Thesis (PDF, 2Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Thesis (PDF, 2Mb) Honeypots in the age of universal attacks and the Internet of Things Alexander Michael Vetterl Churchill College November 2019 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the preface and specified in the text. It is not substantially the same as any work that has already been submitted before for any degree or other qualification except as declared in the preface and specified in the text. This dissertation does not exceed the prescribed word limit of 60 000 words. Alexander Michael Vetterl November, 2019 Honeypots in the age of universal attacks and the Internet of Things Alexander Michael Vetterl Summary Today's Internet connects billions of physical devices. These devices are often immature and insecure, and share common vulnerabilities. The predominant form of attacks relies on recent advances in Internet-wide scanning and device discovery. The speed at which (vulnerable) devices can be discovered, and the device monoculture, mean that a single exploit, potentially trivial, can affect millions of devices across brands and continents. In an attempt to detect and profile the growing threat of autonomous and Internet-scale attacks against the Internet of Things, we revisit honeypots, resources that appear to be legitimate systems. We show that this endeavour was previously limited by a fundamentally flawed generation of honeypots and associated misconceptions. We show with two one-year-long studies that the display of warning messages has no deterrent effect in an attacked computer system. Previous research assumed that they would measure individual behaviour, but we find that the number of human attackers is orders of magnitude lower than previously assumed. Turning to the current generation of low- and medium-interaction honeypots, we demonstrate that their architecture is fatally flawed. The use of off-the-shelf libraries to provide the transport layer means that the protocols are implemented subtly differently from the systems being impersonated. We developed a generic technique which can find any such honeypot at Internet scale with just one packet for an established TCP connection. We then applied our technique and conducted several Internet-wide scans over a one- year period. By logging in to two SSH honeypots and sending specific commands, we not only revealed their configuration and patch status, but also found that many of them were not up to date. As we were the first to knowingly authenticate to honeypots, we provide a detailed legal analysis and an extended ethical justification for our research to show why we did not infringe computer-misuse laws. Lastly, we present honware, a honeypot framework for rapid implementation and deployment of high-interaction honeypots. Honware automatically processes a standard firmware image and can emulate a wide range of devices without any access to the manu- facturers' hardware. We believe that honware is a major contribution towards re-balancing the economics of attackers and defenders by reducing the period in which attackers can exploit vulnerabilities at Internet scale in a world of ubiquitous networked `things'. Acknowledgements First, and foremost, I am deeply grateful to Richard Clayton for his tireless enthusiasm and encouragement. No matter what else was happening, he always had time and provided me with ample support. Without his guidance and mentorship I would never have been able to complete this thesis. I am also immensely grateful to Ross Anderson for all the freedom he gave me in pursuing my research interests and for his continuous support. Under his supervision, I was able to grow as a researcher and person through discussions and conversations, which have also helped me to see the bigger picture. I am indebted to Alastair Beresford for his invaluable advice at crucial times and his sincere interest in my work. I thank Christian Rossow for generously agreeing to examine my dissertation and providing