The Science Behind DDI's New Fatty Acids Analysis

Total Page:16

File Type:pdf, Size:1020Kb

The Science Behind DDI's New Fatty Acids Analysis WINTER 2010 dialogAn informative newsletter for the specialized clients of Doctor’s Data, Inc. Scientific Support The Science behind DDI’s new Fatty Acids Analysis by Chuck Masur, MD, Scientific Support Department atty acids (FA) are long chain fatty acids” (VLCFA; make other longer chain fatty monocarboxylic acids longer than 22 carbon atoms). acids. Diets high in palmitic that have the general This categorization generally acid may be associated with F formula CnH2n+1COOH. holds true except in the case of increased risk of developing They may be either saturated essential fatty acids (EFA) where cardiovascular disease (this is David Quig, PhD (no carbon-to-carbon double short-chain EFAs are 18 carbons somewhat controversial as palm Vice President bonds; e.g. palmitic and stearic long and long-chain EFAs are oil also has a number of healthy acids) or unsaturated (one or 20 or more carbons in length. attributes). Stearic acid (18:0) more carbon-to-carbon double FAs with more than one C=C is another common saturated bonds; e.g. eicosapentaenoic double bond are referred to as fatty acid that is found in many acid and docosahexaenoic polyunsaturated fatty acids vegetable and animal fats and acid). FAs either are absorbed (PUFA). oils. It can be produced by during fat digestion or made in processing animal fat in water the body from other fats that Fatty acid nomenclature under high temperature and are absorbed. They are a major varies but most readers will be pressure (e.g. pressure cooking source of substrate for the familiar with the omega-x (ω-x) produces stearic acid by the production of energy; during system which is correctly read hydrolysis of triglycerides); prolonged exercise they are the as “omega (ω) minus x”—the and it can be produced by Chuck Masur, MD main nutrient mobilized from fat first carbon-to-carbon double the hydrogenation of some stores. Erythrocyte fatty acid bond is at the xth position, unsaturated vegetable oils. analysis is superior to plasma counting from the terminal Stearic acid can be oxidatively fatty acid testing as erythrocyte methyl. Linoleic acid [CH3(CH2)4 desaturated back to oleic FA levels better reflect long-term CH=CHCH2CH=CH(CH2)7COO acid, more readily so than the fatty acid intake because of less H] for example, is an omega-6 desaturation of palmitic acid sensitivity to recent intake and (ω-6) FA and, using the same back to palmitoleic acid), and a slower turnover rate (Qi Sun et convention, alpha-linolenic acid thus may be “less unhealthy” al (2007), American Journal of [CH3CH2CH=CHCH2CH=CHC than other saturated fatty acids. Clinical Nutrition 86(1):74-81). H2CH=CH(CH2)7COOH] is an FAs may be as short as 4 omega-3 (ω-3) FA. Unsaturated fatty acids have carbons in length (e.g. butyric at least one carbon-to-carbon Barb Berta, MS, RD acid) but most fatty acids, at Saturated fatty acids have double bonds—their carbon least those from natural sources no carbon-to-carbon double atoms are bound in either a (fats and oils), generally are at bonds. For example, palmitic — continued on next page Doctor’s Data, Inc. least 8 carbons in length (e.g. acid (16 carbons long and with 3755 Illinois Avenue octanoic, or caprylic, acid) but no carbon-to-carbon double INSIDE St. Charles, IL 60174-2420 may comprise chains of 4 to as bonds; i.e. 16:0) is one of the 800.323.2784 (US & Canada) Meet Karen Urek, many as 28 carbon atoms. FAs most common saturated fatty Vice President of Operations 3 630.377.8139 (Elsewhere) may be “short” (SCFA; less than acids found in animals and 44.(0)8712.180.052 (UK) 6 carbons), “medium” (MCFA; plants. It is the first fatty acid Comprehensive Vaginosis Profile 3 630.587.7860 (fax) 6 to 12 carbons), “long” (LCFA; produced during fatty acid [email protected] 12 to 22 carbons) or “very synthesis and can be used to Frequently Asked Questions 4 www.doctorsdata.com WINTER 2010 DOCTOR’S DATA INC. The Science behind DDI’s new Fatty Acids Analysis — continued from page 1 cis- (hydrogen atoms are on the same side of a carbon-to-carbon SOME SAMPLE FATTY ACID RATIOS Worst ω-6 to ω-3 Ratio Poor Ratio Better Ratio Best Ratio bond) or trans- (hydrogen atoms on opposite sides of the double Sunflower – No ω-3 Cottonseed – almost no ω-3 Canola (rapeseed) oil 2:1 Flax seed oil 1:3 bond) configuration. Cis- fatty Peanut – No ω-3 Grapeseed – almost no ω-3 Olive 3:1 to 13:1 acids (i.e. those FAs with one Corn 46:1 Soybean 7:1 or more cis configurations) can be quite curved and are less flexible and are less able an ω-6 (or visa versa) is possible