Gi), Harelip and Associated Cleft Palate (G2), and Posterior Cleft Palate (G3

Total Page:16

File Type:pdf, Size:1020Kb

Gi), Harelip and Associated Cleft Palate (G2), and Posterior Cleft Palate (G3 CONGENITAL MALFORMATIONS 47 9. HARELIP (GI), HARELIP AND ASSOCIATED CLEFT PALATE (G2), AND POSTERIOR CLEFT PALATE (G3) It has long been realized that many cases of Fusion of the face and the anterior palate is nor- harelip (GI) and harelip with cleft palate (G2) are mally complete by about the end of the seventh week similar in etiology. There have been numerous of embryonic life. However, midline fusion of the reports of monozygotic twins where both had GI or posterior palate does not start until the ninth week G2 and of others where one twin had GI and the and then proceeds from front to back. Closure is other G2. Fogh-Andersen (1942), in his now classical not complete until about the twelfth week. If the report, was the first to point to the differing familial anterior failure is very gross, it is understandable that and epidemiological pattern of these conditions and proper fusion, at least anteriorly, of the posterior that of posterior cleft palate (G3) with intact anterior palate is virtually impossible. palate and lip. There is an undue frequency of cases Such gross failure of anterior fusion may result of Gl and G2 in some families and of G3 in others. if it is impossible for the lateral maxillary processes However, cases of Gl or G2 and cases of cleft palate to meet the premaxilla which is developed from the only (G3) do not occur in the same families more fronto-nasal process. In some cases this situation frequently than would be expected by chance. These may be the result of complete failure of proper findings have been confirmed in many studies, which development or descent of the fronto-nasal process. may be exemplified by those of Fraser (1960), Fraser In its extreme form this maldevelopment leads to & Calnan (1961), Fujino et a]. (1963) and Woolf et disorganization of the face when the orbits are very al. (1963). It is on such evidence and additional close together or fused and there is anophthalmia or indications from the present data that cases of GI microphthalmia. Several of these cases are classified and G2 are considered separately from those of G3 in the N group, and others, probably of this group, in what follows. have been classified as M when from a description such as " absence of face " it did not seem justified HARELIP (G1) AND HARELIP AND ASSOCIATED to classify them in G2. CLEFT PALATE (G2) In other cases the fronto-nasal process descends As mentioned above there is evidence from family but it is abnormal and projects anteriorly on a and twin studies of the homogeneity of many cases different plane from the rest of the developing face, of Gl and G2. This homogeneity is also evident on so that again there is nothing with which the lateral anatomical grounds. All degrees occur, from a maxillary processes can fuse. In these cases the slight " nick " in the lip to cases where the harelip is philtrum is usually on the tip of the nose. complete and there are in addition notches of Both the above types of developmental failure varying depth in the alveolar margin. These defects appear almost invariably to determine also failure represent essentially the end-results of different of fusion of the whole of the posterior palate. degrees of unsuccessful penetration of the mesoderm Developmentally, they are quite different in origin by those outgrowths from the ectodermal grooves from simple cleft lip or such cleft with extension to which form the face. In these cases, the palatal the anterior palate only. lesion affects only the fusion of the palate or pre- It will be clear from the above that we should maxilla which carries the incisor teeth. In cases expect some homogeneity in the etiology of GI and where only harelip occurs in one member of the G2 cases, as the minor degrees of G2 with an intact family and harelip and cleft palate in another the posterior palate are essentially greater degrees of palatal cleft is almost invariably of this limited type GI. However, we should also expect some hetero- (Kernahan & Stark, 1958). However, there are also geneity between GI and G2 cases and within the cases of harelip and cleft palate where the palatal G2 category because they would be expected to lesion is much larger, extending far back into the include also cases where grossly aberrant develop- posterior palate in the midline, so that the cleft is ment of the fronto-nasal process was the primary complete or nearly complete. defect. 