Feshi: Feature Map-Based Stealthy Hardware Intrinsic Attack

Total Page:16

File Type:pdf, Size:1020Kb

Feshi: Feature Map-Based Stealthy Hardware Intrinsic Attack Date of publication August 16, 2021, date of current version August 24, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3104520 FeSHI: Feature Map-based Stealthy Hardware Intrinsic Attack TOLULOPE A. ODETOLA1, FAIQ KHALID2, (Member, IEEE), HAWZHIN MOHAMMED1, TRAVIS C. SANDEFUR1, SYED RAFAY HASAN1, (Member, IEEE) 1Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, 38505, USA 2Department of Computer Engineering, Technische Universität Wien (TU Wien), Vienna, Austria This work is partially supported by the Carnegie Classification Funding from College of Engineering, and by the Faculty Research Grant from the Office of Research, Tennessee Tech University. ABSTRACT Convolutional Neural Networks (CNN) have shown impressive performance in computer vision, natural language processing, and many other applications, but they exhibit high computations and substantial memory requirements. To address these limitations, especially in resource-constrained devices, the use of cloud computing for CNNs is becoming more popular. This comes with privacy and latency concerns that have motivated the designers to develop embedded hardware accelerators for CNNs. However, designing a specialized accelerator increases the time-to-market and cost of production. Therefore, to reduce the time-to-market and access to state-of-the-art techniques, CNN hardware mapping and deployment on embedded accelerators are often outsourced to untrusted third parties, which is going to be more prevalent in futuristic artificial intelligence of things (AIoT) systems. These AIoT systems anticipates horizontal collaboration among different resource constrained AIoT node devices, where CNN layers are partitioned and these devices collaboratively compute complex CNN tasks. This horizontal collaboration opens another attack surface to the CNN-based application, like inserting the hardware Trojans (HT) into the embedded accelerators designed for the CNN. Therefore, there is a dire need to explore this attack surface for designing the secure embedded hardware accelerators for CNNs. Towards this goal, in this paper, we exploited this attack surface to propose an HT-based attack called FeSHI. Since in horizontal collaboration of RC AIoT devices different sections of CNN architectures are outsourced to different untrusted third parties, the attacker may not know the input image, but it has access to the layer-by-layer output feature maps information for the assigned sections of the CNN architecture. This attack exploits the statistical distribution, i.e., Gaussian distribution, of the layer-by-layer feature maps of the CNN to design two triggers for stealthy HT with a very low probability of triggering. Also three different novel, stealthy and effective trigger designs are proposed. To illustrate the effectiveness of the proposed attack, we deployed the LeNet and LeNet-3D on PYNQ to classify the MNIST and CIFAR-10 datasets, respectively, and tested FeSHI. The experimental results show that FeSHI utilizes up to 2% extra LUTs, and the overall resource overhead is less than 1% arXiv:2106.06895v3 [cs.CR] 25 Aug 2021 compared to the original designs. It is also demonstrated on the PYNQ board that FeSHI triggers the attack vary randomly making it extremely difficult to detect. INDEX TERMS Convolutional Neural Network, CNN, Hardware Security, Edge Intelligence, AIoT, FPGA, Hardware Trojan, Hardware Intrinsic Attack I. INTRODUCTION ficient deployment of CNNs on small-scale FPGAs. There- Due to design flexibility through partial reconfiguration [1]– fore, to achieve resource efficiency, short time-to-market, [5] and fast prototyping [6] [7], small-scale Field Pro- and state-of-the-art implementation, the deployment of pre- grammable Gate Arrays (FPGAs) [8] are being used to de- trained CNN on hardware accelerators can be outsourced to ploy Convolutional Neural Networks (CNNs) on Resource- untrusted third parties, which provide soft IPs or hard IPs (in Constrained (RC) devices in Artificial Intelligence of Things the form of bitstream files) of the deployed CNN. Although (AIoT), especially for Edge Intelligence (EI) based appli- outsourcing the CNN deployment achieves the required goal, cations [9]. However, it is very challenging to achieve ef- it comes with security risks such as malicious