Water Resources Development by the U.S. Army Corps of Engineers in Utah

Total Page:16

File Type:pdf, Size:1020Kb

Water Resources Development by the U.S. Army Corps of Engineers in Utah DEVELOPMENT W&M U.S. ARMY CORPS OF ENGINEERS TC SOU TH PACIFIC DIVI SI O N 423 • A15 1977 Utah 1977 M ■ - z//>A ;^7 /WATER RESOURCES DEVELOPMENT ec by THE U.S. ARMY CORPS OF ENGINEERS in UTAH JANUARY 1977 ADDRESS INQUIRIES TO DIVISION ENGINEER U.S. Army Engineer Division South Pacific Corps of Engineers 630 Sansome Street San Fransisco, California 94111 DISTRICT ENGINEER DISTRICT ENGINEER U.S. Army Engineer District U.S. Army Engineer District Los Angeles Corps of Engineers Sacramento Federal Building Corps of Engineers 300 North Los Angeles Street Federal and Courts Building Los Angeles, California 90012 (P.O. Box 2711 650 Capitol Mall Los Angeles, California 90053) Sacramento, California 95814 TO OUR READERS: Throughout history, water has played a dominant role in shaping the destinies of nations and entire civilizations. The early settlement and development of our country occurred along our coasts and water courses. The management of our land and water resources was the catalyst which enabled us to progress from a basically rural and agrarian economy to the urban and industrialized nation we are today. Since the General Survey Act of 1824, the US Army Corps of Engineers has played a vital role in the development and management of our national water resources. At the direction of Presidents and with Congressional authorization and funding, the Corps of Engineers has planned and executed major national programs for navigation, flood control, water supply, hydroelectric power, recreation and water conservation which have been responsive to the changing needs and demands of the American people for 152 years. These programs have contributed significantly to the economic growth of our country and to the well-being of the American people. Today, the activities of the Corps of Engineers in water resources management, under the direction of the Executive and Legislative branches of the Federal government, continue to support national goals and objectives. These include conservation of our water resources, protection of our wetlands, non-structural solutions to flood-damage control problems, total water management in metropolitan areas, flood plain management, and the preservation and enhancement of the quality of our environment for future generations. This booklet describes the past, current, and proposed activities of the Corps of Engineers in your state. I trust that you will find it informative, interesting, and useful. /Lieutenant General, USA / Chief of Engineers BUILDING TOMORROW TODAY FOREWORD The Corps of Engineers has been engaged in water resources development activities in Utah since well before the turn of the 20th Century. This booklet has been prepared to provide information on the scope and progress of current programs. It contains information on Corps of Engineers authorities for participating in water resources development; on the role of the Corps in planning, constructing, and operating water resources development projects; on active investigations; and on projects that are completed, under construc­ tion, or in the planning stage. Data on investigations and projects are grouped by basins, which have been selected on the basis of major drainage patterns. Additional information on Corps of Engineers projects, programs, and activities may be obtained from the offices named on the title sheet. CONTENTS FOREWORD CHAPTER I WATER RESOURCES DEVELOPMENT BY THE CORPS OF ENGINEERS IN UTAH Introduction ...................................................................................................................................................1 Basins of Utah .............................................................................................................................................. 7 History of Corps of Engineers Activities in U t a h ............................................................................7 Navigation P ro g ram ..................................................................................................................................... 8 Flood Control Program .............................................................................................................................8 Status of Projects ..........................................................................................................................................8 Water Pollution and Water Quality C o n tro l.....................................................................................9 Flood Plain Management Services P ro g ra m .....................................................................................9 Investigations and Reports Program...................................................................................................... 9 Maintenance and Operation of Completed P ro jects.................................................................10 Emergency Work ........................................................................................................................................10 CHAPTER II GREAT SALT LAKE BASIN Description..................................................................................................................................................... 13 Multiple Purpose P ro je c ts...................................................................................................................... 14 Little Dell L a k e ................................................................................................................................... 14 Flood Control Projects...............................................................................................................................14 Jordan River at Salt Lake City .....................................................................................................14 Small Flood-Control Projects..................................................................................................................17 Kays Creek at La yto n ...................................................................................................................... 17 Section 7 P ro jects............................................................................................................................. 17 Flood Control S tu d ie s...............................................................................................................................17 Jordan River B a s in ...........................................................................................................................17 Emergency Work ........................................................................................................................................18 Flood Plain Management Services .................................................................................................... 