48 A. C. STEVENSON AND OTHERS HARELIP (G1) AND HARELIP AND CLEFT PALATE (G2) GI and G2: sex proportions (M/M+F) IN THE PRESENT DATA In both GI and G2 there was an excess of males; the sex proportions in the summed data from the Frequencies centres being 0.62 and 0.65 respectively. In the two From Table 9.1 it will be seen that in most centres combined the proportion was 0.64. There appears there were more cases of G2 than of GI and that, from Table 9.1 to be a fairly consistent distribution over-all, there were approximately twice as many of this male excess, even allowing for sampling cases of the former. There is a positive correlation fluctuations of rather small numbers. The similarity between the frequencies of the two groups in the in the sex proportions of Gl and G2 accord with a various centres (GI and G2: r = + 0.432, P < 0.05). hypothesis of considerable homogeneity of some cases at least in these groups. Geographic and ethnic variations GJ and G2: mortality The highest frequencies of G1 + G2 were in Johannesburg, Kuala Lumpur, Santiago, Hong Kong Of 407 infants with GI or G2, 47 were stillborn and Singapore. Direct comparisons have to be or died in hospital, a mortality of 115 per 1000 total viewed with caution but these conditions are seldom births. This is significantly higher than in all single missed at birth unless there is only a minimal not- births (16 617/416 615; P < 0.001). Some of the ching of the lip. All the reported series used for children who died may have had associated internal examination of these influences appear to have been malformations which determined death. Unfor- of cases presenting for surgical repair. On the basis tunately, only a few of these cases were examined of such data some authors have decided that birth at autopsy. It might be surmised that a proportion order is the important variable (Fujino et al., 1963) of children who died had a type of GI or G2 which and others that maternal age has the greater influence was the effect of homozygosity for a recessive gene. (Fraser & Calnan, 1961; Rank & Thomson, 1960). However, of the 47 who died three were the offspring In the present data standardization for maternal age of related parents. Seventeen of the surviving did not substantially influence relative frequencies children had consanguineous parents. (Consan- and those in the centres mentioned above were guinity associated with these and other malforma- still the highest. tions is considered in section 19.) Harelip (GJ) and harelip and cleft palate (G2) Frequencies in ethnic groups occurring as one of two or more malformations It has often been noted that frequencies were high in the same child (Group N) in Asiatic people and in particular Japanese and GI and G2 occur frequently as one of several Chinese (e.g., Neel & Schull, 1956). In Singapore malformations (i.e., N group). One of these defects the frequencies in Chinese, Malays and Indian was found in 56 of 329 (17.0%) of those classified ethnic groups were respectively 42/31 503 (1.33 per in the N group. Of these 56 infants, 30 (53.6 Y.) were 1000), 10/4850 (2.06 per 1000) and 4/3085 (1.30 per stillborn or died in hospital. This high mortality 1000). In the same order in Kuala Lumpur the is partly, but probably not entirely, explicable in ethnic group frequencies were 15/8625 (1.74 per terms of the severity of associated malformations. 1000), 5/2151 (2.32 per 1000) and 3/4094 (0.73 per The malformation groupings are shown in Table 9.2. 1000). These figures suggest that the frequencies in It seems likely, as already mentioned, that a few Malays were at least as high as in Chinese. It is other cases are also closely related in etiology- noteworthy, however, that in Manila in those namely, those said to have absence of the face, which classified as " Malay " the frequency of Gl + G2 probably means complete failure of development of was 1.11 per 1000, or little above the mean in all the fronto-nasal process, so determining malforma- centres of 0.98 per 1000. In both Singapore and tions not really differentiable from some of the cases Kuala Lumpur, however, the frequency in Indians called anophthalmia or microphthalmia with harelip was the lowest of the three-about the mean of that and cleft palate. in all centres and similar to the figures from Bombay A remarkable feature of multiple malformations and Calcutta. There were no cases in Cape Town, which include GI or G2 is the high proportion of where the " Cape Coloured " population has a males. In one of the 56 cases the sex was indetermin- substantial contribution from Malay blood. ate but of the remaining 55, 43 were males, a pro- CONGENITAL MALFORMATIONS 49 portion (M/M+F) of 0.78. This is even higher than tion is, however, significantly different from that in cases where Gl or G2 was the only malformation.
