approach2. After a period in disuse, the transsphenoidal approach resurged in the second half of the last century3, 4. Thus, over the last 30 years, the transsphenoidal approach became the first choice ap- proach to sellar lesions, being a relatively safe route with low 5 risk of complications, which reach up to 4% in major series . Figure 1 - The Nasal Cavity. A, sagittal cut through the skull. The right lateral wall The transsphenoidal approach can be initiated in three different of the nasal cavity presents the superior, middle and inferior nasal concha. The ways: 1) cutting the mucosa over the alveolar part of maxilla sphenoid ostia, located on the superior portion of the anterior wall of the sphenoid (sublabial transsphenoidal), 2) cutting along the anterior nasal sinus, are at the level of the superior concha. B, sagittal cut through the head. The inferior edge of the superior nasal concha corresponds to the floor of sella, while mucosa adjacent to the columella (transeptal transsphenoidal), the inferior edge of the middle nasal concha are at the level of the floor of the and 3) cutting the mucosa over the sphenoidal rostrum (endo- sphenoid sinus. C, the left half of the facial skeleton has been removed to expose nasal transsphenoidal). The aim of this paper is to study the the left half of the nasal septum. The anterior part of the osseous nasal septum anatomical landmarks for the endonasal transsphenoidal ap- is formed above by the perpendicular ethmoid plate and below by the vomer. D, a sagittal cut has been performed through the head, preserving the nasal septum. proaches. Anterior to the perpendicular ethmoid plate and vomer, there is the cartilaginous septum. The nasal septum is covered by vascular mucosa. Cart., cartilage; Eth., ethmoid; Inf., inferior; Max., maxilla, maxillary; Mid., middle; Sup., superior; Sphen., sphenoid, sphenoidal; Palat., palatine; Perp., perpendi- cular. ANATOMICAL CONSIDERATION SPHENOID BONE AND SPHENOID SINUS (FIGS. 2A-D) NASAL CAVITY (FIGS. 1A-D) The sphenoid bone is located in the center of the skull base, in The nasal cavity is limited above by the anterior cranial fossa, front of the temporal and occipital bones and posterior to the laterally by the orbits and maxillary sinuses and inferiorly by frontal and ethmoid bones. Its anterior aspect resembles a bat the hard palate. Its walls are covered by respiratory mucosa. It with wings outstretched. It has a body, and paired greater and is wider inferiorly and communicates with frontal, ethmoidal, lesser wings and pterygoid processes. The pituitary gland lies maxillary and sphenoidal sinuses by way of the nasal meati over the sella on the cerebral surface of the body of the sphe- which open under cover of the superior, middle and inferior noid. The sella protrudes inferiorly into the body, which in turn nasal concha. The cavity is divided along midline by the na- faces anteriorly and superiorly the nasal cavity. The intimate sal septum, whose anterior part is septal cartilage. The bony contact of the body of the sphenoid with the nasal cavity below septum is comprised by the perpendicular plate of ethmoid an- and pituitary gland above has led to the transsphenoidal route tero-superiorly and by vomer postero-inferiorly. The posterior being the operative approach of choice for most sellar tumors. border of the perpendicular plate attaches to the sphenoid ros- trum and it is at this level that fracture of the bony septum is The sphenoid sinus is a space created by pneumatization of the produced during endonasal transsphenoidal approach to reach sphenoid body anterior and inferior to the sella. The sphenoid midline. The aspects of the anterior nasal apertures vary among sinus is subject to considerable variation in size, shape and de- individuals. Their edges are formed by a U-shaped cartilage gree of pneumatization and, in the adult, can be divided by and fibrous tissue, making them flexible enough to accept the multiple bony septae, which are often located off midline. The introduction of the endonasal speculum, even in small, delica- ostia for the sinus are located in a superior position related to te-featured individuals. The lateral wall of the nasal cavity has the floor of the sinus, at each side of midline, at the level of the the superior, middle, and inferior nasal conchae, bellow each posterior portion of the superior concha and both are used as of which is a corresponding superior, middle, or inferior nasal landmarks during the performance of the endonasal transsphe- meatus. CAMPERO A, CAMPERO A, MARTINS C, YASUDA A, RHOTON A - Anatomical Considerations of the Endonasal Transsphenoidal Approach J Bras Neurocirurg 19 (2): 48-53, 2008 50 Artigo Original noidal approach. However, in some cases the finding of the os- cavernous sinus has four dural walls that comprise a set of ve- tia is difficult. Kim et al. suggest that the ostium should ideally nous plexus, the cavernous segment of the carotid artery and be searched from a superior and medial aspect in relation to the its intracavernous branches, the abducens nerve, the sympathe- posteroinferior end of the superior turbinate6. tic branches and a variable amount of fat. Each superior wall combines along midline to form the sellar diaphragm, which, by its turn, forms the roof of the sella and partially covers the pituitary gland, except by an opening through which the pitui- tary stalks courses. Laterally to the diaphragm is located the oculomotor triangle, the space where the oculomotor nerve en- ters the cavernous sinus. The oculomotor cistern, an arachnoi- dal and dural cuff, accompanies the oculomotor nerve through the cavernous sinus roof to the area just below or anterior to the lower edge of the tip of the anterior clinoid process7. The lateral, superior and posterior walls are composed of endosteal and periosteal dura leaflets. Unlike the other dural walls, the medial wall is formed of a single, thin dural sheath, an anato- mical fact that help explains the lateral expansion of a pituitary adenoma.