20 CHAPTER III SEVIER LAKE BASIN Description..................................................................................................................................................... 21 Flood Control Projects...............................................................................................................................22 Redmond Channel Improvement ................................................................................... 22 Small Flood-Control Projects.................................................................. : .......................................23 Big Wash Diversion Dam and C hannel...................................................................................23 Emergency W o r k ................................................................................... 23 CHAPTER IV GREEN RIVER BASIN Description..................................................................................................................................................... 25 Section 7 P ro jects........................................................................................................................................26 Flood Control S tu d ie s....................................................................................................................... 26 Colorado River and Tributaries above Lees F e r r y .............................................................26 Emergency Work ........................................................................................................................................26 i CONTENTS (Continued) CHAPTER V COLORADO-SAN JUAN BASIN Description..............................................................................................................................................................27 Flood Control Studies.......................................................................................................................................28 Colorado River and Tributaries above Lees F e rry ..................................................................28 Navajo Indian Reservation..................................................................................................................28 Emergency W ork..................................................................................................................................................29 Flood Plain Management Services..............................................................................................................29 CHAPTER VI CORPS OF ENGINEERS CIVIL WORKS PROGRAM (Authorities, Procedures, Funding) General .....................................................................................................................................................................31
Recommended publications
  • The Stratigraphic Importance of the Brontothere (Cf. Diplacodon Elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah
    Foss. Rec., 17, 69–74, 2014 www.foss-rec.net/17/69/2014/ doi:10.5194/fr-17-69-2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphic importance of the brontothere (cf. Diplacodon elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah B. J. Burger and L. Tackett II Department of Geology, Utah State University, Uintah Basin Regional Campus 320 North Aggie Blvd. Vernal, UT 84078, USA Correspondence to: B. J. Burger ([email protected]) Received: 10 June 2014 – Revised: 6 August 2014 – Accepted: 12 August 2014 – Published: 27 August 2014 Abstract. We report on the first occurrence of an early southern Mississippia (Gazin and Sullivan, 1942), and the horned brontothere in the Brennan Basin Member of the Pacific Northwest (Mihlbacher, 2007). But nowhere is the Duchesne River Formation in northeastern Utah. This is the record of brontotheres as diverse as the fossil record ob- first record of a brontothere from the Brennan Basin Member. tained from the middle Eocene depositional basins located in Previously, brontotheres have been reported from the higher northeastern Utah, southwestern Wyoming and northwestern stratigraphic La Point Member (Duchesneodus uintensis) Colorado (Lull, 1905; Cook, 1926; Douglass, 1909; Gregory, and the lower stratigraphic Uinta Formation (Sphenocoelus 1912; Gunnell and Yarborough, 2000; Hatcher, 1895; Lucas uintensis, Fossendorhinus diploconus, Metarhinus fluviatilis, et al., 2004; Lucas and Holbrook, 2004; Lucas and Schoch, Metarhinus abbotti, Sthenodectes incisivum, Metatelmath- 1982; Mader, 2000, 2009a, b, Mihlbacher, 2008, 2011; Os- erium ultimum, Protitanotherium emarginatum, Pollyosbor- born, 1889, 1895, 1908, 1913, 1929; Peterson, 1914a, b, nia altidens, Diplacodon elatus).
    [Show full text]
  • Climate Change and Utah: the Scientific Consensus September 2007
    Climate Change and Utah: The Scientific Consensus September 2007 Executive Summary As directed by Governor Jon Huntsman’s Blue Ribbon Advisory Council on Climate Change (BRAC), this report summarizes present scientific understanding of climate change and its potential impacts on Utah and the western United States. Prepared by scientists from the University of Utah, Utah State University, Brigham Young University, and the United States Department of Agriculture, the report emphasizes the consensus view of the national and international scientific community, with discussion of confidence and uncertainty as defined by the BRAC. There is no longer any scientific doubt that the Earth’s average surface temperature is increasing and that changes in ocean temperature, ice and snow cover, and sea level are consistent with this global warming. In the past 100 years, the Earth’s average surface temperature has increased by about 1.3°F, with the rate of warming accelerating in recent decades. Eleven of the last 12 years have been the warmest since 1850 (the start of reliable weather records). Cold days, cold nights, and frost have become less frequent, while heat waves have become more common. Mountain glaciers, seasonal snow cover, and the Greenland and Antarctic ice sheets are decreasing in size, global ocean temperatures have increased, and sea level has risen about 7 inches since 1900 and about 1 inch in the past decade. Based on extensive scientific research, there is very high confidence that human- generated increases in greenhouse gas concentrations are responsible for most of the global warming observed during the past 50 years. It is very unlikely that natural climate variations alone, such as changes in the brightness of the sun or carbon dioxide emissions from volcanoes, have produced this recent warming.