Recommended publications
  • Neonatal Orthopaedics
    NEONATAL ORTHOPAEDICS NEONATAL ORTHOPAEDICS Second Edition N De Mazumder MBBS MS Ex-Professor and Head Department of Orthopaedics Ramakrishna Mission Seva Pratishthan Vivekananda Institute of Medical Sciences Kolkata, West Bengal, India Visiting Surgeon Department of Orthopaedics Chittaranjan Sishu Sadan Kolkata, West Bengal, India Ex-President West Bengal Orthopaedic Association (A Chapter of Indian Orthopaedic Association) Kolkata, West Bengal, India Consultant Orthopaedic Surgeon Park Children’s Centre Kolkata, West Bengal, India Foreword AK Das ® JAYPEE BROTHERS MEDICAL PUBLISHERS (P) LTD. New Delhi • London • Philadelphia • Panama (021)66485438 66485457 www.ketabpezeshki.com ® Jaypee Brothers Medical Publishers (P) Ltd. Headquarters Jaypee Brothers Medical Publishers (P) Ltd. 4838/24, Ansari Road, Daryaganj New Delhi 110 002, India Phone: +91-11-43574357 Fax: +91-11-43574314 Email: [email protected] Overseas Offices J.P. Medical Ltd. Jaypee-Highlights Medical Publishers Inc. Jaypee Brothers Medical Publishers Ltd. 83, Victoria Street, London City of Knowledge, Bld. 237, Clayton The Bourse SW1H 0HW (UK) Panama City, Panama 111, South Independence Mall East Phone: +44-2031708910 Phone: +507-301-0496 Suite 835, Philadelphia, PA 19106, USA Fax: +02-03-0086180 Fax: +507-301-0499 Phone: +267-519-9789 Email: [email protected] Email: [email protected] Email: [email protected] Jaypee Brothers Medical Publishers (P) Ltd. Jaypee Brothers Medical Publishers (P) Ltd. 17/1-B, Babar Road, Block-B, Shaymali Shorakhute, Kathmandu Mohammadpur, Dhaka-1207 Nepal Bangladesh Phone: +00977-9841528578 Mobile: +08801912003485 Email: [email protected] Email: [email protected] Website: www.jaypeebrothers.com Website: www.jaypeedigital.com © 2013, Jaypee Brothers Medical Publishers All rights reserved. No part of this book may be reproduced in any form or by any means without the prior permission of the publisher.
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • ICD-9CM Coding Achilles Bursitis Or Tendinitis 726.71 Adhesive
    ICD-9CM CODING OF COMMON CHIROPRACTIC CONDITIONS CONDITION ICD-9CM coding Achilles bursitis or tendinitis 726.71 Adhesive capsulitis of shoulder 726 Anklyosing Spondylitis (spine only) 720 Anterior cruciate ligament (old disruption) 717.83 Bicipital tenosynovitis 726.12 Boutonniere deformity 736.21 Brachial neuritis or radiculitis 723.4 Bunion 727.1 Bursitis of knee 726.6 Calcaneal spur 726.73 Carpal tunnel syndrome 354 Cervical radiculitis 723.4 Cervical spondylosis with myelopathy 721.1 Cervical spondylosis without myelopathy 721 Cervicalgia 723.1 Chondromalacia of patella 717.7 Claw hand (acquired) 736.06 Claw toe (acquired) 735.5 Coccygodynia 724.79 Coxa plana 732.1 Coxa valga (acquired) 736.31 Coxa vara (acquired) 736.32 de Quervain's disease 727.04 Degeneration of cervical intervertebral disc 722.4 Degeneration of thoracic or lumbar intervertebral disc 722.5 Disc Degeneration (Cervical with myelopathy) 722.71 Disc Degeneration (Lumbar with myelopathy) 722.73 Disc Degeneration (Thoracic) 722.51 Disc Degeneration (Cervical) 722.4 Disc Degeneration (Lumbar) 722.52 Disc Degeneration (Thoracic with myelopathy) 722.72 Disc displacement without myelopathy (Thoracic) 722.11 Disc displacement of without myelopathy (Cervical ) 722 Disc displacement without myelopathy (Lumbar) 722.1 Dupuytren's contracture 728.6 Entrapment syndromes 354.0-355.9 Epicondylitis (Lateral) 726.32 Epicondylitis (Medial) 726.31 Flat foot-Pes planus (acquired) 734 Fracture (Lumbar) 805.4 Ganglion of tendon sheath 727.42 Genu recurvatum (acquired) 736.5 Genu valgum