hardware VOLUME 9, 2021 1 Tolulope et al.: FeSHI: Feature Map-based Stealthy Hardware Intrinsic Attack insertions, which can be stealthy by nature [10]. Data Single FPGA-bases CNN Inference Recently, various hardware Trojans (HTs) insertion tech- All Layers of the CNN are mapped on a single FPGA Conv 1 … niques in CNNs have been explored, but most of them are Data Conv 2 IP 2 applicable under the following assumptions: Pool 1 Conv 1 Pool 2 Conv n Prob • These techniques require full access to the CNN architec- Conv 2 ture to evaluate triggering probability, stealthiness, and re- Pool 1 Conv 3 IP 1 source utilization (comparing them with design constraints Pool 2 FPGA of their attacks [11]–[13]). Conv 3 Multi-FPGA-bases CNN Inference • Few of the techniques require a pre-defined sequence, … Different Layer(s) are mapped on a different small-scale FPGAs where a sequence of events serves as the trigger for the FPGA1 FPGA2 FPGA3…(n-1) FPGAn Conv n attack [15]. This sequence of events also requires knowl- Data Conv 2 … IP 1 edge of the full CNN architecture, and in the absence of of CNN Implementation Full IP 1 Conv 1 Pool 2 IP 2 information about any layer, especially the initial layer and/or the last layer, there is a high probability that the IP 2 Pool 1 Conv 3 Conv n Prob Prob sequence of events may never occur. Designer_1 Designer_2 Designer_3… Designer_n • Some of the techniques require weight manipulation, FIGURE 1: A figurative comparison between single FPGA-based which requires a change in the values of the weights of CNN inference and multi-FPGA-based CNN. In single FPGA-based the CNN to achieve misclassification that can easily be inference, all CNN layers are implemented on an FPGA, and the detected using model integrity analysis [14], [16]. attacker has access to the complete CNN architecture. On the other hand, in multi-FPGA-based inference, full CNN is divided into multiple • Another work requires knowledge of input dataset or ac- different partitions, where different third-party IP designers can design cess to the input image to introduce the trigger [14]. each partition. These partitions can be mapped on multiple FPGAs. • In [12], Clements et al. modify the internal structure of certain operations to inject malicious behavior, which (a) LeNet for MNIST Dataset means they require that the attacker has access to internal 1 ch. 6 ch. 6 ch. 16 ch. 16 ch. 120 ch. 84 ch. 10 ch. 28x28 24x24 12x12 8x8 4x4 1x1 1x1 1x1 IP 1 IP 2 Data Prob Pool 2 Pool Pool 1 Pool Conv 1 Conv Conv 3 Conv mathematical operations. 2 Conv In the real-world scenario, it is impossible to get full access (b) LeNet-3D for CIFAR-10 Dataset to the CNN architecture [18]–[25]. Therefore, most of these 3 ch. 10 ch. 10 ch. 20 ch. 20 ch. 100 ch. 150 ch. 10 ch. 2 HT attacks are applicable under the limited attack scenario. 32x32 28x28 1 14x14 10x10 5x5 1x1 1x1 1x1 IP 1 IP IP 2 Data Prob Relu Pool 2 Pool Pool 1 Pool Relu Conv 1 Conv Conv 3 Conv Moreover, most of the approaches adopted in state-of-the-art 2 Conv hardware/firmware Trojan attacks on hardware accelerator- FIGURE 2: CNN models used in experiments; (a) LeNet trained/ based CNN inference are focused on the deployment of tested on MNIST (b) LeNet-3D trained/ tested on CIFAR-10. CNN on a single FPGA with access to the complete CNN pipeline [12], [15], [17]. Table 1 summarizes the differences in the state-of-the-art HT insertion techniques. access to the complete network or ground truth, coming up To address some of these attacks, defense techniques such with stealthy and effective hardware attacks is challenging. as [26] is proposed, which is a trigger approximation-based In this paper, we investigate and demonstrate that an attacker Trojan detection framework. It searches for triggers in input may carry out an attack on the CNN while not having com- space and also detects Trojans in a feature map space. Gao et plete knowledge of CNN architecture and training or testing al. [27] propose a STRIP defense methodology that turns the dataset. It is worth mentioning here that though the attacker strength of an input-agnostic trigger into a means of detecting does not have access to the training dataset, it may still Trojans at run-time. Doan et al. [28] propose Februus that be provided with a Feature Map-based Validation Dataset neutralizes Trojan attacks on Deep Neural Network (DNN) (FMV-Dataset) to verify the functional correctness hardware. systems at run-time. Please note, it is