bodies for fuel. Ketone bodies (DHA) and, being non-animal to be closely packed (as in nor is it possible to convert can be produced in the liver by in origin, the DHA produced in membrane structures). Trans- saturated fats into ω-3 or ω-6 metabolism of FAs. this fashion is acceptable to fatty acids, on the contrary, unsaturated FAs. those on strict vegetarian diets. are relatively straight. Most EFAs are used in the Digestion and uptake of fatty In a similar vein, the oil from trans- FAs (trans- fats) are not productions of hormone-like acids is complex. SCFAs and brown alga (kelp) is high in ω-3 found in and are produced substances that regulate a wide MCFAs are absorbed directly eicosapentaenoic acid (EPA). through human intervention by range of functions including via the intestinal capillaries The ω -6 to ω-3 ratio (see hydrogenation (processing) of blood pressure, coagulation, and travel through the portal chart above) in dietary intake will unsaturated fatty acids. Trans- lipid levels, immune response circulation; LCFAs are too large ultimately influence the ratio of fats are found in margarines, and inflammatory responses to be absorbed directly and the ensuing eicosanoids such as fried foods, commercially to injury and infection. but are absorbed through the prostaglandins, thromboxanes prepared foods, baked goods Unfortunately, a typical Western lipid membranes of the cells of and leukotrienes. Clearly then, and partially hydrogenated diet may be high in ω-6 FAs the microvilli, reassembled into ω-3 and ω-6 fatty acids should vegetable oils. Diets high in but low in ω-3 FAs (e.g. EPA, triglycerides and then coated be consumed in the appropriate trans- fats may be associated DHA) and may be associated with cholesterol and protein— proportions. Healthy ratios of with increased rick of coronary with depression and behavioral the complexes formed are called ω-6 to ω-3 range from 1:1 to 1:4 heart disease. Examples of changes including violence. chylomicrons. Chylomicrons while the ratios in the standard/ unsaturated FAs include alpha- FAs play an important role in enter the lymphatic capillaries typical western diet (SAD) may linolenic acid (18:3 ω-3), heart health as they provide and travel via the thoracic duct range from 10:1 to 30:1 (i.e. eicosapentaenoic acid (20:5 the substrates for mechanical into the left subclavian vein and dramatically skewed toward ω-3), docosahexaenoic acid and electrical activity in cardiac are distributed directly from the ω-6 predominance. (22:6 ω-3 ), arachidonic acid tissue. heart throughout the circulatory (20:4 ω-6), linoleic acid (18:2), tree without a first pass The new Fatty Acids; and oleic acid (20:4 ω-6) —all Free fatty acids (FFA) are FAs through the liver. Chylomicrons, Erythrocyte panel from DDI are cis- unsaturated FAs. that are not bound, or attached eventually, are processed by provides individual assessments in some fashion, to other the liver into very low density of important saturated and Essential fatty acids (EFA) are molecules such as triglycerides lipoproteins (VLDL) and low unsaturated FAs and gives FAs that cannot be synthesized or phospholipids. They are not density and lipoproteins (LDL). helpful commentary on these within an organism and must be water soluble therefore can findings. In addition, the panel obtained from dietary sources. only be transported within the The standard American diet presents important FA ratios, There are two families of EFAs: circulatory system bound to (SAD) is high in carbohydrates provides information about their omega-3 and omega-6, all of albumin in plasma. FAs can be and, as grains are high in ω-6 clinical importance and assists which are polyunsaturated FAs stored in fat cells (adipocytes) and low in ω-3 FAs, the ratio of the clinician in making evidence- (PUFA). Humans can produce and, upon being released ω-6 to ω-3 FAs usually is higher based decisions and more all but two FAs (linoleic acid from adipocyte storage, can than optimal. Oily fish, fish oils, effective treatment plans for (18:2 ω-6) and alpha-linolenic become FFAs. FFAs are utilized wild game (i.e. not grain-fed), their patients. acid (18:3 ω-3); both are widely as substrate for energy (ATP) free-range beef and their dairy found in plant oils and are the production. Heart and skeletal products as well as range-fed parent compounds of the ω-3 muscle energy production sheep and poultry all contain and ω-6 FA series. It is possible pathways prefer FFAs over more prominent levels of ω-3 to convert one ω-3 FA to another glucose for ATP production; FAs. The microalgae C cohnii ω-3 or one ω-6 to another ω-6 brain can’t use FFAs so it and Schizochytrium sp.
