© in This Web Service Cambridge University Press

Total Page:16

File Type:pdf, Size:1020Kb

© in This Web Service Cambridge University Press Cambridge University Press 978-1-107-03765-6 - Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics Edited by Serge Morand, Boris R. Krasnov and D. Timothy J. Littlewood Index More information Index Acanthocephala, 2, 44–45, 74, 182–183, 185–190, Aneuretopsychidae, 234 192–201, 323–325, 331, 333, 353, 396, 475, Annelida, 41, 153 477 Anolis, 3, 320–327, 329–334 Acanthocephalus, 187 Anolisomyia, 324, 330 Acari, 44, 160, 177–179, 181, 262, 265–266, 268, Anopheles, 155–156, 180, 444, 448 277, 281–288, 324, 330, 334, 436, 445, 449 Anoplura, 177, 215, 348 Achalcus, 168–169 antagonistic pleiotropy, 383 Acromyrmex, 380 Aphididae, 157, 159, 161, 175, 178, 263, 420, 427, Acropsylla, 157 432 Acuariidae, 324 Apicomplexa, 44–45, 103, 323, 330, 333 Acyrthosiphon, 152, 157–158, 173, 175, 178, 181 Apis, 280 Adalia, 156, 164, 166–167, 172, 180–181 Aporocotylidae, 309 adaptive radiation, 150, 286, 322, 331–333, 375, Arachnida, 44, 156, 160, 282 411, 418–419, 433 Aractidae, 324 Adeleina, 324 Araneae, 156, 160 Aedes, 156, 172, 448 Araneus, 170 Africa, xii, 71, 117, 120, 122, 124–129, 131–132, Aratinga, 279, 281 135, 138–140, 142, 145–146, 148, 176, 179, Archaeplastida, 153 203, 205, 207, 211, 214, 259, 261, 274, 413, Archiacanthocephala, 190, 192–193, 197, 199 416, 439, 455–456, 459–460, 463–469, 471 Archinycteribia, 248 Agastopsyllini, 237 Archinycteribiinae, 248, 251, 254 Agfidae, 294 Arderhynchus, 194 Alburnus, 369 Argas, 274 Alca, 440 Argasidae, 156, 178, 262, 273 Alces,80 Argyra, 169–170, 172–173 Alexandrium, 103–105 Arhythmorhynchus, 194–195, 200 Aleyrodidae, 157 Arsenophonus, 152, 254, 256, 260–261, 263–264 Allenopithecus, 120 Arthropoda, 1, 29, 79, 81–82, 150, 152, 154–155, Allocreadioidea, 313 160, 166, 174, 176, 178, 181, 193, 197, 261, allopatry, 406 265–266, 269–270, 274–276, 279, 281, 284, Alphaproteobacteria, 257 289–290, 301, 304 Amblycera, 215, 219–221, 223–224, 226, 228 Arvicolinae, 35 Amblyomma, 156, 171, 181, 257, 260 Ascaridida, 292 Amheterozercon, 274 Ascarididae, 324 Amiiformes, 313 Aschnera, 254 Amoebophrya, 103–104, 107–108 Ascidae, 272, 277, 286 Amphibia, 80–81, 87–89, 108, 110, 182, 284, 311, Ascodipterinae, 248, 251, 253–254, 261 315, 413, 423, 431, 443 Ascodipteron, 253, 261–262 Amphilinidea, 44, 308, 313, 318–319 Asobara, 158, 168, 175, 181 Amphipoda, 44, 50–51, 182, 193–195, 309, 396 Aspergillus, 380 Amphorophora, 157–158 Aspidogastrea, 44, 309, 318 Ancyrocephalidae, 407–409, 417–418 Astigmata, 266–267, 272, 277–279, Andracantha, 194–195, 198, 200 284–286 Androlaelaps, 275–276 asymmetrical per cent similarity index, 362 480 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03765-6 - Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics Edited by Serge Morand, Boris R. Krasnov and D. Timothy J. Littlewood Index More information Index 481 Atopomelidae, 268, 279, 283 Centrorhynchidae, 324 Audycoptidae, 278, 283 Ceratophyllidae, 35, 157, 179, 240, Aulogymnus, 157, 172 353–354, 449 Australopithecus, 