not the traditional validation dataset as Partitioning of CNN with horizontal collaboration among provided along with the training dataset for any supervised RC AIoT device [29]–[32] or via vertical collaboration machine learning techniques. [33] [34] is also considered as an alternative approach to defend attacks. This is because partitioned CNN acts like a A. MOTIVATIONAL CASE STUDY distributed network; hence it contains the inherent security To investigate the viability of the above-mentioned attack, feature of such networks. Moreover, with partitioned CNN we need to explore whether the small-sized FMV-Dataset, on multiple FPGAs, third parties (3Ps) do not have access with a possible payload in only one of the partitioned CNN to the full CNN pipeline rendering current attack techniques layers, can lead to an effective and stealthy attack or not. To invalid. However, partitioning CNNs on multiple FPGAs can answer this, we postulate two hypotheses and performed two also pose security concerns. experiments to confirm the validity of our hypotheses: It is possible that one or more of these FPGA devices Hypothesis 1: A small-sized FMV-Dataset can provide an are malicious, and the CNN deployment on FPGA may be adequate estimate of the statistical attributes of the complete compromised.
Recommended publications
  • Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos
    Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos Rui Hou, Chen Chen, Mubarak Shah Center for Research in Computer Vision (CRCV), University of Central Florida (UCF) [email protected], [email protected], [email protected] Abstract Deep learning has been demonstrated to achieve excel- lent results for image classification and object detection. However, the impact of deep learning on video analysis has been limited due to complexity of video data and lack of an- notations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal generation and association of proposals across frames. Also, most of these methods employ two-stream CNN framework to han- dle spatial and temporal feature separately. In this paper, we propose an end-to-end deep network called Tube Con- volutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified deep net- work that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and next for each clip a set of tube pro- Figure 1: Overview of the proposed Tube Convolutional posals are generated based on 3D Convolutional Network Neural Network (T-CNN). (ConvNet) features. Finally, the tube proposals of differ- ent clips are linked together employing network flow and spatio-temporal action detection is performed using these tracking based approaches [32]. Moreover, in order to cap- linked video proposals. Extensive experiments on several ture both spatial and temporal information of an action, two- video datasets demonstrate the superior performance of T- stream networks (a spatial CNN and a motion CNN) are CNN for classifying and localizing actions in both trimmed used.
    [Show full text]
  • Render for CNN: Viewpoint Estimation in Images Using Cnns Trained with Rendered 3D Model Views
    Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views Hao Su∗, Charles R. Qi∗, Yangyan Li, Leonidas J. Guibas Stanford University Abstract Object viewpoint estimation from 2D images is an ConvoluƟonal Neural Network essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs (Convolutional Neural Networks). We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Figure 1. System overview. We synthesize training images by overlaying images rendered from large 3D model collections on Towards this goal, we propose a scalable and overfit- top of real images. CNN is trained to map images to the ground resistant image synthesis pipeline, together with a novel truth object viewpoints. The training data is a combination of CNN specifically tailored for the viewpoint estimation task. real images and synthesized images. The learned CNN is applied Experimentally, we show that the viewpoint estimation from to estimate the viewpoints of objects in real images. Project our pipeline can significantly outperform state-of-the-art homepage is at https://shapenet.cs.stanford.edu/ methods on PASCAL 3D+ benchmark. projects/RenderForCNN 1. Introduction However, this is contrary to the recent finding — features learned by task-specific supervision leads to much better 3D recognition is a cornerstone problem in many vi- task performance [16, 11, 14].