meticulous feedback. I would like to thank the members of the Cybercrime Centre, past and present, for their support including Alice Hutchings, Daniel Thomas, Sergio Pastrana, Ben Collier, Yi Ting Chua, Maria Bada and Ildik´oPete. I would like to express my gratitude to the German Academic Exchange Service (DAAD) and the Computer Laboratory for generously providing funding for my PhD. I would also like to thank my friends for making my time here in Cambridge enjoyable as well as intellectually stimulating, especially Kaspars Karlsons, Diana Popescu, Tiago Azevedo, Marco Caballero, Marija Pajevic, Khaled Baqer, Christian O'Connell, Florian Str¨ohl,Ilia Shumailov, Mansoor Ahmed-Rengers and Michael Dodson. Last but not least, I would like to thank my wife, Ann-Kathrin, for the joy she has brought into my life and for believing in me at every step of the way. This dissertation is dedicated to her. Contents 1 Introduction 13 1.1 Chapter outline . 15 1.2 Publications and contributions . 16 1.3 Statement on research ethics . 18 2 Background 19 2.1 CPE and IoT devices . 19 2.1.1 Common characteristics . 20 2.1.2 Protocols and services . 22 2.1.3 Common vulnerabilities . 23 2.2 Universal attacks . 25 2.2.1 Device discovery and Internet-wide scanning . 25 2.2.2 Denial of service attacks . 26 2.2.3 Proxying malicious traffic . 27 2.3 Honeypots . 28 2.3.1 Types of honeypots . 29 2.3.2 Evolution of honeypots . 30 2.3.3 Fingerprinting honeypots . 32 2.4 Summary . 34 3 Revisiting the effect of warning messages on attackers' behaviour 37 3.1 Introduction . 37 3.2 Maimon et al.'s original study . 40 3.3 Experiment 1: The deterrent effects of warning banners . 40 3.3.1 Design . 42 3.3.2 Procedures . 42 3.3.3 Outcome measures . 45 3.3.4 Results . 45 3.3.4.1 First trespassing incidents . 45 3.3.4.2 All trespassing incidents recorded . 47 3.3.4.3 Session types recorded and commands issued . 50 3.4 Experiment 2: Surveying system trespassers . 51 3.4.1 Recruitment . 52 3.4.2 Survey design . 53 3.4.3 Results . 53 3.5 Discussion . 54 3.6 Conclusion . 57 4 Fingerprinting honeypots at Internet scale 59 4.1 Introduction . 59 4.2 Background . 61 4.3 Systematically fingerprinting honeypots . 62 4.3.1 Efficient detection of deviations . 62 4.3.2 Protocol 1: SSH . 63 4.3.3 Protocol 2: Telnet . 65 4.3.4 Protocol 3: HTTP/Web . 66 4.4 Internet-wide scanning . 67 4.4.1 Results . 68 4.4.2 Validation . 69 4.4.3 Accuracy . 71 4.4.4 Honeypot deployment . 71 4.5 SSH: Implementation flaws . 72 4.5.1 SSH Binary Packet Protocol . 72 4.5.2 Disconnection messages . 73 4.6 Discussion . 74 4.6.1 Practical impact . 75 4.6.2 Countermeasures . 76 4.7 Ethical considerations . 76 4.8 Related work . 77 4.9 Conclusion . 78 5 Counting outdated honeypots: legal and useful 81 5.1 Introduction . 81 5.2 Unauthorised access to computers . 82 5.2.1 Statutory text . 82 5.2.2 Implicit authorisation . 84 5.3 Ethical analysis . 85 5.4 Fingerprinting SSH honeypots . 87 5.4.1 Identifying SSH honeypot patch levels . 87 5.4.2 Measurement setup . 88 5.5 Results . 88 5.5.1 Authentication configuration . 88 5.5.2 Set-up options of SSH honeypots . 90 5.6 Discussion . 91 5.7 Conclusion . 91 6 Honware: A virtual honeypot framework for capturing CPE and IoT zero days 93 6.1 Introduction . 94 6.2 Virtual honeypot framework . 95 6.2.1 Automated firmware extraction . 97 6.2.2 Customised pre-built kernel . 97 6.2.2.1 Honeypot logging and module loading . 98 6.2.2.2 Signal interception . 98 6.2.2.3 Module loading . 99 6.2.2.4 NVRAM . 99 6.2.2.5 Network configuration . 100 6.2.3 Filesystem modifications . 100 6.2.4 Emulation . 101 6.3 Evaluation . 101 6.3.1 Extraction, network reachability and services . 101 6.3.1.1 Extraction . 102 6.3.1.2 Network reachability . 102 6.3.1.3 Services . 104 6.3.2 Honeypot deployments in the wild . 104 6.3.2.1 Broadcom UPnPHunter . 105 6.3.2.2 DNS hijack . 105 6.3.2.3 UPnPProxy . 107 6.3.2.4 Mirai variants . 107 6.3.3 Timing attacks to fingerprint honware . 108 6.4 Ethical considerations . 111 6.5 Discussion . ..