    [Show full text]
  • Posture Analysis
    POSTURE ANALYSIS PRESENTED BY MWADZIWANA LOUIS LAW WHAT IS POSTURE ? • Posture is a position of greatest efficiency, around your center of gravity, with muscles on all sides, exerting pull equally. CORRECT POSTURE Correct posture “Position in which minimum stress is placed on each joint.” (Magee) Maintains the natural curves Faulty posture Any position that increases stress on joints Create muscle imbalances, ligamentous tension, circulatory occlusion CAUSES OF POOR POSTURE • Positional factors/Habitual • Appearance of increased height (social stigma) • Muscle imbalances/contractures • Pain e.g. ICD pleural effusion • Respiratory conditions CAUSES OF POOR POSTURE • Structural factors • Congenital anomalies • Developmental problems • Trauma • Disease FACTORS AFFECTING POSTURAL ANALYSIS • Subject must be minimally clothed • The subject must assume a comfortable and relaxed posture • Subjects who use orthotic or assistive devices should be assessed with and without them to determine their effectiveness in correcting posture. • relevant medical history and other information THE SPINAL COLUMN • Primary curves • Thoracic spine • Sacrum • Secondary curves • Cervical spine • Lumbar spine LATERAL VIEW • Head and neck: • Plumb line: The line falls through the ear lobe to the acromion process. • Common faults include: • Forward head: • Flattened lordotic cervical curve • Excessive Lordotic curve LATERAL VIEW Shoulder: • Plumb line: It falls through the acromion process. • Common faults include: • Forward shoulders • Lumbar Lordosis LATERAL VIEW •
    [Show full text]
  • Osteotomy Around the Knee: Evolution, Principles and Results
    Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-012-2206-0 KNEE Osteotomy around the knee: evolution, principles and results J. O. Smith • A. J. Wilson • N. P. Thomas Received: 8 June 2012 / Accepted: 3 September 2012 Ó Springer-Verlag 2012 Abstract to other complex joint surface and meniscal cartilage Purpose This article summarises the history and evolu- surgery. tion of osteotomy around the knee, examining the changes Level of evidence V. in principles, operative technique and results over three distinct periods: Historical (pre 1940), Modern Early Years Keywords Tibia Osteotomy Knee Evolution Á Á Á Á (1940–2000) and Modern Later Years (2000–Present). We History Results Principles Á Á aim to place the technique in historical context and to demonstrate its evolution into a validated procedure with beneficial outcomes whose use can be justified for specific Introduction indications. Materials and methods A thorough literature review was The concept of osteotomy for the treatment of limb defor- performed to identify the important steps in the develop- mity has been in existence for more than 2,000 years, and ment of osteotomy around the knee. more recently pain has become an additional indication. Results The indications and surgical technique for knee The basic principle of osteotomy (osteo = bone, tomy = osteotomy have never been standardised, and historically, cut) is to induce a surgical transection of a bone to allow the results were unpredictable and at times poor. These realignment and a consequent transfer of weight bearing factors, combined with the success of knee arthroplasty from a damaged area to an undamaged area of joint surface.