    [Show full text]
  • Calls, Clicks & Smes
    Interactive Local Media A TKG Continuous Advisory Service White Paper #05-03 November 1, 2005 From Reach to Targeting: The Transformation of TV in the Internet Age By Michael Boland Copyright © 2005 The Kelsey Group All Rights Reserved. This published material may not be duplicated or copied in any form without the express prior written consent of The Kelsey Group. Misuse of these materials may expose the infringer to civil or criminal liabilities under Federal Law. The Kelsey Group disclaims any warranty with respect to these materials and, in addition, The Kelsey Group disclaims any liability for direct, indirect or consequential damages that may result from the use of the information and data contained in these materials. 600 Executive Drive • Princeton • NJ • 08540 • (609) 921-7200 • Fax (609) 921-2112 Advisory Services • Research • Consulting • [email protected] Executive Summary The Internet Protocol Television (IPTV) revolution is upon us. The transformation of television that began with the VCR and gained significant momentum with TiVo is now accelerating dramatically with “on-demand” cable, video search and IPTV. Billions of dollars are at stake, and a complex and competitive landscape is also starting to emerge. It includes traditional media companies (News Corp., Viacom), Internet search engines and portals (America Online, Google, Yahoo!), telcos (BellSouth, SBC, Verizon) and the cable companies themselves (Comcast, Cox Communications). Why is all this happening now? While there was a great deal of hype in the 1990s about TV-Internet convergence, or “interactive TV,” previous attempts failed in part because of low broadband penetration, costly storage and inferior video-streaming technologies.
    [Show full text]
  • Precise and High-Throughput Analysis of Maize Cob Geometry Using Deep
    Kienbaum et al. Plant Methods (2021) 17:91 https://doi.org/10.1186/s13007-021-00787-6 Plant Methods METHODOLOGY Open Access DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics Lydia Kienbaum1, Miguel Correa Abondano1, Raul Blas2 and Karl Schmid1,3* Abstract Background: Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results: Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy ( r = 0.99 ). We inte- grated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identifed key training parameters for efcient iterative model updating.
    [Show full text]
  • Julian E. Zelizer
    Julian E. Zelizer Julian E. Zelizer Department of History and Woodrow Wilson School Princeton University 136 Dickinson Hall Princeton, NJ 08544-1174 Phone: 609-258-8846 Cell Phone: 609-751-4147 Department FAX: 609-258-5326 Faculty Appointments Professor of History and Public Affairs, Princeton University, 2007-Present. Faculty Associate, Center for the Study for the Study of Democratic Politics, 2007-Present. Professor of History, Boston University, 2004-2007. Faculty Associate, Center for American Political Studies, Harvard University, 2004-2007. Associate Professor, Department of Public Administration and Policy, State University of New York at Albany, 2002-2004. Joint appointment with the Department of Political Science. Affiliated Faculty, Center of Policy Research, State University of New York at Albany, 2002- 2004. Associate Professor, Department of History, State University of New York at Albany, 1999- 2002. Joint Appointment with Department of Public Administration and Policy, 1999-2002. Assistant Professor, Department of History, State University of New York at Albany, 1996- 1999. Education Ph.D., Department of History, The Johns Hopkins University, 1996. M.A., with four Distinctions, Department of History, The Johns Hopkins University, 1993. B.A., Summa Cum Laude with Highest Honors in History, Brandeis University, 1991. Editorial Positions Co-Editor, Politics and Society in Twentieth Century America book series, Princeton University Press, 2002-Present. Editorial Board, The Journal of Policy History, 2002-Present. Books Jimmy Carter (New York: Times Books, Forthcoming, Fall 2010). 2 Conservatives in Power: The Reagan Years, 1981-1989 (Boston: Bedford, Forthcoming, Fall 2010). Arsenal of Democracy: The Politics of National Security--From World War II to the War on Terrorism (New York: Basic Books, 2010).
