Hydrology of the Bonneville Salt Flats, Northwestern Utah, and Simulation of Ground-Water Flow and Solute Transport in the Shallow-Brine Aquifer

Total Page:16

File Type:pdf, Size:1020Kb

Hydrology of the Bonneville Salt Flats, Northwestern Utah, and Simulation of Ground-Water Flow and Solute Transport in the Shallow-Brine Aquifer U.S. Department of the Interior U.S. Geological Survey Hydrology of the Bonneville Salt Flats, Northwestern Utah, and Simulation of Ground-Water Flow and Solute Transport in the Shallow-Brine Aquifer U.S. Geological Survey Professional Paper 1585 Prepared in cooperation with the Bureau of Land Management AVAILABILITY OF BOOKS AND MAPS OF THE US. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC's), all of which are authorized copies of Preliminary Determination of Epicenters, and some mis­ agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtain­ • ANCHORAGE, Alaska—Rm. 101,4230 University Dr. able by mail from • LAKEWOOD, Colorado—Federal Center, Bldg. 810 U.S. Geological Survey, Information Services • MENLO PARK, California—Bldg. 3, Rm. 3128, 345 Box 25286, Federal Center, Denver, CO 80225 MiddlefieldRd. Subscriptions to Preliminary Determination of Epicenters can • RESTON, Virginia—USGS National Center, Rm. 1C402, be obtained ONLY from the 12201 Sunrise Valley Dr. • SALT LAKE CITY, Utah—2222 West 2300 South Superintendent of Documents Government Printing Office • SPOKANE, Washington—U.S. Post Office Bldg., Rm. 135, Washington, DC 20402 West 904 Riverside Ave. • WASHINGTON, D.C.—Main Interior Bldg., Rm. 2650, 18th (Check or money order must be payable to Superintendent of and C Sts., NW. Documents.) Maps Only Maps Maps may be purchased over the counter at the following For maps, address mail orders to U.S. Geological Survey office: U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 • ROLLA, Missouri—1400 Independence Rd. Hydrology of the Bonneville Salt Flats, Northwestern Utah, and Simulation of Ground-Water Flow and Solute Transport in the Shallow-Brine Aquifer By JAMES L. MASON and KENNETH L. KIPP, JR. U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1585 Prepared in cooperation with the Bureau of Land Management 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government. Library of Congress Cataloging in Publications Date Mason, James L. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer / by James L. Mason and Kenneth L. Kipp, Jr. p. cm. — (U.S. Geological Survey Professional Paper; 1585) "Prepared in cooperation with the Bureau of Land Management." Includes bibliographical references. Supt. of Docs, no.: I 19.16:1585 1. Hydrology—Utah—Bonneville Salt Flats. 2. Ground water flow—Utah—Bonneville Salt Flats. I. Kipp, Jr., Kenneth L II. United States. Bureau of Land Management. 111. Title. IV. Series. GB1025.U8M38 1997 551.48'09792'43—dc21 97-34524 CIP ISBN 0-607-88306-5 For sale by U.S. Geological Survey, Branch of Information Services Box 25286, Federal Center Denver, CO 80225 CONTENTS Absttact...................................................................._ 1 Introduction ........................................................................... 3 Purpose and scope ....................................................................................................................................................... 3 Previous investigations................................................................................................................................................ 5 Field work..........................................................................._ 7 Acknowledgments............................................_ 10 Description of study area....................................................................................................................................................... 10 Physical setting.....................................................................................................................................................^ 10 Playamorphology...........................................................................................................................................^ 10 Climate...........................................» 11 Precipitation.....................................................................................................^ 12 Wind......................................................................._ 12 Temperature....................................................................................^ 12 Ground-water hydrology....................................................................................................................................................... 16 Description of ground-water system............................................................................................................................ 16 Principles of variable-density ground-water flow........................................................................................................ 19 Shallow-brine aquifer.................................................................................................................................................. 22 Aquifer properties.............................................................................................................................................. 23 Water-level fluctuation, potentiometric surface, and ground-water movement................................................. 24 Recharge............................................................................................................................................................ 30 Discharge ........................................................ 33 Alluvial-fan aquifer..................................................................................................................................................... 39 Aquifer properties.............................................................................................................................................. 39 Water-level fluctuation and ground-water movement........................................................................................ 40 Recharge and discharge..................................................................................................................................... 42 Basin-fill aquifer.......................................................................................................................................................... 43 Aquifer properties.............................................................................................................................................. 43 Water-level fluctuation and ground-water movement........................................................................................ 44 Recharge and discharge..................................................................................................................................... 44 Brine chemistry and implications for ground-water flow............................................................................................ 45 Major ion chemistry........................................................................................................................................... 45 Isotope chemistry............................................................................................................................................... 49 Salt-transport mechanisms and salt budget............................................................................................................................ 54 Salt transport by surface ponds.................................................................................................................................... 54 Salt transport in solution through the shallow-brine aquifer....................................................................................... 55 Simulation of variable-density ground-water flow and solute transport in the shallow-brine aquifer.................................. 58 Modeling approach...................................................................................................................................................... 58 Description of the simulator of ground-water flow and solute transport........................................................... 58 Application to study area..................................................................................................................................