Recommended publications
  • The Normal Dimensions of the Sella Turcica in North Karnataka Region- a Computed Tomographic Study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi***
    Original Article Pravara Med Rev 2018;10(3) The normal dimensions of the Sella Turcica in North Karnataka region- A Computed tomographic study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi*** Abstract Aim of the study: Sella turcica is an important structure in middle cranial fossa. It is a saddle shaped concavity in the body of sphenoid bone. It is bounded by dura of cavernous sinuses bilaterally, the lamina dura and dorsum sellae posteriorly and the tuberculum sellae and planum sphenoidale anteriorly. The present study was undertaken to study the normal dimensions of sella turcica morphometry. Material and methods: This observational study was conducted in S Nijalingappa medical college and HSK hospital, Bagalkot. 1650 computed tomographic images of healthy Indians aged 21-70 years were collected. Radiant Dicom viewer software was used to determine the linear dimensions of sella turcica. Data was analysed using t test and ANOVA with Epi Info software. Results: The mean values (in millimeter) of length, width and height of sella turcica in different age groups was 8.80 ± 1.65, 10.83 ± 1.35 and 8.52 ± 1.50. Conclusion: The dimensions of sella turcica vary in different populations and these findings could form an initial database for Indian population which may provide a good anatomical knowledge during objective evaluation and detection of pathological conditions of sella turcica and hypophysis cerebri. Key words: Sphenoid bone, Linear dimensions, Hypophysis cerebri Introduction Sella turcica is an important structure in middle cranial fossa. It is safe treatment of various pituitary disorders such as a saddle shaped concavity in the body of sphenoid bone.
    [Show full text]
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Effects of Morphological Changes in Sella Turcica: a Review
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 03, 2020 1662 EFFECTS OF MORPHOLOGICAL CHANGES IN SELLA TURCICA: A REVIEW Chandrakala B1, Govindarajan Sumathy2, Bhaskaran Sathyapriya*, Pavishwarya P3, Sweta Jain3 1. Senior Lecturer, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 2. Professor and Head, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. 3. Graduate student, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research *Professor, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. Corresponding author: Dr. Bhaskaran Sathyapriya Professor, Department of Anatomy, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai. ABSTRACT Sella turcica is a saddle shaped bony structure present on the sphenoid bone. The pituitary gland is seated at the inferior aspect of the sella turcica, called hypophyseal fossa. Sella turcica serves as a cephalometric landmark, that being said any morphological changes can affect the overall craniometry of the individual as well as alter the function of the structures it lodges. The following review emphasis on the possible morphological changes of sella turcica and its effects on the individual. Keywords: Pituitary gland, morphology, bridge, foramen, bone. 1662 European Journal of Molecular
    [Show full text]
  • NASAL CAVITY and PARANASAL SINUSES, PTERYGOPALATINE FOSSA, and ORAL CAVITY (Grant's Dissector [16Th Ed.] Pp
    NASAL CAVITY AND PARANASAL SINUSES, PTERYGOPALATINE FOSSA, AND ORAL CAVITY (Grant's Dissector [16th Ed.] pp. 290-294, 300-303) TODAY’S GOALS (Nasal Cavity and Paranasal Sinuses): 1. Identify the boundaries of the nasal cavity 2. Identify the 3 principal structural components of the nasal septum 3. Identify the conchae, meatuses, and openings of the paranasal sinuses and nasolacrimal duct 4. Identify the openings of the auditory tube and sphenopalatine foramen and the nerve and blood supply to the nasal cavity, palatine tonsil, and soft palate 5. Identify the pterygopalatine fossa, the location of the pterygopalatine ganglion, and understand the distribution of terminal branches of the maxillary artery and nerve to their target areas DISSECTION NOTES: General comments: The nasal cavity is divided into right and left cavities by the nasal septum. The nostril or naris is the entrance to each nasal cavity and each nasal cavity communicates posteriorly with the nasopharynx through a choana or posterior nasal aperture. The roof of the nasal cavity is narrow and is represented by the nasal bone, cribriform plate of the ethmoid, and a portion of the sphenoid. The floor is the hard palate (consisting of the palatine processes of the maxilla and the horizontal portion of the palatine bone). The medial wall is represented by the nasal septum (Dissector p. 292, Fig. 7.69) and the lateral wall consists of the maxilla, lacrimal bone, portions of the ethmoid bone, the inferior nasal concha, and the perpendicular plate of the palatine bone (Dissector p. 291, Fig. 7.67). The conchae, or turbinates, are recognized as “scroll-like” extensions from the lateral wall and increase the surface area over which air travels through the nasal cavity (Dissector p.