    [Show full text]
  • Render for CNN: Viewpoint Estimation in Images Using Cnns Trained with Rendered 3D Model Views
    Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views Hao Su⇤, Charles R. Qi⇤, Yangyan Li, Leonidas J. Guibas Stanford University Abstract Object viewpoint estimation from 2D images is an ConvoluƟonal Neural Network essential task in computer vision. However, two issues hinder its progress: scarcity of training data with viewpoint annotations, and a lack of powerful features. Inspired by the growing availability of 3D models, we propose a framework to address both issues by combining render-based image synthesis and CNNs (Convolutional Neural Networks). We believe that 3D models have the potential in generating a large number of images of high variation, which can be well exploited by deep CNN with a high learning capacity. Figure 1. System overview. We synthesize training images by overlaying images rendered from large 3D model collections on Towards this goal, we propose a scalable and overfit- top of real images. CNN is trained to map images to the ground resistant image synthesis pipeline, together with a novel truth object viewpoints. The training data is a combination of CNN specifically tailored for the viewpoint estimation task. real images and synthesized images. The learned CNN is applied Experimentally, we show that the viewpoint estimation from to estimate the viewpoints of objects in real images. Project our pipeline can significantly outperform state-of-the-art homepage is at https://shapenet.cs.stanford.edu/ methods on PASCAL 3D+ benchmark. projects/RenderForCNN 1. Introduction However, this is contrary to the recent finding — features learned by task-specific supervision leads to much better 3D recognition is a cornerstone problem in many vi- task performance [16, 11, 14].
    [Show full text]
  • History Early History
    Cable News Network, almost always referred to by its initialism CNN, is a U.S. cable newsnetwork founded in 1980 by Ted Turner.[1][2] Upon its launch, CNN was the first network to provide 24-hour television news coverage,[3] and the first all-news television network in the United States.[4]While the news network has numerous affiliates, CNN primarily broadcasts from its headquarters at the CNN Center in Atlanta, the Time Warner Center in New York City, and studios in Washington, D.C. and Los Angeles. CNN is owned by parent company Time Warner, and the U.S. news network is a division of the Turner Broadcasting System.[5] CNN is sometimes referred to as CNN/U.S. to distinguish the North American channel from its international counterpart, CNN International. As of June 2008, CNN is available in over 93 million U.S. households.[6] Broadcast coverage extends to over 890,000 American hotel rooms,[6] and the U.S broadcast is also shown in Canada. Globally, CNN programming airs through CNN International, which can be seen by viewers in over 212 countries and territories.[7] In terms of regular viewers (Nielsen ratings), CNN rates as the United States' number two cable news network and has the most unique viewers (Nielsen Cume Ratings).[8] History Early history CNN's first broadcast with David Walkerand Lois Hart on June 1, 1980. Main article: History of CNN: 1980-2003 The Cable News Network was launched at 5:00 p.m. EST on Sunday June 1, 1980. After an introduction by Ted Turner, the husband and wife team of David Walker and Lois Hart anchored the first newscast.[9] Since its debut, CNN has expanded its reach to a number of cable and satellite television networks, several web sites, specialized closed-circuit networks (such as CNN Airport Network), and a radio network.