Recommended publications
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Omega-3 Eicosapentaenoic Acid (EPA)
    nutrients Article Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study Amanda Rao 1,2 , David Briskey 1,3, Jakob O Nalley 4 and Eneko Ganuza 4,* 1 RDC Clinical, Brisbane 4006, Australia; [email protected] (A.R.); [email protected] (D.B.) 2 School of Medicine, University of Sydney, Sydney, NSW 2006, Australia 3 School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia 4 Qualitas Health, Houston, TX 77056, USA; [email protected] * Correspondence: [email protected] Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: The aim of this trial is to assess the effect of Almega®PL on improving the Omega-3 Index, cardio-metabolic parameters, and other biomarkers in generally healthy individuals. The benefits of long-chain omega-3 fatty acids for cardiovascular health are primarily built upon mixtures of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA). Highly purified EPA therapy has proven to be particularly effective in the treatment of cardiovascular disease, but less is known about the benefits of EPA-only supplementation for the general healthy population. Almega®PL is a polar rich oil (>15%) derived from the microalga Nannochloropsis that contains EPA (>25%) with no DHA. Participants (n = 120) were given a capsule of 1 g/day of either Almega®PL or placebo for 12 weeks. Differences in the Omega-3 Index, cardiometabolic markers, and other general health indicators were measured at the baseline, six, and 12 weeks.
    [Show full text]
  • Eicosapentaenoic Acid (EPA) Reduces Cardiovascular Events: Relationship with the EPA/Arachidonic Acid Ratio
    Advance Publication Journal of AtherosclerosisJournal and Thrombosis of Atherosclerosis Vol.20, No.● and Thrombosis1 Review Accepted for publication: June 17, 2013 Published online: September 18, 2013 Eicosapentaenoic Acid (EPA) Reduces Cardiovascular Events: Relationship with the EPA/Arachidonic Acid Ratio Haruo Ohnishi1 and Yasushi Saito2 1Mochida Pharmaceutical Co. Ltd., Tokyo, Japan 2Chiba University Graduate School of Medicine, Chiba, Japan The clinical efficacy of fish oil and high-purity eicosapentaenoic acid ethyl ester (hp-EPA-E) for treat- ing cardiovascular disease (CVD) has been reported. Fish oil contains saturated and monounsatu- rated fatty acids that have pharmacological effects opposite to those of ω3 fatty acids (ω3). Moreover, ω3, such as EPA and docosahexaenoic acid (DHA), do not necessarily have the same metabolic and biological actions. This has obscured the clinical efficacy of ω3. Recently, the Japan EPA Lipid Inter- vention Study (JELIS) of hp-EPA-E established the clinical efficacy of EPA for CVD, and higher lev- els of blood EPA, not DHA, were found to be associated with a lower incidence of major coronary events. A significant reduction in the risk of coronary events was observed when the ratio of EPA to arachidonic acid (AA) (EPA/AA) was >0.75. Furthermore, the ratio of prostaglandin (PG) I3 and PGI2 to thromboxane A2 (TXA2) ([PGI2+PGI3]/TXA2) was determined to have a linear relationship with the EPA/AA ratio as follows: (PGI2+PGI3)/TXA2 =λ+π* (EPA/AA). Like PGI2, PGI3 not only inhib- its platelet aggregation and vasoconstriction, but also is assumed to reduce cardiac ischemic injury and arteriosclerosis and promote angiogenesis.