    [Show full text]
  • Planum Sphenoidale and Tuberculum Sellae Meningiomas: Operative
    Original Article Planum Sphenoidale and Tuberculum Sellae Meningiomas: Operative Nuances of a Modern Surgical Technique with Outcome and Proposal of a New Classification System Martin M. Mortazavi1, Harley Brito da Silva1, Manuel Ferreira Jr1, Jason K. Barber1, James S. Pridgeon1, Laligam N. Sekhar1,2 - BACKGROUND: The resection of planum sphenoidale common presenting symptom was visual disturbance and tuberculum sellae meningiomas is challenging. A (77%). Vision improved in 90% of those who presented with universally accepted classification system predicting sur- visual decline, and there was no permanent visual deteri- gical risk and outcome is still lacking. oration. Cerebrospinal fluid leak occurred in one of the 25 cranial cases (4%) and in 1 of 2 transphenoidal cases - OBJECTIVES: We report a modern surgical technique (50%), and in both cases it resolved with treatment. There specific for planum sphenoidale and tuberculum sellae was no surgical mortality. meningiomas with associated outcome. A new classifica- tion system that can guide the surgical approach and may - CONCLUSION: An orbitotomy and early decompression predict surgical risk is proposed. of the involved optic canal are important for achieving gross total resection, maximizing visual improvement, and - METHODS: We conducted a retrospective review of the avoiding recurrence. The visual outcomes were excellent. patients who between 2005 and March 2015 underwent a A new classification system that can allow the comparison craniotomy or endoscopic surgery for the resection of of different series and approaches and indicate cases that meningiomas involving the suprasellar region. Operative are more suitable for an endoscopic transsphenoidal nuances of a modified frontotemporal craniotomy and approach is presented.
    [Show full text]
  • Splanchnocranium
    splanchnocranium - Consists of part of skull that is derived from branchial arches - The facial bones are the bones of the anterior and lower human skull Bones Ethmoid bone Inferior nasal concha Lacrimal bone Maxilla Nasal bone Palatine bone Vomer Zygomatic bone Mandible Ethmoid bone The ethmoid is a single bone, which makes a significant contribution to the middle third of the face. It is located between the lateral wall of the nose and the medial wall of the orbit and forms parts of the nasal septum, roof and lateral wall of the nose, and a considerable part of the medial wall of the orbital cavity. In addition, the ethmoid makes a small contribution to the floor of the anterior cranial fossa. The ethmoid bone can be divided into four parts, the perpendicular plate, the cribriform plate and two ethmoidal labyrinths. Important landmarks include: • Perpendicular plate • Cribriform plate • Crista galli. • Ala. • Ethmoid labyrinths • Medial (nasal) surface. • Orbital plate. • Superior nasal concha. • Middle nasal concha. • Anterior ethmoidal air cells. • Middle ethmoidal air cells. • Posterior ethmoidal air cells. Attachments The falx cerebri (slide) attaches to the posterior border of the crista galli. lamina cribrosa 1 crista galli 2 lamina perpendicularis 3 labyrinthi ethmoidales 4 cellulae ethmoidales anteriores et posteriores 5 lamina orbitalis 6 concha nasalis media 7 processus uncinatus 8 Inferior nasal concha Each inferior nasal concha consists of a curved plate of bone attached to the lateral wall of the nasal cavity. Each consists of inferior and superior borders, medial and lateral surfaces, and anterior and posterior ends. The superior border serves to attach the bone to the lateral wall of the nose, articulating with four different bones.