    [Show full text]
  • Page 1 of 4 COPYRIGHT © by the JOURNAL of BONE and JOINT SURGERY, INCORPORATED LAMPLOT ET AL
    COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LAMPLOT ET AL. RISK OF SUBSEQUENT JOINT ARTHROPLASTY IN CONTRALATERAL OR DIFFERENT JOINT AFTER INDEX SHOULDER, HIP, OR KNEE ARTHROPLASTY http://dx.doi.org/10.2106/JBJS.17.00948 Page 1 Appendix TABLE E-1 Included Alternative Primary Diagnoses ICD-9-CM Code Diagnosis* 716.91 Arthropathy NOS, shoulder 716.95 Arthropathy NOS, pelvis 716.96 Arthropathy NOS, lower leg 719.45 Joint pain, pelvis 719.91 Joint disease NOS, shoulder *NOS = not otherwise specified. Page 1 of 4 COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LAMPLOT ET AL. RISK OF SUBSEQUENT JOINT ARTHROPLASTY IN CONTRALATERAL OR DIFFERENT JOINT AFTER INDEX SHOULDER, HIP, OR KNEE ARTHROPLASTY http://dx.doi.org/10.2106/JBJS.17.00948 Page 2 TABLE E-2 Excluded Diagnoses* ICD-9- ICD-9- ICD-9- ICD-9- CM Code Diagnosis CM Code Diagnosis CM Code Diagnosis CM Code Diagnosis 274 Gouty arthropathy NOS 696 Psoriatic 711.03 Pyogen 711.38 Dysenter arthropathy arthritis- arthritis NEC forearm 274.01 Acute gouty arthropathy 696.1 Other psoriasis 711.04 Pyogen 711.4 Bact arthritis- arthritis-hand unspec 274.02 Chr gouty arthropathy 696.2 Parapsoriasis 711.05 Pyogen 711.46 Bact arthritis- w/o tophi arthritis-pelvis l/leg 274.03 Chr gouty arthropathy w 696.3 Pityriasis rosea 711.06 Pyogen 711.5 Viral arthritis- tophi arthritis-l/leg unspec 274.1 Gouty nephropathy NOS 696.4 Pityriasis rubra 711.07 Pyogen 711.55 Viral arthritis- pilaris arthritis-ankle pelvis 274.11 Uric acid nephrolithiasis 696.5 Pityriasis NEC & 711.08
    [Show full text]
  • Congenital Anomalies and in Utero Antiretroviral Exposure in Human Immunodeficiency Virus– Exposed Uninfected Infants
    Supplementary Online Content Williams PL, Crain MJ, Yildirim C, et al; Pediatric HIV/AIDS Cohort Study. Congenital anomalies and in utero antiretroviral exposure in human immunodeficiency virus– exposed uninfected infants. Published online November 10, 2014. JAMA Pediatr. doi:10.1001/jamapediatrics.2014.1889. eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories eTable 2. Anomalies Reported Among Children Exposed to Atazanavir During the First Trimester eTable 3. Association of Timing of the First ARV Exposure During Pregnancy With Congenital Anomalies by ARV Drug Class and for Specific ARV Drugs This supplementary material has been provided by the authors to give readers additional information about their work. © 2014 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories # of children with at Total # of least one major anomaly in Anomaly anomalies category Category (Total=242) (Total=201) List of Major Anomalies Musculoskeletal 72 59 Polydactyly (15), torticollis/muscular anomaly (12), clubfoot, talipes, other foot deformity (9), congenital dislocation of hip (5), craniosynostosis (4), plagiocephaly (4), pectus excavatum/funnel chest (3), lower limb anomaly (3), hypertelorism/other face or skull anomaly (3), spina bifida occulta/spine anomaly (3), syndactyly (3), inguinal hernia (2), diaphragmatic hernia/Morgagni, genu recurvatum/bowed legs, rib/sternum anomaly, scoliosis/congenital
    [Show full text]
  • Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management
    Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management a,b,c Monique C. Gourdine-Shaw, DPM, LCDR, MSC, USN , c, c Bradley M. Lamm, DPM *, John E. Herzenberg, MD, FRCSC , d,e Anil Bhave, PT KEYWORDS Equinus Pediatric External fixation Achilles tendon lengthening Gastrocnemius recession Tendo-Achillis lengthening Different body and limb segments grow at different rates, inducing varying muscle tensions during growth.1 In addition, boys and girls grow at different rates.1 The rate of growth for girls spikes at ages 5, 7, 10, and 13 years.1 The estrogen-induced pubertal growth spurt in girls is one of the earliest manifestations of puberty. Growth of the legs and feet accelerates first, so that many girls have longer legs in proportion to their torso during the first year of puberty. The overall rate of growth tends to reach a peak velocity (as much as 7.5 to 10 cm) midway between thelarche and menarche and declines by the time menarche occurs.1 In the 2 years after menarche, most girls grow approximately 5 cm before growth ceases at maximal adult height.1 The rate of growth for boys spikes at ages 6, 11, and 14 years.1 Compared with girls’ early growth spurt, growth accelerates more slowly in boys and lasts longer, resulting in taller adult stature among men than women (on average, approximately 10 cm).1 The difference is attributed to the much greater potency of estradiol compared with testosterone in Two authors (BML and JEH) host an international teaching conference supported by Smith & Nephew.