Recommended publications
  • Iot Threats, Challenges and Secured Integration
    IoT Threats, Challenges and Secured Integration Christian Shink, p. eng., CSSLP System Engineer • Why IoT Devices? • Bot Attacks • 3 Botnets fighting over IoT Firepower • Secure IoT integration Why IoT Devices Internet of Things Internet working of physical devices, vehicles, buildings, … Devices embedded with electronics, software, sensors, actuators Network connectivity Any Path Any Service Any Network Anytime Any Business Any context Anyone Machinery Anybody Building energy Anything Management Any Device Healthcare Retail A Rapidly Growing Number of Connected Devices Copyright © 2017 Radware. All rights reserved. IoT is Highly Susceptible to Cyber Attacks IoT devices run an embedded or stripped-down version of the familiar Linux operating system. 1 Malware can easily be compiled for the target architecture, mostly ARM, MIPS, x86 internet-accessible, lots of (I)IoT and ICS/SCADA are deployed without any form of 2 firewall protection Stripped-down operating system and processing power leaves less room for security 3 features, including auditing, and most compromises go unnoticed by the owners To save engineering time, manufacturers re-use portions of hardware and software in different 4 classes of devices resulting in default passwords and vulnerabilities being shared across device classes and manufacturers Internet Security Trend report 2015 by Nexus guard: IoT is becoming a soft target for cyber-attack Copyright © 2017 Radware. All rights reserved. From the News “D-Link failed to take reasonable steps to secure its routers and IP cameras, potentially compromising sensitive consumer information” “The cameras aren’t designed to receive software updates so the zero-day exploits can’t be patched.” “We believe that this backdoor was introduced by Sony developers on purpose” Sources: 1.
    [Show full text]
  • Reporting, and General Mentions Seem to Be in Decline
    CYBER THREAT ANALYSIS Return to Normalcy: False Flags and the Decline of International Hacktivism By Insikt Group® CTA-2019-0821 CYBER THREAT ANALYSIS Groups with the trappings of hacktivism have recently dumped Russian and Iranian state security organization records online, although neither have proclaimed themselves to be hacktivists. In addition, hacktivism has taken a back seat in news reporting, and general mentions seem to be in decline. Insikt Group utilized the Recorded FutureⓇ Platform and reports of historical hacktivism events to analyze the shifting targets and players in the hacktivism space. The target audience of this research includes security practitioners whose enterprises may be targets for hacktivism. Executive Summary Hacktivism often brings to mind a loose collective of individuals globally that band together to achieve a common goal. However, Insikt Group research demonstrates that this is a misleading assumption; the hacktivist landscape has consistently included actors reacting to regional events, and has also involved states operating under the guise of hacktivism to achieve geopolitical goals. In the last 10 years, the number of large-scale, international hacking operations most commonly associated with hacktivism has risen astronomically, only to fall off just as dramatically after 2015 and 2016. This constitutes a return to normalcy, in which hacktivist groups are usually small sets of regional actors targeting specific organizations to protest regional events, or nation-state groups operating under the guise of hacktivism. Attack vectors used by hacktivist groups have remained largely consistent from 2010 to 2019, and tooling has assisted actors to conduct larger-scale attacks. However, company defenses have also become significantly better in the last decade, which has likely contributed to the decline in successful hacktivist operations.
    [Show full text]
  • Training & Conferences
    WWW.ISSA - COS.ORG VOLUME 6 NUMBER 6 J U N E 2 0 1 7 Training & Conferences olleagues, Our first Security+ Exam Prep Review Seminar, held on April 1 and 8, was another Hard to believe, but we’re almost huge success – as it always is – thanks to C half-way through the year. Our the exceptional work by Susan Ross and our impressive team of volunteers has volunteer instructors. And our second dedicated much time and effort to bring a Security+ Seminar kicks off in just a few variety of events to our membership. This days! Each of these seminars provides a 12- chapter hosts a lot of amazing events, all hour comprehensive due to the efforts of our review of the CompTIA volunteers. Security+ exam material. Our first conference of A Note From Over 50 students the year, the Cyber Focus registered for these Day (CFD), was a huge Seminars! success! We had over 200 Our President We held eight people attend the one-day membership meetings, in conference, earning seven Jan, Feb, Apr, and May, continuing education units. four at lunchtime and four If you weren’t able to in the evening. If you attend CFD this year, you haven’t made it to our missed some great presen- monthly meetings, here’s tations! what you missed so far: Our Training Commit- tee held two Mini- By Ms. Colleen Murphy Airport Security, by Seminars, providing three Dr. Shawn Murray continuing education opportunities for each What Constitutes mini-seminar, with more Mini-Seminars on Reasonable Security?, by Mr.