    [Show full text]
  • Estimation of Nasal Cavity and Conchae Volumes by Stereological Method
    Folia Morphol. Vol. 71, No. 2, pp. 105–108 Copyright © 2012 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Estimation of nasal cavity and conchae volumes by stereological method M. Emirzeoglu1, B. Sahin1, M. Celebi2, A. Uzun1, S. Bilgic1, H.O. Tontus3 1Anatomy Department, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey 2ENT Department, Mehmet Aydin Research Hospital, Samsun, Turkey 3Medical Education Department, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey [Received 16 February 2012; Accepted 23 February 2012] Background: Studies evaluating the mean volumes of nasal cavity and concha are very rare. Since there is little date on the mentioned topic, we aimed to carry out the presented study to obtain a volumetric index showing the relation between the nasal cavity and concha. Material and methods: The volumes of the nasal cavity and concha were measured in 30 males and 30 females (18–40 years old) on computed tomo- graphy images using stereological methods. Results: The mean volumes of nasal cavity, concha nasalis media, and concha nasalis inferior were 5.95 ± 0.10 cm3, 0.56 ± 0.22 cm3, and 1.45 ± 0.68 cm3; 7.01 ± 0.18 cm3, 0.67 ± 0.31 cm3 and 1.59 ± 0.98 cm3 in females and males, respectively. There were statistically significant differences in the volume of the nasal cavity and concha nasalis media (p < 0.05) between males and females, except for concha nasalis inferior (p > 0.05). Conclusions: Our results could provide volumetric indexes for the nasal cavity and concha, which could help the physician to manage surgical procedures related to the nasal cavity and concha.
    [Show full text]
  • Axial Skeleton 214 7.7 Development of the Axial Skeleton 214
    SKELETAL SYSTEM OUTLINE 7.1 Skull 175 7.1a Views of the Skull and Landmark Features 176 7.1b Sutures 183 7.1c Bones of the Cranium 185 7 7.1d Bones of the Face 194 7.1e Nasal Complex 198 7.1f Paranasal Sinuses 199 7.1g Orbital Complex 200 Axial 7.1h Bones Associated with the Skull 201 7.2 Sex Differences in the Skull 201 7.3 Aging of the Skull 201 Skeleton 7.4 Vertebral Column 204 7.4a Divisions of the Vertebral Column 204 7.4b Spinal Curvatures 205 7.4c Vertebral Anatomy 206 7.5 Thoracic Cage 212 7.5a Sternum 213 7.5b Ribs 213 7.6 Aging of the Axial Skeleton 214 7.7 Development of the Axial Skeleton 214 MODULE 5: SKELETAL SYSTEM mck78097_ch07_173-219.indd 173 2/14/11 4:58 PM 174 Chapter Seven Axial Skeleton he bones of the skeleton form an internal framework to support The skeletal system is divided into two parts: the axial skele- T soft tissues, protect vital organs, bear the body’s weight, and ton and the appendicular skeleton. The axial skeleton is composed help us move. Without a bony skeleton, we would collapse into a of the bones along the central axis of the body, which we com- formless mass. Typically, there are 206 bones in an adult skeleton, monly divide into three regions—the skull, the vertebral column, although this number varies in some individuals. A larger number of and the thoracic cage (figure 7.1). The appendicular skeleton bones appear to be present at birth, but the total number decreases consists of the bones of the appendages (upper and lower limbs), with growth and maturity as some separate bones fuse.
    [Show full text]
  • Meningiomas Involving the Optic Canal: Pattern of Involvement and Implications for Surgical Technique
    Neurosurg Focus 30 (5):E12, 2011 Meningiomas involving the optic canal: pattern of involvement and implications for surgical technique AHMED NAGEEB M. TAHA, M.D.,1 KADIR ERKMEN, M.D.,3 Ian F. DUnn, M.D.,2 SVETLana PRAVDEnkOVA, M.D., PH.D.,4 anD OssaMA AL-MEftY, M.D.2 1Mansoura University Hospital, Mansoura-Dakhlia, Egypt; 2Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts; 3Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; and 4Arkansas Neuroscience Institute, St. Vincent Infirmary Medical Center, Little Rock, Arkansas Object. Juxtasellar meningiomas frequently extend into the optic canal. Removing these meningiomas from the optic canal is crucial for favorable visual outcome. Methods. The authors performed a retrospective analysis of 45 patients with anterior and middle fossa menin- giomas with involvement of the optic pathway in whom surgery was performed by the senior author (O.A.M.) during the period from 1993 to 2007. Extent of resection and recurrence rates were determined by pre- and postoperative MR imaging studies. Visual outcomes were evaluated with full ophthalmological examinations performed before and after surgery. Results. Forty-five patients (31 women and 14 men) were involved in this study; their mean age was 51.6 years. Patients were followed for a mean of 29.8 months (range 6–108 months). No surgery-related death occurred. The average tumor size was 3.1 cm. Total resection of the tumor (Simpson Grade I) was achieved in 32 patients (71.1%). Gross-total resection (Simpson Grades II and III) was achieved in 13 patients (28.9%). Only 1 patient harboring a left cavernous sinus meningioma had tumor recurrence and underwent repeat resection.