    [Show full text]
  • Pediatric Flatfoot Deformity Case Study Evaluation and Management Frank a Luckino III DPM, Jeffrey C
    Pediatric Flatfoot Deformity Case Study Evaluation and Management Frank A Luckino III DPM, Jeffrey C. Lupica DPM, Allan Boike DPM Department of Podiatry Pediatric flatfoot is not an uncommon patient presentation in clinical practice. A thorough history and physical examination of these children is Treatment of pediatric pes planus depends on the degree of deformity and Parents often become more concerned than the children themselves. Reports paramount. Standing exam and gait analysis is recommended. Body symptomatology. Initial treatment should consist of modifying activity and non- show that more than 30% of all newborns have a calcaneal valgus foot habitus and limb alignment should be noted as well (1). Radiographs in a steroidal anti-inflammatory medications as necessary (2). Stretching regimens deformity of both feet (5). As these individuals mature, the majority will weight-bearing fashion should be obtained (5). As a clinician, one needs to may be implemented if an equinus deformity is a cause for abnormal pronation become asymptomatic and not necessitate care. However, some patients will determine whether the deformity is pathologic or non-pathologic, rigid or and subsequent pes planus. Physical therapy should be started when muscle require conservative and or surgical treatment. The goal of the clinician is flexible, functional or nonfunctional, symptomatic or asymptomatic (1). weakness is observed. Orthotics, whether over-the counter or custom made, determine whether the deformity is rigid or flexible, painful or non-painful, and A calcaneovalgus foot deformity presents with a flexible, deformity which is may provide some relief despite limited level one studies (1). In an article by functional versus nonfunctional.
    [Show full text]
  • Meier-Gorlin Syndrome Sonja A
    de Munnik et al. Orphanet Journal of Rare Diseases (2015) 10:114 DOI 10.1186/s13023-015-0322-x REVIEW Open Access Meier-Gorlin syndrome Sonja A. de Munnik1, Elisabeth H. Hoefsloot2, Jolt Roukema3, Jeroen Schoots1, Nine VAM Knoers4, Han G. Brunner1, Andrew P. Jackson5 and Ernie MHF Bongers1* Abstract Meier-Gorlin syndrome (MGS) is a rare autosomal recessive primordial dwarfism disorder, characterized by microtia, patellar applasia/hypoplasia, and a proportionate short stature. Associated clinical features encompass feeding problems, congenital pulmonary emphysema, mammary hypoplasia in females and urogenital anomalies, such as cryptorchidism and hypoplastic labia minora and majora. Typical facial characteristics during childhood comprise a small mouth with full lips and micro-retrognathia. During ageing, a narrow, convex nose becomes more prominent. The diagnosis MGS should be considered in patients with at least two of the three features of the clinical triad of microtia, patellar anomalies, and pre- and postnatal growth retardation. In patients with short stature and/or microtia, the patellae should be assessed with care by ultrasonography before age 6 or radiography thereafter. Mutations in one of five genes (ORC1, ORC4, ORC6, CDT1, and CDC6) of the pre-replication complex, involved in DNA-replication, are detected in approximately 67-78 % of patients with MGS. Patients with ORC1 and ORC4 mutations appear to have the most severe short stature and microcephaly. Management should be directed towards in-depth investigation, treatment and prevention of associated problems, such as growth retardation, feeding problems, hearing loss, luxating patellae, knee pain, gonarthrosis, and possible pulmonary complications due to congenital pulmonary emphysema with or without broncho- or laryngomalacia.