211 Ceratophyllomorpha, 237 Austrovenus, 55, 57, 381, 398 Cercocebus, 120, 136, 139, 141–142, 144–147 autoregressive model, 338 Cercopithecidae, 132 Azygioidea, 311 Cercopithecinae, 132 Cercopithecus, 120, 122, 130, 134, 136, 139–141, Baculoviridae, 231 143, 146 Barbus, 187, 373 Cercozoa, 109, 163 Barreropsyllini, 237 Cerobasis, 168 Bartonella, 178–179, 240, 242, 256–257, 259–263 Cestoda, tapeworms, 3, 243, 304–308, 311–319, Basilia, 252, 256, 258 330, 353, 355, 415, 477 Batillaria, 416, 476, 478 Chaerephon, 249 Batrachochytrium,80–81, 108, 110 Chaetognatha, 41, 44, 199 Baylisascaris,80 Chilocorus, 273 Bdellidae, 267–268 Chimaeropsyllidae, 237 Bdelloidea, 189–190, 199 Chirodiscidae, 268, 279, 283 beetles, see Coleoptera Chiroptera, 246, 262, 264, 287 Bemisia, 157, 159, 170, 173, 175 Chlorocebus, 120, 122 Benthimermidthidae, 46 Chlorophyceae, 153 Bicellaria, 169 Chromadorea, 290, 292 Biomphalaria, 379, 383, 395, 400 Chromalveolata, 153 Bivesiculoidea, 309, 311 Chrysotimus, 168, 170 Black Death, see Yersinia pestis Chrysotus, 168–170, 172–173 Blattisocius, 272 chytrid fungi, 105, 108, 111–112 Bolbosoma, 194–195 Cicadellidae, 157, 179 Boreidae, 231, 235–237 Cichlidogyrus, 407, 409, 411, 418 Borrelia, 178, 256, 261–262 Ciliophora, 44–45, 163, 181 Brachiopoda, 45 Cirripedia, 44 Brachycladioidea, 313 Cladorchiidae, 311 Brachys, 155–156, 173 climate change, 58–59, 70, 73–75 Brachytarsininae, 233, 248, 251 Clinocera, 170 Bradiopsyllini, 237 Clitellata, 157 Brillouin diversity index, 17 Cloacaridae, 277–278, 282–284, 286 brood parasites, 223–224, 229, 339 Cnidaria, 40–44, 153 Bruchidae, 156, 176 Coccidula, 157 Bryopsidophyceae, 153 Coccinellidae, 155–156, 273 Bryopsis, 163, 177 Coccotrypes, 152, 155, 164, 170, 181 Bryozoa, 44 coevolution, xiii, 4, 51, 72, 75, 109, 122, 124, 129, Buchnera, 161, 263, 432 138, 180, 207, 209, 227, 280, 283, 303, 315, Buprestidae, 156 343, 346, 348, 350, 394–395, 413, 418, 420–434, 436, 441, 444–445, 447–449, 463 Caeculidae, 268 Coleoptera, beetles, 151–152, 155–156, 163–166, Caligus, 364 173–174, 176–177, 180–181, 233, 244, 273 Callorhincus, 316 Collembola, 156, 160, 164, 176, 269 Calvia, 156, 172 Colobidae, 132 Calyptratae, 246, 250, 260, 263 Colobus, 119, 141, 144 Campanulotes, 218 Columbicola, 218, 412, 440–442 Campsicnemus, 169, 172 Columbiformes, 412, 440 Capillaridae, 294 competition, 55, 60–61, 64–65, 67–69, 74, 76, 82, Carassius, 369 88, 235, 352, 360, 363, 365, 372, 374, 377–380, Carcinus, 474, 478 382, 391–392, 394, 396–397, 475 Cardinium, 152, 155 convergent evolution, 231, 233–234, 245, 249, 329, Carios, 156, 178, 256, 262, 274 332, 339, 345, 348, 351, 400 Carteria, 163, 174 Copepoda, 44, 415 Cebidae, 278, 283 Corynosoma, 187–188, 194–195, 197–198, 200 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03765-6 - Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics Edited by Serge Morand, Boris R. Krasnov and D. Timothy J. Littlewood Index More information 482 Index Cosmocercidae, 324 Dictyocaulus, 296 cospeciation, 4, 65, 161, 166, 202, 206, 216, 328, Dicyemida, 44 343–344, 402–404, 407, 409–410, 414, Didymozoidae, 