Recommended publications
  • Geographic Features Positive Effects Negative Effects
    Name: ________________________________________ Date: ____________ Study Guide: Geography KEY Ms. Carey Geographic Features: Geographic Positive Effects Negative Effects Features Rivers, Oceans, Seas Easy trade, travel, fertile Vulnerable to attacks (easy to invade), soil (can grow food) floods Desert Protection from invaders Difficult to trade, hot, dry (arid), can’t farm (hard to travel) Mountains Protection from invaders Isolated from other people, difficult to trade, travel and difficult to farm Plains Easy trade, travel, fertile Vulnerable to attacks (easy to invade) soil (can grow food) Continents and Oceans: Vocabulary: River Archipelago Ocean Island Continent Pangaea Desert Plains Peninsula Mountain 1. Island: An area of land completely surrounded by water. 2. Peninsula: An area of land completely surrounded by water on three (3) sides and connected to the mainland by an isthmus. 3. Archipelago: A chain of islands, such as Japan and Greece. 4. Continent: A large body of LAND. (hint: there are seven) 5. Ocean: A large body of salt water. (hint: there are four main ones) 6. Desert: A large, arid (dry) area of land which receives less than 10 inches of rain annually. 7. River: A freshwater body of water which flows from a higher elevation to a lower one. 8. Mountain: An area that rises steeply at least 2,000 feet above sea level; usually wide at the bottom and rising to a narrow peak or ridge. 9. Plains: A large area of flat or gently rolling land which is fertile and good for farming. 10. Pangaea: The name of a huge super continent that scientists believe split apart about 200 million years ago, forming different continents.
    [Show full text]
  • Water Resources Development by the U.S. Army Corps of Engineers in Utah
    DEVELOPMENT W&M U.S. ARMY CORPS OF ENGINEERS TC SOU TH PACIFIC DIVI SI O N 423 • A15 1977 Utah 1977 M ■ - z//>A ;^7 /WATER RESOURCES DEVELOPMENT ec by THE U.S. ARMY CORPS OF ENGINEERS in UTAH JANUARY 1977 ADDRESS INQUIRIES TO DIVISION ENGINEER U.S. Army Engineer Division South Pacific Corps of Engineers 630 Sansome Street San Fransisco, California 94111 DISTRICT ENGINEER DISTRICT ENGINEER U.S. Army Engineer District U.S. Army Engineer District Los Angeles Corps of Engineers Sacramento Federal Building Corps of Engineers 300 North Los Angeles Street Federal and Courts Building Los Angeles, California 90012 (P.O. Box 2711 650 Capitol Mall Los Angeles, California 90053) Sacramento, California 95814 TO OUR READERS: Throughout history, water has played a dominant role in shaping the destinies of nations and entire civilizations. The early settlement and development of our country occurred along our coasts and water courses. The management of our land and water resources was the catalyst which enabled us to progress from a basically rural and agrarian economy to the urban and industrialized nation we are today. Since the General Survey Act of 1824, the US Army Corps of Engineers has played a vital role in the development and management of our national water resources. At the direction of Presidents and with Congressional authorization and funding, the Corps of Engineers has planned and executed major national programs for navigation, flood control, water supply, hydroelectric power, recreation and water conservation which have been responsive to the changing needs and demands of the American people for 152 years.