    [Show full text]
  • A Case of Tuberculum Sellae Meningioma with “Beak of Kiwi Bird” Enhancement in MRI: Surgical Resection and Nursing Care
    Case Report A case of tuberculum sellae meningioma with “beak of Kiwi bird” enhancement in MRI: surgical resection and nursing care Qing Zhang1*, Hailiang Tang2*, Rong Xu2, Ye Gong2, Ping Zhong2 1Department of Nursing, 2Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China *These authors contributed equally to this work. Correspondence to: Rong Xu. No.12 Middle Wulumuqi Road, Shanghai 200040, China. Email: [email protected]. Abstract: Here, we reported a case of tuberculum sellae meningioma with “beak of Kiwi bird” enhancement in contrast MRI at our department. The female patient was 32-year-old, suffering from progressive loss of vision for about 6 months. Head CT & MRI scan identified an intracranial meningioma located on tuberculum sellae, with obvious “beak of Kiwi bird” enhancement in contrast MRI. Trans-anterior skull base approach was applied to perform the operation after patient consent. The meningioma was completely resected by Sympson grade II. The patient recovered well without complication after post-operation nursing case. Histological findings revealed meningothelial meningioma with EMA (+), Vimentin (+) and PR (+). Keywords: Tuberculum sellae meningioma; beak of Kiwi bird; nursing care Submitted Dec 10, 2015. Accepted for publication Jan 18, 2016. doi: 10.21037/tcr.2016.03.06 View this article at: http://dx.doi.org/10.21037/tcr.2016.03.06 Introduction in contrast MRI at our department from clinical and radiological image characters, surgical and neuropathological Intracranial meningiomas are common brain tumors features, which was rarely reported in literature. derived from arachnoidal cells and account for about 30% of all primary brain tumors (1). Most meningiomas are histologically classified as benign brain tumors (WHO Case presentation grade I), however, about 10% meningiomas belong to A 32-year-old female patient suffered from progressive atypical (WHO grade II) or anaplastic (WHO grade III) subtypes (2-4).
    [Show full text]
  • Imaging of Chronic and Exotic Sinonasal Disease: Review Arash K
    AJR Integrative Imaging LIFELONG LEARNING FOR RADIOLOGY Imaging of Chronic and Exotic Sinonasal Disease: Review Arash K. Momeni1, Catherine C. Roberts2, and Felix S. Chew3 Objective This review focuses on the anatomy, pathophysiology, mi- Chronic sinusitis is one of the most commonly diagnosed crobiology, and diagnosis of sinonasal disease, including illnesses in the United States. The educational objectives of chronic and fungal sinusitis, juvenile nasopharyngeal angio- this review article are for the participant to exercise, self- fibroma, inverted papilloma, and chondrosarcoma. assess, and improve his or her understanding of the imaging evaluation of sinonasal disease. Anatomy and Pathophysiology Understanding the normal anatomy and physiology of Conclusion the paranasal sinuses is important to understanding the This article describes the anatomy, pathophysiology, mi- pathogenesis of sinus disease. There are four pairs of sinuses crobiology, and diagnosis of sinonasal disease, including named for the bones of the skull they pneumatize. They are chronic and fungal sinusitis, juvenile nasopharyngeal angio- the maxillary, ethmoid, frontal, and sphenoid sinus air cells fibroma, inverted papilloma, and chondrosarcoma. and they are lined by pseudostratified columnar epithelium- bearing cilia. The mucosa contains goblet cells that secrete Introduction mucus, which aids in trapping inhaled particles and debris. Chronic sinusitis is one of the most commonly diagnosed The maxillary antrum consists of a roof, floor, and three illnesses in the United States. It is estimated to affect more walls: the medial, anterior, and posterolateral. The roof and than 30 million individuals and is increasing in incidence [1]. medial walls are shared with the orbit and nasal cavity, forming The number of office visits and the annual expenditures on the orbital floor and lateral wall of the nose, respectively [3].
    [Show full text]