311 423–424, 426, 428–429, 432–437, 439–444, Digenea, 44, 46, 48, 50, 54–55, 305–307, 309–311, 446–447, 449 313–318, 340, 412–413, 415, 417, 476–478 cox1, CO1 mitochondrial gene, 95, 100, 110, 167, Diophrys, 153, 163, 174, 181 187–190, 192, 195, 198, 208, 237 Diphyllobothriidea, 313–314 cox2, mitochondrial gene, 235, 237 Diplogyniidae, 274 Craneopsyllinae, 239 Diplospinifer, 194 Cricetinae, 35 Diplostomida, 309, 315 Crocuta,80 Diplostomoidea, 309, 478 Crustacea, 40–41, 43–44, 46, 50–52, 193, 233, 280, Diptera, 3, 155–156, 158, 163, 165, 175, 177, 305, 359, 474, 478 246–247, 249, 252, 259–264, 324, 330 cryptic species, 16, 25, 186–188, 199, 316, 326–327, dispersal, 23, 49, 51, 59, 160, 174, 176, 207, 213, 329, 333, 402, 416, 443, 448, 475, 478 272, 281, 323, 327, 331, 381, 407, 409–410, Cryptogonimidae, 311 424, 430, 435–440 Cryptomycota, 104, 106, 112 divergence, 24, 97, 136, 147–148, 180, 186–189, Ctenocephalides, 157, 159, 174, 177, 239, 242–243, 200, 204–206, 208, 210, 255, 258, 307, 245 333–334, 374, 405, 410, 416, 421, 423, 426, Ctenoparia, 239 429, 452, 455, 461, 464 Ctenophora, 40–41, 44, 304 Dolichopodidae, 158, 166, 178 Ctenophthalmidae, 232, 237, 239, 241, 243 Dolichopodinae, 156 Ctenophthalminae, 240 Dolichopus, 156, 164, 168–169, 172–173 Cuculiformes, 223 Dormitator, 187, 200 Culex, 257 Dorylaimia, 292 Culicidae, 156, 443 Drosophila, 166, 178, 180, 233, 244, 251, 261, 373, Culicoides, 155, 175 389, 399 Cunaxidae, 266 Dytiscidae, 157, 177 Curculio, 157, 169–170, 173–174 Curculionidae, 155, 157, 181 Ecdysozoa, 290, 303 Curtuteria, 381, 397 Echinodermata, 40–44, 304 Cyanistes, 80, 86 Echinostomatidae, 55, 311 Cycliophora, 44–45, 199 Echinostomatoidea, 310–311 Cyclophyllidea, 312–314 Echiura, 44 Cyclopodiinae, 248, 251–252, 254, 256 ecomorph, 320, 322–323 Cyprinidae, 364, 367, 414, 416 ectoparasitism, 28–29, 82, 217, 233, 235, 243, 246, Cyrtosomum, 327–328, 330, 332 277, 279, 331, 348, 405, 432, 445–446 cytb, mitochondrial gene, 237 effective population size, 204, 326, 392, 454–455, Cytoditidae, 277 457–458 Cyttaria, 423, 433 Eichler’s rule, 221–222, 229 Eimeriidae, 323, 330, 333 Dactylogyrus, 361, 364–367, 369, 371, 373–375, Eldunnia, 252 417 Emballonuroidea, 259 Daphnia, 51, 53–54, 57, 83, 85, 111–112, 382, 394, Empis, 169 398 Empoasca, 157, 159 Dasyponyssidae, 267, 280, 284, 287 Endeostigmata, 267 Decapoda, 44, 50, 52, 193–195, 359 endoparasitism, 104, 193, 199, 230, 277, 280–281, deep sea, 42, 46–47, 53, 115, 311 284, 286, 305 Demodex, 271, 278, 287 enemy release hypothesis, 59 Demodicidae, 267, 278, 283, 286–287 Enhydra, 80, 88 Dermacentor, 156, 173, 175, 178–179 Enischnomyia, 257, 263 Dermanyssidae, 267, 270, 280, 282, 285 Enoplea, 290, 294 Dermanyssina, 274–275, 280, 282 Enoplia, 292 Dermanyssoidea, 179, 273–275, 280, 282, 287 Enterobacteriacae, 254 Dermoglyphidae, 277 Entobdella, 405 Deronectes, 157, 163, 168–170, 177 Entognatha, 156 Diaphorus, 169 Entoprocta, 45, 199 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03765-6 - Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics Edited by Serge Morand, Boris R. Krasnov and D. Timothy J. Littlewood Index More information Index 483 Eoacanthocephala, 190, 192–193, 197 Haemaphysalis, 156, 172 Eospilopsyllus, 232 Haemogamasus, 275, 284, 286, 288 Ephydroidea,