    [Show full text]
  • Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah James L
    U.S. Department of the Interior—U.S. Geological Survey Prepared in cooperation with Bureau of Land Management Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah James L. Mason and Kenneth L. Kipp, Jr. decreasing thickness region. The playa is flanked by the and extent of the salt Silver Island Mountains on the crust are caused by northwest, and the land surface brine withdrawal for gradually slopes upward for many mineral production. miles to the northeast, east, and south. Situated at the lowest altitude in the Mining of halite study area, the salt crust would be the (common table salt) final destination for surface runoff. from the Bonneville Salt Runoff from the flanks of the adjacent Flats began in the early Silver Island Mountains generally 1900s. Extraction of occurs during intense summer thun- potash from brine derstorms and flows in distinct beneath the Bonneville channels from the mountains toward Salt Flats began in 1917, the playa. These flows cross the when supplies of alluvial fans but mostly disappear into potassium salts from large surface fractures before reaching Germany were inter- the playa. Runoff during wetter-than- Drilling on the salt crust, Bonneville Salt Flats, Utah. rupted during World normal conditions can migrate several Measurements of Salt Crust War I. The area from which brine is withdrawn for potash production was Great Indicate a Decrease in Thickness expanded in 1963, when mineral leases Salt Great Salt and Extent on 25,000 acres of Federal land were Lake Lake UTAH issued. Desert The Bonneville Salt Flats study area Salt Lake City is located in the western part of the The Bonneville Salt Flats is a playa, Great Salt Lake Desert in northwestern which is a topographically low, flat Utah, about 110 miles west of Salt Lake area where evaporation is the only City (fig.
    [Show full text]
  • Sensitive Plant Species
    SENSITIVE PLANT SPECIES Barneby Woody Aster (Aster kingii var. barnebyana) Barneby’s woody aster is a member of the sunflower family (Asteraceae) and it grows from a well-developed taproot. There are persistent blackish or dark brown, old leaf bases at the base of the plant. The stems are short (3-12 cm long) and the herbage is covered with glandular hairs. The leaves are basal, 0.8-12 cm long, and oblanceolate to spatulate in shape with 1-10 pronounced teeth. Flowers occur in clusters of 1-5, standing 8-11 mm high. The inner bracts are often purplish and at least the outer tips are bent backward. The ray flowers are white, often fading to pale pink. This plant flowers between August and September. This species is found in mountain mahogany and oak communities on rock outcrops composed of Precambian quartzite. This endemic species of the Canyon Mountains in Millard and Juab Counties, Utah has been reported in 15 element occurrence records as of 2002 (Madsen 2002). These scattered occurrences indicate a total population of 600+ plants. The range of elevation is between 7,500 and 9640. Major associated species are Holodiscus dumosus (Mountain spray), Huechera rubescens (Red alumroot), Symphoricarpos oreophilus (Mountain snowberry), Quercus gambelii (Gambel’s oak), and Eriogonum brevicaule (Shortstem buckwheat) (Franklin 1990). To date there are 15 known occurrences of this species on the Fillmore Ranger District of the Fishlake National Forest (Franklin 1990). Plants are harbored from threats such as livestock grazing by their occurrence on steep rock outcrops. 40 Bicknell milkvetch (Astragalus consobrinus) The Bicknell milkvetch is a member of the pea family (Fabaceae).