    [Show full text]
  • Report of a Sporadic Caudal Regression Syndrome with Cleft Lip
    Running title : Caudal Regression Syndrome with CLP Nitte University Journal of Health Science Case Report Report of a Sporadic Caudal Regression syndrome with Cleft Lip and Palate RathikaD.Shenoy1 ,SwathiSunilRao 2 ,VijayaD.Shenoy 3 ,VikramShetty 4 1Professor, 2 Assistant Professor,3 Professor & Head, Department of Paediatrics, K.S. Hegde Medical Academy, Nitte University, Deralakatte, Mangalore,4 Director, Department of Paediatrics, Nitte Meenakshi Institute of Craniofacial Surgery, K S Hegde Medical Academy,Nitte University,Deralakatte,Mangalore - 575 018, Karnataka, India. *Corresponding Author : Swathi Sunil Rao , #3/77/1A1, Kanasu, Someshwara, Mangalore-575022, Karnataka, India. Mobile : +91 90085 66112, E-mail : [email protected]. Received : 24-02-2016 Abstract : Review Completed : 01-08-2016 Caudal regression syndrome is a rare congenital malformation and can be associated with lower Accepted : 05-08-2016 limb and renal anomalies. However caudal regression syndrome and cleft lip and palate (CLP) rarely occur together, the prevalence of sacral anomalies in children with CLP being 0.1%. We Keywords : Sacral agenesis; hereby report an eighteen month old male child with sporadic lumbosacral agenesis type III tethered cord; unilateral renal with tethered cord, hypospadias, unilateral renal agenesis and CLP for its rarity. agenesis Access this article online Quick Response Code Introduction Case History Caudal regression syndrome (CRS) (OMIM 600145) also A male child was first seen by us at 18 months with orofacial referred to as caudaldysgenesis is a rare congenital defect, lower limb deformity, urinary and faecal malformation with an incidence of 1 to 2.5 per 100,000 incontinence since birth. He was the only child of healthy, pregnancies.1 It is characterized by variable absence of young, non-consanguineous parents.
    [Show full text]
  • 410 PHYSICAL ASSESSMENT FORM (PAGE 1) Date: Client Name
    // g 410 PHYSICAL ASSESSMENT FORM (PAGE 1) Date: Client name: Contra-indications: Y/N Details: Current objectives: Height (m) _____ Weight (kg) _____ BMI _____ Body fat (mm) _____ Body fat (%) _____ Comments: APPENDIX 4 SAMPLE FORMS Body circumferences (cm): Chest ___ Waist ___ Hips ___ Upper Arm L ___ R ___ Upper Leg L ___ R ___ Lower Leg L ___ R ___ WHR: ______ Comments: Body type: Ectomorph ___ Mesomorph ___ Endomorph ___ Comments: POSTURAL ASSESSMENT/BODY ALIGNMENTS HEAD/NECK: Tilted left ___ Tilted right ___ Rotated left ___ Rotated right ___ Forward ___ Flat Lordotic curve ___ Excessive Lordotic curve ___ Other: EYES: Level ___ Other: EARS: Level ___ Other: MUSCULATURE: Comments: SHOULDERS: Level ___ Right high ___ Left high ___ Rounded ___ Other: SCAPULAE: Even ___ Adducted ___ Abducted ___ Winged ___ Rotated ___ Other: CLAVICLES: Level ___ Other: MUSCULATURE: Comments: UPPER EXTREMITIES: Hang evenly ___ Rotated ___ Other: ELBOWS: Even ___ Cubitus Varus ___ Cubitus Valgus ___ Cubitus Recurvatus ___ Other: WRISTS: Even ___ Other: FINGERS: Even ___ Other: MUSCULATURE: Comments: SPINE: Normal ___ Kyphosis ___ Lordosis ___ Flat back ___ Scoliosis ___ Other: MUSCULATURE: Even ___ Other: Comments: HIPS: Even ___ Pelvic tilt ___ Coxa Vara ___ Coxa Valga ___ Other: MUSCULATURE: Even ___ Other: Comments: KNEES: Even ___ Genu Valgus ___ Genu Varus ___ Genu recurvatum ___ Patella squint ___ Excess Q Angle ___ Reduced Q Angle ___ Other: MUSCULATURE: Even ___ Other: Comments: ANKLE/FOOT/TOES: Even ___ Tibial torsion ___ Varus heels ___ Valgus
    [Show full text]