Recommended publications
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Parasites of Western Australia V Nasal Mites from Bats (Acari: Gastronyssidae and Ereynetidae) (1)
    Rec. West. Aust. Mus., 1979,7 (1) ~ PARASITES OF WESTERN AUSTRALIA V NASAL MITES FROM BATS (ACARI: GASTRONYSSIDAE AND EREYNETIDAE) (1) A. FAIN* and F.S. LUKOSCHUSt [Received 6 October 1977. Accepted 16 November 1977. Published 26 February 1979.] ABSTRACT Two species of parasitic mites have been observed in nasal cavities of flying foxes: Opsonyssus asiaticus Fain, 1959 in Pteropus alecto and P. scapulatu8 (new host records) and Neospeleognathopsis (Pteropignathus) pteropus n. sp. from P. scapula tus, the latter representing a new subgenus of Neo­ speleognathopsis. INTRODUCfION In the nasal cavities of bats from Western Australia, the junior author col1ected two species of mites belonging to the family Gastronyssidae (Order Astigmata), and Ereynetidae (Order Prostigmata). One of these is a new species and is described here. FAMILY GASTRONYSSIDAE Fain, 1956 SUBFAMILY RODHAINYSSINAE Fain, 1964 Genus Opsonyssus Fain, 1959 Opsonyssus asiaticus Fain, 1959 This species has been described from the nasal cavities of Pteropus giganteus (Brünn) and of Pteropus melanopogon Peters, both from unknown localities. * Institute of Tropical Medicine, Antwerp, Belgium. t Department of Zoology, Catholic University of Nijmegen, The Netherlands. 57 ln Western Australia we found a small series of specimens of that species in two new hosts: 1 Pteropus alecto Temminck, 1825, from Brooking Springs, 8.X.1976 (bat no. 2969) (one male and one female specimen). 2 Pteropus scapulatus Peters, 1862, from Geikie Gorge, 6.X.1976 (bat no. 2947) (five females and two males). FAMILY EREYNETIDAE Oudemans, 1931 SUBFAMILY SPELEOGNATINAE Womersley, 1936 Genus Neospeleognathopsis Fain, 1958 Subgenus Pteropignathus subg. nov. This new subgenus differs from the type subgenus (type species N.
    [Show full text]
  • Fleas (Siphonaptera) Are Cretaceous, and Evolved with Theria
    bioRxiv preprint doi: https://doi.org/10.1101/014308; this version posted January 24, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria Qiyun Zhu1, Michael Hastriter2, Michael Whiting2, 3, Katharina Dittmar1, 4* Jan. 23, 2015 Abstract: Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a compre- hensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae at the base and Stephanocircidae as the second basal group. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), showing that the common ancestor of extant Siphonaptera split from its clos- est mecopteran sister group in the Early Cretaceous and basal lineages diversified during the Late Cretaceous. However, most of the intraordinal divergence into families took place after the K-Pg boundary. Ancestral states of host association and bioge- ographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed.