    [Show full text]
  • Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah James L
    U.S. Department of the Interior—U.S. Geological Survey Prepared in cooperation with Bureau of Land Management Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah James L. Mason and Kenneth L. Kipp, Jr. decreasing thickness region. The playa is flanked by the and extent of the salt Silver Island Mountains on the crust are caused by northwest, and the land surface brine withdrawal for gradually slopes upward for many mineral production. miles to the northeast, east, and south. Situated at the lowest altitude in the Mining of halite study area, the salt crust would be the (common table salt) final destination for surface runoff. from the Bonneville Salt Runoff from the flanks of the adjacent Flats began in the early Silver Island Mountains generally 1900s. Extraction of occurs during intense summer thun- potash from brine derstorms and flows in distinct beneath the Bonneville channels from the mountains toward Salt Flats began in 1917, the playa. These flows cross the when supplies of alluvial fans but mostly disappear into potassium salts from large surface fractures before reaching Germany were inter- the playa. Runoff during wetter-than- Drilling on the salt crust, Bonneville Salt Flats, Utah. rupted during World normal conditions can migrate several Measurements of Salt Crust War I. The area from which brine is withdrawn for potash production was Great Indicate a Decrease in Thickness expanded in 1963, when mineral leases Salt Great Salt and Extent on 25,000 acres of Federal land were Lake Lake UTAH issued. Desert The Bonneville Salt Flats study area Salt Lake City is located in the western part of the The Bonneville Salt Flats is a playa, Great Salt Lake Desert in northwestern which is a topographically low, flat Utah, about 110 miles west of Salt Lake area where evaporation is the only City (fig.
    [Show full text]
  • Flat-Top Butte Juniper Encroachment
    Worksheet Determination of NEPA Adequacy (DNA) U.S. Department of the Interior Bureau of Land Management BLM Office: Casper Field Office, Wyoming Lease/Serial/Case File No.: Range Improvement Project No. 17657 Tracking Number: DOI-BLM-WY-P060-2016-0033-DNA Proposed Action Title/Type: Flat-top Butte Juniper Encroachment Location of Proposed Action: T30N/ R79W Sec 6 and T30N/R80W, Section 1-2, Natrona County Applicant: BLM A. Description ofProposed Action: The BLM is proposing to treat 562 acres of juniper which has encroached into sagebrush grassland habitat located on Flat-Top Butte located in southern Natrona County. The proposed treatments are located within the Corral Creek (#10106) and Sheep Creek (#10131) grazing allotments. The purpose ofthe vegetative treatment is to enhance sagebrush habitat conditions for wildlife in the Bates Hole area, particularly Greater sage-grouse nesting habitat, big game crucial winter range, as well as improve the hydrologic function of associated drainages. The emphasis ofthis project is to maintain and enhance stands of sagebrush grassland habitat. Treatments would involve contract crews utilizing chainsaws to cut and scatter encroaching junipers on approximately 455 acres, IAW the attached Statement of Work (Appendix 1). Denser stands (-107 acres) may be treated mechanically utilizing a rubber tracked skid steer equipped with a masticator to shred the trees. Total treatment area would include approximately 562 acres, as depicted on the attached map. Treatment areas would be clearly delineated. Treatments are expected to take 2-4 months to 1 111 complete and would occur after July 15 \ ending no later than November 15 to minimize wildlife impacts during sensitive periods.