    [Show full text]
  • Прогнозы На 2018 Год Kaspersky Security Bulletin: Прогнозы На 2018 Год
    Kaspersky Security Bulletin: ПРОГНОЗЫ НА 2018 ГОД KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД СОДЕРЖАНИЕ Введение .......................................................................................................3 APT-угрозы по прогнозам глобального центра исследования и анализа угроз (GReAT) ........................................4 Введение ..................................................................................................5 Оглядываясь назад ...............................................................................6 Чего ждать в 2018 году? ....................................................................7 Вывод ......................................................................................................20 Прогнозы по отраслям и технологиям ......................................21 Прогнозируемые угрозы в автомобильной отрасли ...... 22 Прогнозируемые угрозы в отрасли «подключенной» медицины ........................................................ 27 Прогнозируемые угрозы и мошеннические схемы в финансовой отрасли ......................................................31 Прогнозируемые угрозы в сфере промышленной безопасности ..................................................................................... 36 Прогнозируемые угрозы для криптовалют ...........................41 2 KASPERSKY SECURITY BULLETIN: ПРОГНОЗЫ НА 2018 ГОД ВВЕДЕНИЕ В 2017 году опытные злоумышленники и хактивисты продол- жили серию дерзких атак и краж, которые прогремели на весь мир. Но в этом году внимание СМИ было приковано
    [Show full text]
  • Protecting Iot Devices Against Ddos Attacks
    AntibIoTic: Protecting IoT Devices Against DDoS Attacks Michele De Donno1 Nicola Dragoni1;2 Alberto Giaretta2 and Manuel Mazzara3 1 DTU Compute, Technical University of Denmark, Denmark 2 Centre for Applied Autonomous Sensor Systems, Orebro¨ University, Sweden 3 Innopolis University, Russian Federation Abstract. The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices. 1 The AntibIoTic Against DDoS Attacks Today, it's a matter of fact that IoT devices are extremely poorly secured and many different IoT malwares are exploiting this insecurity trend to spread glob- ally in the IoT world and build large-scale botnets later used for extremely powerful cyber-attacks [1,2], especially Distributed Denial of Service (DDoS) [3]. Therefore, the main problem that has to be solved is the low security level of the IoT cosmos, and that is where AntibIoTic comes in. What drove us in the design of AntibIoTic is the belief that the intrinsic weakness of IoT devices might be seen as the solution of the problem instead of as the problem itself. In fact, the idea is to use the vulnerability of IoT units as a means to grant their security: like an antibiotic that enters in the bloodstream and travels through human body killing bacteria without damaging human cells, AntibIoTic is a worm that infects vulnerable devices and creates a white botnet of safe systems, removing them from the clutches of other potential dangerous malwares.
    [Show full text]
  • Designing an Effective Network Forensic Framework for The
    Designing an effective network forensic framework for the investigation of botnets in the Internet of Things Nickolaos Koroniotis A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Engineering and Information Technology The University of New South Wales Australia March 2020 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books).’ ‘For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final public version of the thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.’ Signed ……………………………………………........................... Date …………………………………………….............................. 1 Thesis Dissertation Sheet Surname/Family Name : Koroniotis Given Name/s : Nickolaos Abbreviation for degree : PhD as give in the University calendar Faculty : UNSW Canberra at ADFA School : UC Engineering & Info Tech Thesis Title : Designing an effective network forensic framework for the investigation of botnets in the Internet of Things 2 Abstract 350 words maximum: The emergence of the Internet of Things (IoT), has heralded a new attack surface, where attackers exploit the security weaknesses inherent in smart things.