    [Show full text]
  • New Records of Fleas (Siphonaptera: Ctenophthalmidae
    Revista Mexicana de Biodiversidad 85: 383-390, 2014 Revista Mexicana de Biodiversidad 85: 383-390, 2014 DOI: 10.7550/rmb.42071 DOI: 10.7550/rmb.42071383 New records of fleas (Siphonaptera: Ctenophthalmidae: Rhopalopsyllidae and Stephanocircidae) from Argentinean Patagonia, with remarks on the morphology of Agastopsylla boxi and Tiarapsylla argentina Nuevos registros de pulgas (Siphonaptera: Ctenophthalmidae: Rhopalopsyllidae y Stephanocircidae) de la Patagonia argentina, con comentarios sobre la morfología de Agastopsylla boxi y Tiarapsylla argentina Juliana Sánchez and Marcela Lareschi Centro de Estudios Parasitológicos y de Vectores, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata. Bv. 120 s/n e/ Av. 60 y calle 61, 1900 La Plata, Argentina. [email protected] Abstract. A high diversity of fleas parasitizing sigmodontine rodents has been mentioned for Patagonia. Several of these fleas have been described having their type localities in the region, including several endemic taxa. For many species, however, the original descriptions are brief and there are no new morphological contributions. In the present study we report 8 species of fleas (Ctenophthalmidae, Rhopalopsyllidae and Stephanocircidae) parasitizing sigmodontine rodents from Argentinean Patagonia. Nineteen new parasite–host associations are reported and all studied fleas extend their known geographic range. Among them, Tiarapsylla argentina is mentioned for the first time for Patagonia; Craneopsylla minerva, Sphinctopsylla ares, Polygenis (P.) platensis and Polygenis (P.) rimatus are registered for the first time for Chubut, and Agastopsylla boxi, Ectinorus (E.) ixanus and Ectinorus (E.) hapalus for Santa Cruz, extending the southernmost limit of their geographical distribution. Also, for A. boxi and T.
    [Show full text]
  • Gharaibeh, BM 1997. Systematics, Distribution
    Gharaibeh, B. M. 1997. Systematics, distribution, and zoogeography of mammals of Tunisia. Thesis: 1-369. Keywords: 1TN/Acinonyx jubatus/caracal/Caracal caracal/cheetah/distribution/Felis margarita/Felis silvestris/Felis silvestris lybica/leopard/Leptailurus serval/lion/mammals/Panthera leo/Panthera pardus/records/sand cat/serval/systematics/taxonomy/wildcat/zoogeography Abstract: The taxonomic identity of each species of mammals that occurs in the Republic of Tunisia, North Africa has been determined to the subspecific level. History of names was followed and descriptions of types were studied to better provide opinions on the nomenclamre and minimize the confusion existing in the literature concerning the taxonomic identity of many Tunisian species. Keys to distinguish related taxa were constructed and maps depicting the distribution of species within the borders of Tunisia and in the whole North African region were drawn. These maps show original records obtained during this study as well records reported in the literature. Furthermore, the available natural history information on the Tunisian mammal fauna and background information on the vegetation, rainfall, topography, and land forms of the country were presented. Chromosomal G-band data for Merlones shawl from Tunisia, hitherto unavailable, was used to reexamine proposed chromosomal homologies and update the phylogenetic tree of Family Gerbillidae. G-banded chromosomal complement for Jaculus orlentalls was reported. Notable differences in pelage color were seen between populations of the North African elephant shrew, Elephantulus rozetl in northern and southern Tunisia. However, no disjunction was seen in morphometric measurements analyzed using principal components analysis (PCA). Differences in pelage color between 5 populations of Gerblllus campestrls are discussed.
    [Show full text]
  • DESCRIPTIONS of NEW SPECIES of HYSTRICHOPSYLLID FLEAS with NOTES on ARCHED PRONOTAL COMBS, CONVERGENT EVOLUTION and ZOOGEOGRAPHY (Siphonaptera)1
    Pacific Insects 9 (4) : 603-677 20 November 1967 DESCRIPTIONS OF NEW SPECIES OF HYSTRICHOPSYLLID FLEAS WITH NOTES ON ARCHED PRONOTAL COMBS, CONVERGENT EVOLUTION AND ZOOGEOGRAPHY (Siphonaptera)1 By Robert Traub2 and Thomas M. Evans3 Abstract: It is suggested that the peculiar arched or flared pronotal comb, now known to occur in 8 genera and 5 families of fleas, is an example of convergent evolution in shrew-fleas or macroscelid-fleas. The following new species are described and illustrated, and are cited as exhibiting modifications in the genal or pronotal spines which are asso­ ciated with the phylogeny of the host, or else with its habits or environment: Palaeop- sylla recava n. sp. ex shrews in Taiwan; P. apsidata n. sp. ex Crocidura in the mountains of Malaya; P. setzeri n. sp. ex Hyperacrius burrowing-voles in the Himalayas of W. Paki­ stan ; P. remota nesicola n. ssp. primarily ex Taiwanese Anourosorex; Doratopsylla wissemani n. sp. ex Sorex in W. Pakistan; and Corrodopsylla harrerai n. sp. ex Sorex in Guerrero, Mexico. The hitherto unknown female of Xenodaeria telios Jordan 1932, ex shrews, etc. in the Himalayas, is described and illustrated. Discussions on the geographic and host-distribu­ tion of some fleas in W. Pakistan and on "adaptive" modifications of the pronotal and genal spines of shrew-fleas are presented. The genus Corrodopsylla is shown to be high­ ly unusual in possessing pseudosetae on the first tergum and comments are made about this structure, on apical spinelets and combs of spines in certain fleas. Fleas of the family Hystrichopsyllidae are intimately associated with rodents and insec­ tivores and hence are frequently encountered in field studies on vectors and reservoirs of viral and rickettsial infections, such as those undertaken by field teams of the Depart­ ment of Microbiology of the University of Maryland School of Medicine conducted in West Pakistan and elsewhere.