    [Show full text]
  • Enriched in Eicosapentaenoic Acid
    Immunology 1982 46 819 Enhanced production of IgE and IgG antibodies associated with a diet enriched in eicosapentaenoic acid J. D. PRICKETT, D. R. ROBINSON & K. J. BLOCH Department ofMedicine, Harvard Medical School, and the Arthritis, Clinical Immunology and Allergy Units of the Medical Services, Massachusetts General Hospital, Boston, Massachusetts, U.S.A. Acceptedfor publication 15 February 1982 Summary. Eicosapentaenoic acid (EPA), a polyunsa- Passive inflammatory reactions, as evaluated by pas- turated fatty acid analog of arachidonic acid, alters sive cutaneous anaphylaxis elicited with IgE antibody, certain platelet functions controlled by prostaglandins and by the intradermal injection of aggregated IgG, and thromboxanes, probably by inhibiting the syn- were not significantly different between the two thesis of these molecules from arachidonic acid. This groups. EPA constituted 7-3% offatty acid in the livers study reports the effects of a diet enriched in EPA of FFD rats, v. 0 3% in BFD rats (P<0 01). These (fish-fat diet, FFD) as compared with a diet lacking data demonstrate enhanced levels of IgE and IgG EPA (beef-fat diet, BFD) upon certain immunological antibody in FFD rats, with subsequent increased and inflammatory responses in outbred Sprague Daw- active inflammatory reactivity in these animals. These ley rats. Induction of antibody formation to egg alterations may be secondary to enrichment of tissue albumin (EA) produced four- to eight-fold greater lipids with EPA, although effects due to changes in titres of IgE (P < 002) and IgG (P < 003) anti-EA other fatty acids have not been excluded. antibodies in FFD rats v. BFD rats.
    [Show full text]
  • Compounds with Anti-Aging Activities
    (19) TZZ ZZ_T (11) EP 2 862 600 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 22.04.2015 Bulletin 2015/17 A61Q 19/08 (2006.01) A61K 8/49 (2006.01) A61K 8/36 (2006.01) A61K 8/44 (2006.01) (2006.01) (2006.01) (21) Application number: 14196664.8 A61K 8/63 A61K 8/64 A61K 8/33 (2006.01) A61K 8/60 (2006.01) (2006.01) (2006.01) (22) Date of filing: 20.12.2011 A61Q 17/04 A61K 8/42 A61Q 1/02 (2006.01) A61Q 19/00 (2006.01) A61Q 19/02 (2006.01) A61Q 19/04 (2006.01) A61Q 19/10 (2006.01) A61K 31/11 (2006.01) A61K 31/197 (2006.01) A61K 31/202 (2006.01) A61K 31/343 (2006.01) A61K 31/353 (2006.01) A61K 31/704 (2006.01) (84) Designated Contracting States: • Mavon, Alain Robert Pierre AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 11264 Stockholm (SE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Duracher, Lucie PL PT RO RS SE SI SK SM TR 11761 Stockholm (SE) Designated Extension States: • Klack, Anke BA ME 11244 Stockholm (SE) • Cattley, Kevin (62) Document number(s) of the earlier application(s) in Wexford (IE) accordance with Art. 76 EPC: 11797020.2 / 2 729 220 (74) Representative: Moore, Michael Richard et al Keltie LLP (71) Applicant: Oriflame Research and Development No.1 London Bridge Ltd. London SE1 9BA (GB) Bray, Co. Wicklow (IE) Remarks: (72) Inventors: This application was filed on 05-12-2014 as a • Gillbro, Johanna Maria divisional application to the application mentioned 11736 Stockholm (SE) under INID code 62.
    [Show full text]
  • Fatty Acids: Structures and Introductory Article Properties Article Contents
    Fatty Acids: Structures and Introductory article Properties Article Contents . Introduction Arild C Rustan, University of Oslo, Oslo, Norway . Overview of Fatty Acid Structure . Major Fatty Acids Christian A Drevon, University of Oslo, Oslo, Norway . Metabolism of Fatty Acids . Properties of Fatty Acids Fatty acids play a key role in metabolism: as a metabolic fuel, as a necessary component of . Requirements for and Uses of Fatty Acids in Human all membranes, and as a gene regulator. In addition, fatty acids have a number of industrial Nutrition uses. Uses of Fatty Acids in the Pharmaceutical/Personal Hygiene Industries Introduction doi: 10.1038/npg.els.0003894 Fatty acids, both free and as part of complex lipids, play a number of key roles in metabolism – major metabolic fuel (storage and transport of energy), as essential components subsequent one the b carbon. The letter n is also often used of all membranes, and as gene regulators (Table 1). In ad- instead of the Greek o to indicate the position of the double dition, dietary lipids provide polyunsaturated fatty acids bond closest to the methyl end. The systematic nomencla- (PUFAs) that are precursors of powerful locally acting ture for fatty acids may also indicate the location of double metabolites, i.e. the eicosanoids. As part of complex lipids, bonds with reference to the carboxyl group (D). Figure 2 fatty acids are also important for thermal and electrical outlines the structures of different types of naturally insulation, and for mechanical protection. Moreover, free occurring fatty acids. fatty acids and their salts may function as detergents and soaps owing to their amphipathic properties and the for- Saturated fatty acids mation of micelles.