    [Show full text]
  • Elam Luddington: First Latter-Day Saint Missionary to Thailand
    Michael A. Goodman 10 Elam Luddington: First Latter-day Saint Missionary to Thailand I will keep digging till you all say enough, and then if you see fit to call me home, I shall be truly in heaven and happy in the extreme; or if you say “Spend your days in [this part of the world], it shall be even so; not my will but my Heavenly Fathers be done.” Elam Luddington1 lam Luddington, the first Latter-day Saint missionary to Siam (mod- Eern Thailand), faced tremendous hardships in his pioneering proselyt- ing work. Almost killed at sea numerous times, stoned twice, poisoned once, and finally mobbed, he left the Thai people after little more than four months. No further formal missionary work was attempted for over one hundred years in the ancient land of Siam. His sacrifice, however, laid the foundation for the future work of bringing the fullness of the gospel to Thailand. His efforts were not in vain. His legacy of faithfulness would be Michael A. Goodman is an associate professor of Church history and doctrine at Brigham Young University. Go Ye into All the World followed by other modern-day pioneers who would also show tremendous bravery and faithfulness in the face of forbidding odds. PREPARATION TO SERVE Elam Luddington was born November 23, 1806, in Harwinton, Litch field County, Connecticut, a little town incorporated in 1737.2 His par- ents were Elam Luddington Sr. and Aseneth Munger. Elam Luddington Sr., who was also named after his father, was a farmer, carpenter, and mariner. Elam described his father as “honest, virtuous, industrious, a good husband and a kind father.”3 Aseneth Luddington died of consumption when Elam was only ten years old.
    [Show full text]
  • Fort Duchesne From: Utah Place Names
    Fort Duchesne from: Utah Place Names FORT DUCHESNE* (Uintah County) was near the Uinta River, one mile south of US-40. The site was originally a fur-trading post prior to 1841. In August 1861, the fort was established under the Lincoln presidency. On August 20, 1886, two troops of black men from the Ninth Cavalry, under Major F. W. Benteen, moved in. They served at the fort for twelve years. Because of their dark curly hair, the Indians called the troops buffalo soldiers. The fort was abandoned in 1912, then re-established as the headquarters for the Uintah Reservation. See Duchesne River below for name source. >S23,T2S,R1E,USM; 4,988' (1,520m). Bibliography: Our Pioneer Heritage, 17 vols. Daughters of the Utah Pioneers. (v17). Deseret News. Salt Lake City: Deseret News Publishing Company. (6 Oct. 1934). Greer, Deon C., et al. Atlas of Utah. Provo, UT: Brigham Young University Press, 1981. Personal place name manuscript records. Stegner, Wallace. Beyond the Hundredth Meridian. Boston: Houghton Mifflin, 1954. Utah Historical Quarterly. Salt Lake City: Utah State Historical Society. (v2,no.1). Utah State Historical Society. Unpublished Archives on Geographic Names. DUCHESNE RIVER (Duchesne County, Uintah County) originates at the southwestern section of the Uinta Mountains at the foot of Mount Agassiz. The river drains south southeast through Duchesne* into the Green River. Prior to 1875 the present Duchesne River was known as the Uinta River. As one of the more historic and prominent rivers of Utah, there has been much confusion in past writings as to the river's name history and relative relationships with the mouths of the nearby White and Uinta rivers.
    [Show full text]
  • Mining Methods for Potash
    Potash—A Vital Agricultural Nutrient Sourced from Geologic Deposits Open File Report 2016–1167 U.S. Department of the Interior U.S. Geological Survey Cover. Photos of underground mining operations, Carlsbad, New Mexico, Intrepid Potash Company, Carlsbad West Mine. Potash—A Vital Agricultural Nutrient Sourced from Geologic Deposits By Douglas B. Yager Open File Report 2016–1167 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Yager, D.B., 2016, Potash—A vital agricultural nutrient sourced from geologic deposits: U.S. Geological Survey Open- File Report 2016–1167, 28 p., https://doi.org/10.3133/ofr20161167. ISSN 0196-1497 (print) ISSN 2331-1258 (online) ISBN 978-1-4113-4101-2 iii Acknowledgments The author wishes to thank Joseph Havasi of Compass Minerals for a surface tour of their Great Salt Lake operations.