    [Show full text]
  • Taxonomic Revision of the Flea Genus Agastopsylla Jordan & Rothschild
    An Acad Bras Cienc (2020) 92(1): e20181136 DOI 10.1590/0001-3765202020181136 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal BIOLOGICAL SCIENCES Taxonomic revision of the flea genus Running title: The genus Agastopsylla Jordan & Rothschild 1923 Agastopsylla (Siphonaptera: Ctenophthalmidae) Academy Section: Biological sciences MARIA FERNANDA LÓPEZ-BERRIZBEITIA, JULIANA SANCHEZ, RUBÉN M. BARQUEZ & MÓNICA DÍAZ e20181136 Abstract: Fleas of Argentina are receiving renewed systematic interest, but the identification of many species associated with small mammals can be problematic. We review the taxonomy of the flea genus Agastopsylla including the re-description of two 92 (1) species and one subspecies, and designate neotype and neallotype for Agastopsylla 92(1) hirsutior, neotype for Agastopsylla nylota nylota from the “Colección Mamíferos Lillo Anexos” (CMLA), Universidad Nacional de Tucumán, Argentina, and neotype and neallotype for Agastopsylla pearsoni from the Natural History Museum (London, U.K.). Additionally, a key to identification of the species of Agastopsylla and a distribution map of the species of the genus are included. Key words: fleas, systematic, type specimens, rodents, key identification. INTRODUCTION Agastopsylla guzmani Beaucournu et al. 2011 (Beaucournu et al. 2014, Lareschi et al. 2016). In The genus Agastopsylla Jordan & Rothschild Argentina, only two species and two subspecies, 1923 (family Ctenophthalmidae, subfamily A. b. boxi, A. b. gibbosa and A. pearsoni (Lareschi Ctenophthalminae) is characterized by the et al. 2016) have been recorded. reduction in size and the coloration of the spines There are several issues that hinder the of the genal comb (Hopkins & Rothschild 1966).
    [Show full text]
  • Evolution of the Insects David Grimaldi and Michael S
    Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae,
    [Show full text]
  • Interações Taxonômicas Entre Parasitos E Morcegos De Alguns Municípios Do Estado De Minas Gerais
    UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM PARASITOLOGIA INTERAÇÕES TAXONÔMICAS ENTRE PARASITOS E MORCEGOS DE ALGUNS MUNICÍPIOS DO ESTADO DE MINAS GERAIS. ÉRICA MUNHOZ DE MELLO BELO HORIZONTE ÉRICA MUNHOZ DE MELLO INTERAÇÕES TAXONÔMICAS ENTRE PARASITOS E MORCEGOS DE ALGUNS MUNICÍPIOS DO ESTADO DE MINAS GERAIS. Tese apresentada ao Programa de Pós-Graduação em Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutora em Parasitolog ia. Área de concentração: Helmintologia Orientação: Dra. Élida Mara Leite Rabelo/UFMG Co -Orientação: Dr. Reinaldo José da Silva/UNESP BELO HORIZONTE 2017 À minha família e aos meus amigos pelo apoio e compreensão. À todos os meus mestres pelos incentivos e contribuições na minha formação. AGRADECIMENTOS À minha orientadora, Élida Mara Leite Rabelo, que desde sempre me incentivou, confiou na minha capacidade, me deu total liberdade para desenvolver a tese e foi muito participativa ao longo de todo o processo. Muito obrigada por todos os ensinamentos, toda ajuda e todo o apoio de amiga, as vezes de mãe. Te ter como orientadora foi uma honra e eternamente serei grata por isso. Ao meu co-orientador, Reinaldo José da Silva, que mesmo de longe, sempre esteve presente ao longo de todo o doutorado. Muito obrigada pelos ensinamentos, pelo seu esforço em me ajudar ao máximo nas minhas visitas relâmpagos à Botucatu, e pela confiança no meu trabalho. Sempre será um privilégio trabalhar com você. Às bancas da qualificação e da defesa final por todas as sugestões, muito obrigada.