    [Show full text]
  • Compressed Convolutional Neural Network For
    COMPRESSED CONVOLUTIONAL NEURAL NETWORK FOR AUTONOMOUS SYSTEMS A Thesis Submitted to the Faculty of Purdue University by Durvesh Pathak In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Computer Engineering December 2018 Purdue University Indianapolis, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. Mohamed El-Sharkawy, Chair Department of Engineering and Technology Dr. Maher Rizkalla Department of Engineering and Technology Dr. Brian King Department of Engineering and Technology Approved by: Dr. Brian King Head of the Graduate Program iii This is dedicated to my parents Bharati Pathak and Ramesh Chandra Pathak, my brother Nikhil Pathak and my amazing friends Jigar Parikh and Ankita Shah. iv ACKNOWLEDGMENTS This wouldn't have been possible without the support of Dr. Mohamed El- Sharkawy. It was his constant support and motivation during the course of my thesis, that helped me to pursue my research. He has been a constant source of ideas. I would also like to thank the entire Electrical and Computer Engineering Department, especially Sherrie Tucker, for making things so easy for us and helping us throughout our time at IUPUI. I would also like to thank people I collaborated with during my time at IUPUI, De- want Katare, Akash Gaikwad, Surya Kollazhi Manghat, Raghavan Naresh Saranga- pani without your support it would be very difficult to get things done. A special thank to my friends and mentors Aloke, Nilesh, Irtzam, Shantanu, Har- shal, Vignesh, Mahajan, Arminta, Yash, Kunal, Priyan, Gauri, Rajas, Mitra, Monil, Ania, Poorva, and many more for being around.
    [Show full text]
  • Governing the “Spatial Reach”? Spheres of Influence and Challenges to Global Media Policy
    International Journal of Communication 1 (2007), 56-73 1932-8036/20070056 Governing the “Spatial Reach”? Spheres of Influence and Challenges to Global Media Policy INGRID VOLKMER University of Otago The advanced globalization process reveals not only new 'network' information infrastructures but new political terrains. Although communication theory has just commenced to debate new forms of 'public' discourse, it is of equal importance to address new emerging issues of information sovereignty within a transnational public space. The following article attempts to 'map' the arising spheres of 'sovereignty.' In the first part, the article develops the conceptual shift of 'sovereignty' as 'ontological spaces' which provide, in the second part, a framework of analysis of today's transnational political information flows. The advanced global communication process of the 21st century discloses new symbolic boundaries within a sophisticated globalized media sphere which constitute new layers of not only cultural but increasingly political relevance. It seems as if not only central values of ‘Western’ and ‘Moslem’ worlds indisputably collide but it has illustrated once more the powerful role of global mediated communication itself. In comparison to today’s complex multidimensional globalization process, things were refreshingly simple in McLuhan’s time in the early satellite age. The metaphor of the “Global Village” (McLuhan/Powers, 1989) was coined to describe the notion of a cultural ‘contraction’ of otherwise conflicted societies into a borderless homogenized world. Within the dusty boundaries of the Cold War time, of ‘iron curtains’ and walls raised to (physically!) separate ideological terrains, structured international relations in those days. Given this geopolitical context, McLuhan’s vision has been perceived as a truly liberating idea, liberating through the view on the world as a whole.
    [Show full text]
  • Sentiment Analysis Via Sentence Type Classification Using Bilstm-CRF
    Expert Systems With Applications 72 (2017) 221–230 Contents lists available at ScienceDirect Expert Systems With Applications journal homepage: www.elsevier.com/locate/eswa Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN ∗ Tao Chen a, Ruifeng Xu a,b, , Yulan He c, Xuan Wang a a Shenzhen Engineering Laboratory of Performance Robots at Digital Stage, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China b Guangdong Provincial Engineering Technology Research Center for Data Science, Guangzhou, China c School of Engineering and Applied Science, Aston University, Birmingham, UK a r t i c l e i n f o a b s t r a c t Article history: Different types of sentences express sentiment in very different ways. Traditional sentence-level senti- Received 9 July 2016 ment classification research focuses on one-technique-fits-all solution or only centers on one special type Revised 1 October 2016 of sentences. In this paper, we propose a divide-and-conquer approach which first classifies sentences Accepted 21 October 2016 into different types, then performs sentiment analysis separately on sentences from each type. Specif- Available online 9 November 2016 ically, we find that sentences tend to be more complex if they contain more sentiment targets. Thus, Keywords: we propose to first apply a neural network based sequence model to classify opinionated sentences into Natural language processing three types according to the number of targets appeared in a sentence. Each group of sentences is then Sentiment analysis fed into a one-dimensional convolutional neural network separately for sentiment classification. Our ap- Deep neural network proach has been evaluated on four sentiment classification datasets and compared with a wide range of baselines.