    [Show full text]
  • THREE SACRED VALLEYS): an Assessment of Native American Cultural Resources Potentially Affected by Proposed U.S
    Paitu Nanasuagaindu Pahonupi (THREE SACRED VALLEYS): An Assessment of Native American Cultural Resources Potentially Affected by Proposed U.S. Air Force Electronic Combat Test Capability Actions and Alternatives at the Utah Test and Training Range Item Type Report Authors Stoffle, Richard W.; Halmo, David; Olmsted, John Publisher Institute for Social Research, University of Michigan Download date 01/10/2021 12:00:11 Link to Item http://hdl.handle.net/10150/271235 PAITU NANASUAGAINDU PAHONUPI(THREE SACRED VALLEYS): AN ASSESSMENT OF NATIVE AMERICAN CULTURAL RESOURCES POTENTIALLY AFFECTED BY PROPOSED U.S. AIR FORCE ELECTRONIC COMBAT TEST CAPABILITY ACTIONS AND ALTERNATIVES AT THE UTAH TEST AND TRAINING RANGE DRAFT INTERIM REPORT By Richard W. Stoffle David B. Halmo John E. Olmsted Institute for Social Research University of Michigan April 14, 1989 Submitted to: Science Applications International Corporation Las Vegas, Nevada TABLE OF CONTENTS CHAPTER ONE EXECUTIVE SUMMARY 1 Description of Study Area 2 Description of Project 2 Site Specific Assessment 3 Tactical Threat Area 3 Threat Sites and Array 4 Range Maintenance Facilities 4 Programmatic Assessment 5 Airspace and Flight Activities Effects 5 Gapfiller Radar Site 5 Future Programmatic Assessments 5 Commercial Power 5 Fiber -optic Communications Network 5 Project - Related Structures and Activities on DOD lands 5 CHAPTER TWO ETHNOHISTORY OF INVOLVED NATIVE AMERICAN GROUPS 7 Ethnic Groups and Territories 7 Overview 7 Gosiutes 9 Pahvants 12 Utes 13 Early Contact, Euroamerican Colonization,
    [Show full text]
  • Upper Sevier River Community Watershed Project
    Upper Sevier River Community Watershed Project 2002 Annual Report Research Monitoring Demonstrative Restorative Techniques and Adaptive Management The State Division of Environ- Utah State University mental Quality has applied a Partnership Overview researchers and private land stream visualization assessment The Upper Sevier River Community Watershed Project is a collabo- managers have demonstrated process to private land along rative partnership addressing restoration needs, management range and pasture manage- the Sevier River to increase challenges, and research opportunities for rangelands, agricultural ment techniques that can be awareness of stream channel lands, forestlands, and aquatic ecosystems in the Upper Sevier applied to better manage conditions. Watershed. vegetative conditions within the watershed. Mission The Utah State Division of The Upper Sevier Soil Conser- Wildlife Resources and local The mission of the Upper Sevier River Community Watershed Project is organized into four major endeavors: vation District has emphasized land owners on the East Fork of cooperation, coordination and • Research, monitoring and adaptive management the Sevier River have restored collaboration through annual over 9 miles of stream channel • Demonstrating restorative techniques field tours within the watershed to improve fisheries habitat and • Restoration and maintenance of watershed ecosystems and with monthly technical riparian function. • Cooperation, coordination and collaboration advisory committee meetings emphasizing watershed assess- ment and planning goals. Restoration and Maintenance of Watershed Ecosystems Cooperation, Coordination and Collaboration Page 2 The Upper Sevier Watershed Utilizing Geographic Information System Utilizing local knowledge of Management Plan continues to (GIS) maps, each watershed has been the watershed conditions, progress utilizing direction found displayed to show its’ major ecological and historical and current in “Ecosystem Analysis at the social features.
    [Show full text]
  • Great Salt Lake FAQ June 2013 Natural History Museum of Utah
    Great Salt Lake FAQ June 2013 Natural History Museum of Utah What is the origin of the Great Salt Lake? o After the Lake Bonneville flood, the Great Basin gradually became warmer and drier. Lake Bonneville began to shrink due to increased evaporation. Today's Great Salt Lake is a large remnant of Lake Bonneville, and occupies the lowest depression in the Great Basin. Who discovered Great Salt Lake? o The Spanish missionary explorers Dominguez and Escalante learned of Great Salt Lake from the Native Americans in 1776, but they never actually saw it. The first white person known to have visited the lake was Jim Bridger in 1825. Other fur trappers, such as Etienne Provost, may have beaten Bridger to its shores, but there is no proof of this. The first scientific examination of the lake was undertaken in 1843 by John C. Fremont; this expedition included the legendary Kit Carson. A cross, carved into a rock near the summit of Fremont Island, reportedly by Carson, can still be seen today. Why is the Great Salt Lake salty? o Much of the salt now contained in the Great Salt Lake was originally in the water of Lake Bonneville. Even though Lake Bonneville was fairly fresh, it contained salt that concentrated as its water evaporated. A small amount of dissolved salts, leached from the soil and rocks, is deposited in Great Salt Lake every year by rivers that flow into the lake. About two million tons of dissolved salts enter the lake each year by this means. Where does the Great Salt Lake get its water, and where does the water go? o Great Salt Lake receives water from four main rivers and numerous small streams (66 percent), direct precipitation into the lake (31 percent), and from ground water (3 percent).