    [Show full text]
  • Cisco Midyear Cybersecurity Report 2017
    Cisco Midyear Cybersecurity Report 2017 1 Inhalt Zusammenfassung .........................................................3 Veröffentlichung von Schwachstellen führt Wichtigste Erkenntnisse ................................................5 zu vermehrten Angriffen ...............................................47 Einleitung ........................................................................7 Setzen Sie Ihr Geschäft keinem Risiko durch DevOps-Technologien aus ............................................50 Verhalten von Angreifern ...............................................9 Organisationen führen Patches für bekannte Exploit-Kits: viele inaktiv, aber nicht alle .........................9 Schwachstellen von Memchached-Servern Der Einfluss des Verhaltens der Verteidiger nicht schnell genug durch .............................................54 auf die Nutzung anderer Angriffsstrategien ................. 11 Hacker wenden sich der Cloud zu, um attraktive Web-Angriffsmethoden entwickeln sich gemeinsam Ziele schneller zu attackieren ........................................56 mit dem Internet ...........................................................12 Nicht verwaltete Infrastrukturen und Endpunkte Weltweite Blockierungsaktivität im Web ........................13 stellen Risiken für Organisationen dar ...........................59 Spyware ist wirklich so schlimm, wie sie klingt .............14 Herausforderungen in puncto Sicherheit und Möglichkeiten für Verteidiger ...............................61 Rückgang der Exploit-Kit-Aktivität wirkt
    [Show full text]
  • Antibiotic: Protecting Iot Devices Against Ddos Attacks
    AntibIoTic: Protecting IoT Devices Against DDoS Attacks Michele De Donno1 Nicola Dragoni1;2 Alberto Giaretta2 and Manuel Mazzara3 1 DTU Compute, Technical University of Denmark, Denmark 2 Centre for Applied Autonomous Sensor Systems, Orebro¨ University, Sweden 3 Innopolis University, Russian Federation Abstract. The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware industry. In this paper we present the main idea behind AntibIoTic, a palliative solution to prevent DDoS attacks perpetrated through IoT devices. 1 The AntibIoTic Against DDoS Attacks Today, it's a matter of fact that IoT devices are extremely poorly secured and many different IoT malwares are exploiting this insecurity trend to spread glob- ally in the IoT world and build large-scale botnets later used for extremely powerful cyber-attacks [1,2], especially Distributed Denial of Service (DDoS) [3]. Therefore, the main problem that has to be solved is the low security level of the IoT cosmos, and that is where AntibIoTic comes in. What drove us in the design of AntibIoTic is the belief that the intrinsic weakness of IoT devices might be seen as the solution of the problem instead of as the problem itself. In fact, the idea is to use the vulnerability of IoT units as a means to grant their security: like an antibiotic that enters in the bloodstream and travels through human body killing bacteria without damaging human cells, AntibIoTic is a worm that infects vulnerable devices and creates a white botnet of safe systems, removing them from the clutches of other potential dangerous malwares.
    [Show full text]
  • When Will My PLC Support Mirai? the Security Economics of Large-Scale Attacks Against Internet-Connected ICS Devices
    When will my PLC support Mirai? The security economics of large-scale attacks against Internet-connected ICS devices Michael Dodson Alastair R. Beresford Daniel R. Thomas University of Cambridge University of Cambridge University of Strathclyde Email: [email protected] Email: [email protected] Email: [email protected] Abstract—For nearly a decade, security researchers have high- The Internet-connected ICS device population shares many lighted the grave risk presented by Internet-connected Industrial characteristics with other populations that have attracted large- Control Systems (ICS). Predictions of targeted and indiscriminate scale criminal activity, such as size, stability, and lack of long- attacks have yet to materialise despite continued growth of a vulnerable population of devices. We investigate the missing term support. The population is approaching 100 000 devices, attacks against ICS, focusing on large-scale attacks enabled of which we tracked approximately 10% over four years. by Internet-connected populations. We fingerprint and track We find that over 60% of tracked devices are continuously more than 10 000 devices over four years to confirm that the connected at the same IP address for years, fewer than 25% population is growing, continuously-connected, and unpatched. ever receive a software update, and that the overall population We also track 150 000 botnet hosts, monitor 120 global ICS honeypots, and sift 70 million underground forum posts to show is growing with the addition of the newest hardware and that the cybercrime community has little competence or interest software from major manufacturers. in the ICS domain. Attackers may be dissuaded by the high cost Despite these vulnerabilities, we show that the actual risk of entry, the fragmented ICS population, and limited onboard to ICS devices is low.