    [Show full text]
  • Mining Methods for Potash
    Potash—A Vital Agricultural Nutrient Sourced from Geologic Deposits Open File Report 2016–1167 U.S. Department of the Interior U.S. Geological Survey Cover. Photos of underground mining operations, Carlsbad, New Mexico, Intrepid Potash Company, Carlsbad West Mine. Potash—A Vital Agricultural Nutrient Sourced from Geologic Deposits By Douglas B. Yager Open File Report 2016–1167 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Yager, D.B., 2016, Potash—A vital agricultural nutrient sourced from geologic deposits: U.S. Geological Survey Open- File Report 2016–1167, 28 p., https://doi.org/10.3133/ofr20161167. ISSN 0196-1497 (print) ISSN 2331-1258 (online) ISBN 978-1-4113-4101-2 iii Acknowledgments The author wishes to thank Joseph Havasi of Compass Minerals for a surface tour of their Great Salt Lake operations.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Great Salt Lake FAQ June 2013 Natural History Museum of Utah
    Great Salt Lake FAQ June 2013 Natural History Museum of Utah What is the origin of the Great Salt Lake? o After the Lake Bonneville flood, the Great Basin gradually became warmer and drier. Lake Bonneville began to shrink due to increased evaporation. Today's Great Salt Lake is a large remnant of Lake Bonneville, and occupies the lowest depression in the Great Basin. Who discovered Great Salt Lake? o The Spanish missionary explorers Dominguez and Escalante learned of Great Salt Lake from the Native Americans in 1776, but they never actually saw it. The first white person known to have visited the lake was Jim Bridger in 1825. Other fur trappers, such as Etienne Provost, may have beaten Bridger to its shores, but there is no proof of this. The first scientific examination of the lake was undertaken in 1843 by John C. Fremont; this expedition included the legendary Kit Carson. A cross, carved into a rock near the summit of Fremont Island, reportedly by Carson, can still be seen today. Why is the Great Salt Lake salty? o Much of the salt now contained in the Great Salt Lake was originally in the water of Lake Bonneville. Even though Lake Bonneville was fairly fresh, it contained salt that concentrated as its water evaporated. A small amount of dissolved salts, leached from the soil and rocks, is deposited in Great Salt Lake every year by rivers that flow into the lake. About two million tons of dissolved salts enter the lake each year by this means. Where does the Great Salt Lake get its water, and where does the water go? o Great Salt Lake receives water from four main rivers and numerous small streams (66 percent), direct precipitation into the lake (31 percent), and from ground water (3 percent).
    [Show full text]
  • Soil Survey of Escambia County, Florida
    United States In cooperation with Department of the University of Florida, Agriculture Institute of Food and Soil Survey of Agricultural Sciences, Natural Agricultural Experiment Escambia County, Resources Stations, and Soil and Water Conservation Science Department; and the Service Florida Department of Florida Agriculture and Consumer Services How To Use This Soil Survey General Soil Map The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas. To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area. Detailed Soil Maps The detailed soil maps can be useful in planning the use and management of small areas. To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet. Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.
    [Show full text]
  • Constructing the Dune-Field Pattern at White Sands National Monument R
    White Sands Science Symposium RESEARCH BRIEF JUNE 2012 Constructing the Dune-Field Pattern at White Sands National Monument R. C. EWING Introduction Sand dunes cover vast areas of the Earth’s desert regions and are widespread across Venus, Mars, and Saturn’s moon Titan. Sand dunes are very sensitive indicators of changing climate and environmental conditions, and landscapes created by sand dunes can provide a detailed record of past surface conditions on the planetary surfaces. Reading the climate record from these landscapes and understanding how these landscapes change with changing environmental conditions is a great challenge because sand dunes are formed through complicated interactions between the sand, wind, and the surface topography they create as they grow. Ultimately, the complicated interplay among these three variables records the climate conditions during the formation of dunes and dune-covered landscape patterns. How do sand dunes grow? How do sand dune patterns form? White Sands National Monument (NM) provides an ideal natural laboratory to study the dynamics of sand Figure 1. A LiDAR-derived digital elevation model showing the dunes and the creation of a landscape pattern to answer transition from the Alkali Flat, which does not have dunes, into these questions because the dunes at White Sands NM are White Sands Dune Field. For visualization purposes, the orange growing and changing the entire year. areas show the steepest slopes of the dunes and how they are changing through time. The orange areas mark the abrupt first Methods appearance of the dunes. Time-series aerial photographs from 1944, 1963, 1977, 1985, 1996, 2003, 2005, and 2010 and airborne LiDAR (Light Detection and Ranging) collected June 2007, June 2008, mapped through manual digitization.