    [Show full text]
  • Lucifer-Onde-A-Verdade-É-A-Lei-Bob-Navarro.Pdf
    1 “O real Conhecimento não é a repetição de informação, mas a soma da Sensação e Lógica que define a própria Verdade. É o corpo da Luz em expressão temporal; - que dá vida as palavras e se faz vivo por elas." - Bob 10-3-2012 SP 2 ÍNDICE: PRIMEIRA PARTE: Introdução. Do autor. OUB. A história que não contam. Vivemos uma grande fraude. SEGUNDA PARTE: Lucifer. Sobre a Teia. Geometria Sagrada – Momentos eternos: Momento Alpha – Ponto, sensação, fêmea. Momento Beta – Reta, lógica, macho. Momento Celta – Escolha por reação, triângulo. Momento Delta – Forma, criação, quadrado. Momento Quina – Defesa, fúria, família, inter-ego. Momento Secta – Sabedoria, entendimento. Momento Septa – Escolha pela ação, poder. Momento Octa – Riqueza, conquista, glória. Momento Nona – Destruição, reciclagem. Momento Deca – Ponderação, paciência, controle. Momento Elpha – Sacrifício, construção. Momento Dota – O Reinado. Momento Ômega – O Deus Livre. Reinos – De Alpha a Ômega nos teatros do tempo. Éter. Momento Lux. 3 Adaptação. Revolução – Visão Ômega sobre Alpha. Evolução – Recontagem sobre Alpha de novo Raio. Deuses – O domínio da Consciência. Dualidade – Só da ilha se vê o continente. Destino e Livre arbítrio – Lógica e Sensação. Jeová e Lucifer – Um não bebe sem o outro. As Igrejas x Escolas de Mistérios – O Teatro da Terra. Do Apocalipse ao Ragnarök – A respiração da Vida. Orion - Os Três Reis – O desdobramento final. Conclusão. Constituição brasileira - Liberdade de expressão. ... Art. 5º Todos são iguais perante a lei, sem distinção de qualquer na- tureza,
    [Show full text]
  • Jews Control U.S.A., Therefore the World – Is That a Good Thing?
    Jews Control U.S.A., Therefore the World – Is That a Good Thing? By Chairman of the U.S. based Romanian National Vanguard©2007 www.ronatvan.com You probably don’t believe a world! That’s why we decided to back up with proof & facts all our statements in 15 (as short as possible) Chapters! v. 1.5 1 INDEX 1. Are Jews satanic? 1.1 What The Talmud Rules About Christians 1.2 Foes Destroyed During the Purim Feast 1.3 The Shocking "Kol Nidre" Oath 1.4 The Bar Mitzvah - A Pledge to The Jewish Race 1.5 Jewish Genocide over Armenian People 1.6 The Satanic Bible 1.7 Other Examples 2. Are Jews the “Chosen People” or the real “Israel”? 2.1 Who are the “Chosen People”? 2.2 God & Jesus quotes about race mixing and globalization 3. Are they “eternally persecuted people”? 3.1 Crypto-Judaism 4. Is Judeo-Christianity a healthy “alliance”? 4.1 The “Jesus was a Jew” Hoax 4.2 The "Judeo - Christian" Hoax 4.3 Judaism's Secret Book - The Talmud 5. Are Christian sects Jewish creations? Are they affecting Christianity? 5.1 Biblical Quotes about the sects , the Jews and about the results of them working together. 6. “Anti-Semitism” shield & weapon is making Jews, Gods! 7. Is the “Holocaust” a dirty Jewish LIE? 7.1 The Famous 66 Questions & Answers about the Holocaust 8. Jews control “Anti-Hate”, “Human Rights” & Degraded organizations??? 8.1 Just a small part of the full list: CULTURAL/ETHNIC 8.2 "HATE", GENOCIDE, ETC.
    [Show full text]