    [Show full text]
  • Dominance As a New Trusted Computing Primitive for the Internet of Things
    Dominance as a New Trusted Computing Primitive for the Internet of Things Meng Xu∗y, Manuel Huberzy, Zhichuang Sunxy, Paul England{, Marcus Peinado{, Sangho Lee{, Andrey Marochko{, Dennis Mattoon{, Rob Spigerk and Stefan Thomk ∗Georgia Institute of Technology zFraunhofer AISEC xNortheastern University {Microsoft Research kMicrosoft Abstract—The Internet of Things (IoT) is rapidly emerging In a world in which the great majority of internet-connected as one of the dominant computing paradigms of this decade. devices are IoT devices and in which many aspects of critical Applications range from in-home entertainment to large-scale infrastructure, industrial production, and everyday life depend industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects on such devices, the Internet of Things becomes an attractive similar to traditional computers, user expectations and deploy- target for attackers [4]. In addition to simple resource hijacking, ment scenarios as well as cost and hardware constraints are as demonstrated by the Mirai and Hajime Botnets [5–7], new sufficiently different to create new security challenges as well and more pernicious types of ransomware, targeting production as new opportunities. This is especially true for large-scale IoT facilities and critical infrastructure like the power grid [8], deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. are likely threats. The first instances of IoT ransomware have Like traditional computers, IoT devices are subject to attack already appeared in the wild [9–11]. and compromise. Large IoT deployments consisting of many At the same time, IoT devices have many of the properties nearly identical devices are especially attractive targets.
    [Show full text]
  • Iot Cyber Risk: a Holistic Analysis of Cyber Risk Assessment Frameworks
    Kandasamy et al. EURASIP Journal on Information Security (2020) 2020:8 EURASIP Journal on https://doi.org/10.1186/s13635-020-00111-0 Information Security RESEARCH Open Access IoT cyber risk: a holistic analysis of cyber risk assessment frameworks, risk vectors, and risk ranking process Kamalanathan Kandasamy1* , Sethuraman Srinivas2, Krishnashree Achuthan1 and Venkat P. Rangan3 Abstract Security vulnerabilities of the modern Internet of Things (IoT) systems are unique, mainly due to the complexity and heterogeneity of the technology and data. The risks born out of these IoT systems cannot easily fit into an existing risk framework. There are many cybersecurity risk assessment approaches and frameworks that are under deployment in many governmental and commercial organizations. Extending these existing frameworks to IoT systems alone will not address the new risks that have arisen in the IoT ecosystem. This study has included a review of existing popular cyber risk assessment methodologies and their suitability to IoT systems. National Institute of Standards and Technology, Operationally Critical Threat, Asset, and Vulnerability Evaluation, Threat Assessment & Remediation Analysis, and International Standards Organization are the four main frameworks critically analyzed in this research study. IoT risks are presented and reviewed in terms of the IoT risk category and impacted industries. IoT systems in financial technology and healthcare are dealt with in detail, given their high-risk exposure. Risk vectors for IoT and the Internet of Medical Things (IoMT) are discussed in this study. A unique risk ranking method to rank and quantify IoT risk is introduced in this study. This ranking method initiates a risk assessment approach exclusively for IoT systems by quantifying IoT risk vectors, leading to effective risk mitigation strategies and techniques.
    [Show full text]
  • ERT Threat Advisory April 26, 2017
    ERT Threat Advisory Hajime – Friend or Foe? April 26, 2017 Abstract Hajime is a sophisticated, flexible and future-proof IoT botnet. It is capable of updating itself and provides the ability to extend its member bots with ‘richer’ functions, both efficiently and fast. The Hajime botnet was first reported by Sam Edwards and Ioannis Profetis from Rapidity Networks, who discovered the first occurrence of Hajime back in October, 2016, including the update blog by Ioannis (@psychotropos), and the more quantitative research by Symantec, which assesses the size of the threat. Figure 1: Message periodically displayed on the terminal by Hajime The distributed bot network used for command and control and updating is overlaid as a traceless torrent on top of the well-know public BitTorrent peer-to-peer network using dynamic info_hashes that change on a daily basis. All communications through BitTorrent are signed and encrypted using RC4 and private/public keys. The current extension module provides scan and loader services to discover and infect new victims. The efficient SYN scanner implementation scans for open ports TCP/23 (telnet) and TCP/5358 (WSDAPI). Upon discovering open Telnet ports, the extension module tries to exploit the victim using brute force shell login much the same way Mirai did. For this purpose, Hajime uses a list consisting of the 61 factory default passwords from Mirai and adds two new entries, ‘root/5up’ and ‘Admin/5up,’ which are factory defaults for Atheros wireless routers and access points. In addition, Hajime is capable of exploiting ARRIS modems using the password-of-the- day “backdoor” with the default seed as outlined here.
    [Show full text]