    [Show full text]
  • Omega-3 Fatty Acids Fact Sheet for Consumers
    Omega-3 Fatty Acids Fact Sheet for Consumers What are omega-3 fatty acids and what do they do? Omega-3 fatty acids are found in foods, such as fish and flaxseed, and in dietary supplements, such as fish oil. The three main omega-3 fatty acids are alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA is found mainly in plant oils such as flaxseed, soybean, and canola oils. DHA and EPA are found in fish and other seafood. ALA is an essential fatty acid, meaning that your body can’t make it, so you must get it from the foods and beverages you consume. Your body can convert some ALA into EPA and then to DHA, but only in very small amounts. Therefore, getting EPA and DHA from foods (and dietary supplements if you take them) is the only practical way to increase levels of these omega-3 fatty acids in your body. Omega-3s are important components of the membranes that surround each cell in your body. DHA levels are especially high in retina (eye), brain, and sperm cells. Omega-3s also provide calories to give your body energy and have many functions in your heart, blood vessels, lungs, immune system, and endocrine system (the network of hormone-producing glands). How much omega-3s do I need? Omega-3s are found in foods Experts have not established recommended amounts for omega-3 fatty acids, except such as fatty fish and plant oils. for ALA. Average daily recommended amounts for ALA are listed below in grams (g).
    [Show full text]
  • Revealing the Role of Short Chain and Polyunsaturated Fatty Acids As
    Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 2019 Revealing the Role of Short Chain and Polyunsaturated Fatty Acids as Regulators of Metabolic Activity and Gene Expression in Ovarian Cancer Abigayle Ochs [email protected] Follow this and additional works at: https://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Ochs, Abigayle, "Revealing the Role of Short Chain and Polyunsaturated Fatty Acids as Regulators of Metabolic Activity and Gene Expression in Ovarian Cancer" (2019). Honors Theses. 461. https://opensiuc.lib.siu.edu/uhp_theses/461 This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. REVEALING THE ROLE OF SHORT CHAIN AND POLYUNSATURATED FATTY ACIDS AS REGULATORS OF METABOLIC ACTIVITY AND GENE EXPRESSION IN OVARIAN CANCER Abigayle Ochs A thesis submitted to the University Honors Program in partial fulfillment of the requirements for the Honors Certificate with Thesis Southern Illinois University Carbondale May 2019 Ochs 2 I. Abstract Previous research using the chicken model has provided evidence that a flaxseed- supplemented diet decreases both the severity and the incidence of ovarian cancer. Flaxseed is a source of omega-3 (OM3) polyunsaturated fatty acids (PUFA), particularly α-linolenic acid (ALA). ALA is converted into longer chain OM3s, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which inhibit prostaglandins, thereby inhibiting oxidative stress, inflammation, angiogenesis, and proliferation. The dietary fiber component of flaxseed can be fermented in the gut to produce short chain fatty acids (SCFA).
    [Show full text]
  • Eicosapentaenoic Acid (EPA)
    2500, Parc-Technologique Blvd Quebec City (Quebec) G1P 4S6 CANADA Tel.: +1 418 874.0054 / Fax: +1 418 874.0355 Toll Free: +1 877 745.4292 (North America Only) Email: [email protected] Product Information Eicosapentaenoic acid (EPA) Identification Product Number EPA-GP-xxx CAS Number 10417-94-4 EN Number N/A Common Name Eicosapentaenoic acid Systematic Name cis-5,8,11,14,17-Eicosapentaenoic acid 20:5(n-3); Icosapentaenoic acid; Alternative Names Timnodonic acid Storage Temperature -80°C or lower Characteristics Specifications Molecular Formula C20H30O2 Purity ≥ 99 % Molecular Weight 302.45 g/mol Form Liquid above -54°C Melting Point -54 to -53°C Color Clear, colorless Density 0.943 g/mL at 25°C (lit.) Precautions & Disclaimer For laboratory use only. Not for use on humans. Not for drug, household or other uses. Handling & Preparation Instructions This purified fatty acid is liquid at room temperature (oil) and not soluble in water. It can be solubilized in undiluted serum or in ethanol or DMSO. Essential fatty acids are also soluble in chloroform or ether, however it is not recommended with the use of cells. After reconstitution, the product can be aliquoted and stored at -80°C. We recommend adding the essential fatty acids cocktail to the medium the day of use. The concentration to add to the culture is to be determined by the user. As a starting point, we provide some references from the literature. Chen et al. treated primary microglial cells with 20 µM of EPA [1]. Hampel et al. treated human epithelial cells with 100 µM of EPA [2].