    [Show full text]
  • The Suborder Acaridei (Acari)
    This dissertation has been 65—13,247 microfilmed exactly as received JOHNSTON, Donald Earl, 1934- COMPARATIVE STUDIES ON THE MOUTH-PARTS OF THE MITES OF THE SUBORDER ACARIDEI (ACARI). The Ohio State University, Ph.D., 1965 Zoology University Microfilms, Inc., Ann Arbor, Michigan COMPARATIVE STUDIES ON THE MOUTH-PARTS OF THE MITES OF THE SUBORDER ACARIDEI (ACARI) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Donald Earl Johnston, B.S,, M.S* ****** The Ohio State University 1965 Approved by Adviser Department of Zoology and Entomology PLEASE NOTE: Figure pages are not original copy and several have stained backgrounds. Filmed as received. Several figure pages are wavy and these ’waves” cast shadows on these pages. Filmed in the best possible way. UNIVERSITY MICROFILMS, INC. ACKNOWLEDGMENTS Much of the material on which this study is based was made avail­ able through the cooperation of acarological colleagues* Dr* M* Andre, Laboratoire d*Acarologie, Paris; Dr* E* W* Baker, U. S. National Museum, Washington; Dr* G. 0* Evans, British Museum (Nat* Hist*), London; Prof* A* Fain, Institut de Medecine Tropic ale, Antwerp; Dr* L* van der fiammen, Rijksmuseum van Natuurlijke Historie, Leiden; and the late Prof* A* Melis, Stazione di Entomologia Agraria, Florence, gave free access to the collections in their care and provided many kindnesses during my stay at their institutions. Dr s. A* M. Hughes, T* E* Hughes, M. M* J. Lavoipierre, and C* L, Xunker contributed or loaned valuable material* Appreciation is expressed to all of these colleagues* The following personnel of the Ohio Agricultural Experiment Sta­ tion, Wooster, have provided valuable assistance: Mrs* M* Lange11 prepared histological sections and aided in the care of collections; Messrs* G.
    [Show full text]
  • Fleas Are Parasitic Scorpionflies
    Palaeoentomology 003 (6): 641–653 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2020 Magnolia Press Article ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.3.6.16 http://zoobank.org/urn:lsid:zoobank.org:pub:9B7B23CF-5A1E-44EB-A1D4-59DDBF321938 Fleas are parasitic scorpionflies ERIK TIHELKA1, MATTIA GIACOMELLI1, 2, DI-YING HUANG3, DAVIDE PISANI1, 2, PHILIP C. J. DONOGHUE1 & CHEN-YANG CAI3, 1, * 1School of Earth Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 2School of Life Sciences University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK 3State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China [email protected]; https://orcid.org/0000-0002-5048-5355 [email protected]; https://orcid.org/0000-0002-0554-3704 [email protected]; https://orcid.org/0000-0002-5637-4867 [email protected]; https://orcid.org/0000-0003-0949-6682 [email protected]; https://orcid.org/0000-0003-3116-7463 [email protected]; https://orcid.org/0000-0002-9283-8323 *Corresponding author Abstract bizarre bodyplans and modes of life among insects (Lewis, 1998). Flea monophyly is strongly supported by siphonate Fleas (Siphonaptera) are medically important blood-feeding mouthparts formed from the laciniae and labrum, strongly insects responsible for spreading pathogens such as plague, murine typhus, and myxomatosis. The peculiar morphology reduced eyes, laterally compressed wingless body, of fleas resulting from their specialised ectoparasitic and hind legs adapted for jumping (Beutel et al., 2013; lifestyle has meant that the phylogenetic position of this Medvedev, 2017).
    [Show full text]