    [Show full text]
  • VACA* (Sevier County) Is Across the Sevier River from Cove* (Between Joseph* and Sevier*) Where the Old Vaca Road Drops Over the Ridge Into Long Valley
    Vaca from: Utah Place Names VACA* (Sevier County) is across the Sevier River from Cove* (between Joseph* and Sevier*) where the old Vaca Road drops over the ridge into Long Valley. "Vaca," meaning "cow" in Spanish, was an old livestock shipping point. >S34,T25S,R3W,SLM; 5,658' (1,725m). Bibliography: Monroe Centennial Committee and Monroe City. Monroe, Its First One Hundred Years, 1864-1964. Warnock, Irvin J. Our Own Sevier: A Comprehensive, Centennial Volume, Sevier County, Utah, 1865 -1965. [Richfield, UT]: Sevier County Commissioners, 1966. EXPLANATION OF SYMBOLS... 1. An asterisk (*) following a place name indicates past or present inhabitation. 2. When a series of letters and numbers are present towards the end of an entry after the ">" symbol, the first group indicates section/township/range as closely as can be pinpointed (i.e., S12,T3S,R4W,SLM, or USM). A section equals approximately one square mile, reflecting U.S. Geological Survey topographic map sections. Because Utah is not completely mapped, some entries are incomplete. In this case, whatever information is available will be provided. The second group, when present, is altitude in feet followed by meters in parentheses [i.e., 6,000' (1,829m)]. Altitude is not included with canyons or deserts with varying altitudes. _____________________________________________________________________ SOURCE... Utah Place Names. Salt Lake City, Utah : University of Utah. University of Utah Press, 1990. AUTHOR... Van Cott, John W. USE RESTRICTIONS... The contents of this article may be repurposed for non-commercial, non-profit, educational use. _____________________________________________________________________ Distributed by the Utah Education Network eMedia service: http://www.uen.org/emedia Original digital conversion by UCME: Utah Collections Multimedia Encyclopedia project: http://www.uen.org/ucme File ID = t_005359 A softbound copy of the original book may be purchased online from the University of Utah Press at: http://www.uofupress.com Page 1.
    [Show full text]
  • Salinity Loads and Trends in the Duchesne River Basin and Parts of the Middle Green River Basin, Utah
    9/28/2016 Comparison of Changes in Dissolved-Solids Loads Estimated from Streamflow and Water-Quality Data to Estimates from Changing Irrigation Methods, Uinta Basin Area, Utah Susan Thiros U.S. Geological Survey Utah Water Science Center August 25, 2016 Background • Dissolved solids from the Green River affect the suitability of Colorado River water for downstream uses. • Agricultural activities were estimated to contribute 43% of dissolved-solids load in Colorado River at Lees Ferry, Arizona. • Study done in cooperation with the Colorado River Basin Salinity Control Forum to assess trends in dissolved-solids load in Uinta Basin. 1 9/28/2016 Green River Basin Yampa River and White River Basin Colorado River Basin Objectives • Estimate annual dissolved-solids load at selected sites in the basin that drain either natural land, agricultural land, or both • Determine trends in dissolved-solids load at these sites • Compare changes in dissolved-solids load to estimates made by the Natural Resources Conservation Service and Bureau of Reclamation 2 9/28/2016 Sprinkler Flood Urban Mean daily streamflow at selected gaging stations in the Uinta Basin study area, water years 1989 through 2013 3 9/28/2016 Dissolved-Solids Load Load = (Concentration) x (Flow) x (CF) Where • Load is estimated dissolved-solid load, in tons per unit time • Concentration is dissolved-solids concentration, in milligrams per liter • Flow is streamflow, in cubic feet per second • CF is conversion factor (0.002697 for tons per day) LOADEST Regression Models Regression equation
    [Show full text]