    [Show full text]
  • Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators On
    antioxidants Review Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation 1, 1,2, 2, Gyeoung Jin Kang y, Eun Ji Kim y and Chang Hoon Lee * 1 Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] (G.J.K.); [email protected] (E.J.K.) 2 College of Pharmacy, Dongguk University, Seoul 04620, Korea * Correspondence: [email protected]; Tel.: +82-31-961-5213 Equally contributed. y Received: 11 November 2020; Accepted: 9 December 2020; Published: 10 December 2020 Abstract: Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation. Keywords: cardiac fibrosis; NRF2; lipoxins; resolvins; maresins; neuroprotectins 1. Introduction Cardiovascular disease is the leading cause of death worldwide [1]. Cardiac fibrosis is a major factor leading to the progression of myocardial infarction and heart failure [2]. Cardiac fibrosis is characterized by the net accumulation of extracellular matrix proteins in the cardiac stroma and ultimately impairs cardiac function [3]. Therefore, interest in substances with cardioprotective activity continues.
    [Show full text]
  • Differentiation of Lard from Other Edible Fats by Gas Chromatography- Flame Ionisation Detector (GC-FID) and Chemometrics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Journal of Food and Pharmaceutical Sciences J.Food Pharm.Sci. 2 (2014): 27-31 Avalaible online at www. jfoodpharmsci.com Research Article Differentiation of Lard from Other Edible Fats by Gas Chromatography- Flame Ionisation Detector (GC-FID) and Chemometrics Omar Dahimi1, Mohd. Sukri Hassan1, Alina Abdul Rahim1*, Sabo Mohammed Abdulkarim2, and Siti Mashitoh A.1 1Institute of Halal Research and Management (IHRAM), Universiti Sains Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia 2Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. ARTICLE INFO ABSTRACT The presence of lard or its derivatives in any food products is a serious Received 05 December 2012 religious issue among Muslim and Judaism. Thus, the objective of this study Revised form 27 December 2012 was to investigate the use of gas chromatography with flame ionisation Accepted 02 January 2013 detector (GC-FID) coupled with chemometrics techniques such as Principle Available online 12 May 2013 Components Analysis (PCA) and K-mean cluster analysis to differentiate lard adulteration at very low concentrations in beef and chicken fats. The measurements were made from the pure lard, beef tallow, pure chicken fat; and beef tallow (BT), chicken fat (CF) adulterated with different concentrations of lard (0.5%-10% in BT and CF). The data were first scaled into standardisation before PCA is performed to each of the scaled data using Unscrambler software. The Scores plots and loadings plots of each scaled data were compared and studied. The results showed that lard contains higher fatty acid (FA) of C18: 2cis and low C16:0 FA, but oppositely for beef tallow and chicken fat.
    [Show full text]
  • Omega-3, Omega-6 and Omega-9 Fatty Acids
    Johnson and Bradford, J Glycomics Lipidomics 2014, 4:4 DOI: 0.4172/2153-0637.1000123 Journal of Glycomics & Lipidomics Review Article Open Access Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases Melissa Johnson1* and Chastity Bradford2 1College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, USA 2Department of Biology, Tuskegee University, Tuskegee, Alabama, USA Abstract The relationship between diet and disease has long been established, with epidemiological and clinical evidence affirming the role of certain dietary fatty acid classes in disease pathogenesis. Within the same class, different fatty acids may exhibit beneficial or deleterious effects, with implications on disease progression or prevention. In conjunction with other fatty acids and lipids, the omega-3, -6 and -9 fatty acids make up the lipidome, and with the conversion and storage of excess carbohydrates into fats, transcendence of the glycome into the lipidome occurs. The essential omega-3 fatty acids are typically associated with initiating anti-inflammatory responses, while omega-6 fatty acids are associated with pro-inflammatory responses. Non-essential, omega-9 fatty acids serve as necessary components for other metabolic pathways, which may affect disease risk. These fatty acids which act as independent, yet synergistic lipid moieties that interact with other biomolecules within the cellular ecosystem epitomize the critical role of these fatty acids in homeostasis and overall health. This review focuses on the functional roles and potential mechanisms of omega-3, omega-6 and omega-9 fatty acids in regard to inflammation and disease pathogenesis. A particular emphasis is placed on cardiovascular disease, the leading cause of morbidity and mortality in the United States.
    [Show full text]