    [Show full text]
  • Bonneville Salt Flats Brenda B
    The Sedimentary Record The Making of a Perfect Racetrack at the Bonneville Salt Flats Brenda B. Bowen1,2*, Jeremiah Bernau1, Evan L. Kipnis1, Jory Lerback1, Lily Wetterlin1, and Betsy Kleba3 1Geology and Geophysics, University of Utah, Salt Lake City, UT, USA 2Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, USA 3Lab & Operations, Exact Sciences, Salt Lake City, UT, USA *[email protected], 115 S 1460 E, Salt Lake City, UT, 84112-0102, (801) 585-5326 THE STORY OF THE SALT human presence— a century of racing, mining, and It is a unique experience being out on the salt at the recreation; and now, additionally, mitigation and adaptation Bonneville Salt Flats. The sun seems a bit too bright as light of diverse stakeholder communities reacting to the ever- reflects off the cubic halite crystals that cover the stark saline changing conditions. ground (Figure 1). There is a sense of isolation and vastness The Bonneville Salt Flats (BSF) is a perennial salt pan with the curvature of the earth visible on the horizon. There that spans over ~75 km2 adjacent to the Utah–Nevada is a profound silence. The only sound on some hot, dry days border (Figure 2). The extension of the Basin and Range is the crackling of halite crystals as they precipitate from lays the tectonic framework for the development of shallow brines. Void of any macro flora or fauna, the salt flat interbasinal playas, like the Bonneville Salt Flats, where ecosystem is only apparent in thin layers of bright green or groundwater flowpaths focus discharge and concentrate pink halite below the surface, or the insects that are trapped solutes in springs rimming playa boundaries (Gardner in the growing salt.
    [Show full text]
  • Ordinance 2021-20 / Restriction on Fireworks and Open Fires
    ORDINANCE 2021-20 AN ORDINANCE ADOPTING CITY-WIDE FIRE WORKS AND OPEN FIRE RESTRICTIONS FOR 2021 WHEREAS, Midway City, Wasatch County, Utah desires to adopt firework and open fire restrictions for 2021 as set forth in the County-wide fire restriction adopted by the Wasatch County Fire District, NOW, THEREFORE, it is hereby resolved by the City Council of Midway City, Wasatch County, Utah, that Midway City, for the jurisdictional boundaries of the City, hereby adopts those certain and specific fire work and open fire restrictions and declarations for 2021, as set forth in the County wide fire restriction adopted by the Wasatch County Fire District, and hereby approves the same. Said District restriction is attached as Exhibit A, and incorporated herein by reference, and shall be posted on the Midway City Website. Attached as Exhibit B, is Governor Spencer Cox’s 2021 Drought Executive Order, and declarations. Midway City’s restrictions shall include any and all incendiaries, including but not be limited to aerial and non-aerial fireworks and incendiaries, i.e., sparklers, firebombs, spinners, etc. The penalty and sanction for any violation of this Ordinance may carry a class B misdemeanor charge, with a fine of up to $1,000.00 per incident, plus surcharge and restitution, and six months in jail. All vendors of fireworks shall be required to display a copy of this Ordinance with Exhibits and a map of the City-wide restriction, as designated by the City, in a prominent place at point of sale. The duration of this restriction shall be until September 30, 2021, unless otherwise modified by the City Council.
    [Show full text]
  • Flat Mountain Yurt
    Flat Mountain Yurt- Trailhead: On Colorado 17,.2 miles north of Cumbres Pass or 7.2 miles south of La Manga Pass, at the junction with FR 118, the Trujillo Meadows Reservoir Road. Parking: Excellent parking on the west side of Colorado 17 at the pull out for FR 118, or on the east side just south of this pull out. Trailhead Elevation: 10, 022 Trailhead GPS: 37 01.304N; 106 26.810W Yurt Elevation: 11,100’ Yurt GPS: 37 02 607N; 106 29 846W Mileage to the Yurt: 4.5 miles Maps: Cumbres Pass, CO 7.5 min. USGS quad; Archuletta Creek, CO 7.5 min. USGS; Rio Grande National Forest Directions to the Flat Mountain Yurt- The trailhead is on Co. Highway 17 at Cumbres Pass, 14.2 miles north of Chama, NM. One begins at the pullout for Trujillo Meadows Reservoir, FR 118. Do not follow FR 118. The trail heads northwest, first on FR 119, which later becomes trail 813, and then diverges to follow the north ridge of the Wolf Creek drainage to the yurt. With your back to the highway look to the left towards the trees which is the beginning of the route. You will follow the orange and/or blue trail blazes to the Flat Mtn. yurt. After skiing about 2.25 miles you will come to a large open meadow area. You will want to pay particular attention here as there is little to place markers on. You ski WNW across the meadow passing an old abandoned car (if it's not buried) (GPS: N 37 02.239; W 106 28.582) and going past the private land fence.
    [Show full text]