Supplementary Table I

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table I Primary Sequence BMS-690514 BMS-690514 Cisplatin Cisplatin Accession # Sequence Name(s) Sequence Description Name 5 μM 24 h 1 μM 48 h 50 μM 24 h 25 μM 48h Fold Change P-value Fold Change P-value Fold Change P-value Fold Change P-value 1 NM_014033 METTL7A METTL7A,AAM-B,DKFZP586A0522 - DKFZP586A0522 protein 10,613 0 3,565 1,205E-43 n.s. n.s. n.s. n.s. 2 NM_000499 CYP1A1 CYP1A1,AHH,AHRR,CP11,CYP1,P1-450,P450-C,P4- cytochrome P450, subfamily I (aromatic compou 8,917 0 1,767 2,69E-15 n.s. n.s. n.s. n.s. 3 NM_024626 VTCN1 VTCN1,B7X,B7H4,B7S1,B7-H4,B7h.5,VCTN1,PRO1 - hypothetical protein FLJ22418 8,272 6,67E-36 5,335 4,614E-21 n.s. n.s. n.s. n.s. 4 NM_002118 HLA-DMB HLA-DMB,RING7,D6S221E - major histocompatibility complex, class II, DM be 6,847 1,77E-27 3,424 3,229E-26 n.s. n.s. -2,156 7,374E-23 5 NM_002510 GPNMB GPNMB,NMB,HGFIN - glycoprotein (transmembrane) nmb 6,198 0 4,004 6,457E-34 n.s. n.s. -4,714 3,887E-42 6 NM_052880 MGC17330 MGC17330,HGFL,hHGFL(S) - HGFL gene 6,078 3,83E-33 3,787 0 n.s. n.s. n.s. n.s. 7 NM_030806 C1orf21 C1orf21,PIG13 - chromosome 1 open reading frame 21 5,239 2,61E-27 3,406 3,488E-21 n.s. n.s. n.s. n.s. 8 NM_000104 CYP1B1 CYP1B1,CP1B,GLC3A - cytochrome P450, subfamily I (dioxin-inducible), 4,878 0 3,624 0 n.s. n.s. n.s. n.s. 9 NM_003004 SECTM1 SECTM1,K12 - secreted and transmembrane 1 4,785 1,80E-30 3,611 3,361E-20 3,689 1,893E-22 n.s. n.s. 10 THC2174542 THC2174542 - Q9GZC7 (Q9GZC7) RNA binding protein RGGm 4,609 0 3,573 0 n.s. n.s. n.s. n.s. 11 AI573267 THC2043606 THC2043606 - AI573267 tn03f02.x1 NCI_CGAP_Brn25 Homo s 4,434 9,66E-40 2,339 1,122E-13 n.s. n.s. n.s. n.s. 12 NM_003881 WISP2 WISP2,CCN5,CT58,CTGF-L - WNT1 inducible signaling pathway protein 2 4,404 5,75E-44 4,795 0 n.s. n.s. n.s. n.s. 13 NM_001001930 PPARA PPARA,PPAR,NR1C1,hPPAR,MGC2237,MGC2452 - Homo sapiens peroxisome proliferative activated 4,359 1,95E-16 n.s. n.s. n.s. n.s. n.s. n.s. 14 THC2173888 THC2173888 - Q8IW28 (Q8IW28) ARHT1 protein (Fragment), p 4,306 2,28E-13 3,635 2,799E-41 n.s. n.s. n.s. n.s. 15 NM_002784 PSG9 PSG9,PSG11 - pregnancy specific beta-1-glycoprotein 9 4,216 2,10E-24 6,902 8,681E-36 n.s. n.s. n.s. n.s. 16 NM_152673 MUC20 MUC20,FLJ14408,KIAA1359 - Homo sapiens mucin 20 (MUC20), mRNA [NM_ 4,208 0 2,249 1,941E-37 n.s. n.s. n.s. n.s. 17 NM_024336 IRX3 IRX3,IRX-1 - Homo sapiens iroquois homeobox protein 3 (IRX 4,077 8,84E-43 1,993 6E-15 n.s. n.s. n.s. n.s. 18 AB033060 AHRR AHRR,AHH,AHHR,KIAA1234 - KIAA1234 protein 3,992 1,13E-26 n.s. n.s. n.s. n.s. n.s. n.s. 19 NM_002121 HLA-DPB1 HLA-DPB1,DPB1,HLA-DP1B,MHC DPB1 - major histocompatibility complex, class II, DP be 3,89 0 3,732 0 n.s. n.s. n.s. n.s. 20 A_32_P40999 A_32_P40999 - Unknown 3,842 2,74E-29 3,039 6,425E-35 n.s. n.s. n.s. n.s. 21 NM_020686 ABAT ABAT,GABAT,NPD009,GABA-AT - NPD009 protein 3,826 5,50E-14 n.s. n.s. n.s. n.s. n.s. n.s. 22 NM_022359 PDE4DIP PDE4DIP,MMGL,CMYA2,MGC75440,DKFZp781J05 - similar to rat myomegalin 3,822 9,88E-12 n.s. n.s. n.s. n.s. n.s. n.s. 23 NM_207644 LOC388886 LOC388886,MGC131773 - similar to hypothetical protein LOC192734 3,795 4,50E-31 4,343 0 n.s. n.s. n.s. n.s. 24 A_32_P75141 A_32_P75141 - Unknown 3,785 4,20E-44 1,94 1,692E-16 -1,93 2,366E-15 n.s. n.s. 25 NM_001195 BFSP1 BFSP1,CP94,CP115,LIFL-H,FILENSIN - beaded filament structural protein 1, filensin 3,744 0 1,736 1,335E-12 n.s. n.s. n.s. n.s. 26 NM_001873 CPE CPE - carboxypeptidase E 3,686 3,36E-37 3,985 0 n.s. n.s. -2,797 3,305E-20 27 NM_130897 DYNLRB2 DYNLRB2,DNCL2B,DNLC2B,MGC62033 - Homo sapiens dynein, cytoplasmic, light polypep 3,605 3,21E-13 2,111 3,832E-11 n.s. n.s. n.s. n.s. 28 NM_003793 CTSF CTSF,CATSF - cathepsin F 3,512 6,73E-26 2,827 6,499E-32 1,593 8,057E-23 1,536 4,093E-15 29 NM_053000 C5orf26 C5orf26,TIGA1,MGC126893,MGC138282 - TIGA1 3,507 4,18E-39 2,78 0 n.s. n.s. n.s. n.s. 30 NM_024705 DHRS12 DHRS12,FLJ13639 - hypothetical protein FLJ13639 3,487 2,98E-23 2,194 1,409E-12 n.s. n.s. n.s. n.s. 31 NM_003944 SELENBP1 SELENBP1,LPSB,SP56,hSBP,hSP56,FLJ13813 - selenium binding protein 1 3,457 0 2,535 0 1,416 2,794E-11 n.s. n.s. 32 NM_004925 AQP3 AQP3,GIL - aquaporin 3 3,396 0 n.s. n.s. n.s. n.s. n.s. n.s. 33 NM_002121 HLA-DPB1 HLA-DPB1,DPB1,HLA-DP1B,MHC DPB1 - major histocompatibility complex, class II, DP be 3,39 0 3,166 5,536E-36 n.s. n.s. n.s. n.s. 34 NM_153486 LDHD LDHD,MGC57726 - Homo sapiens lactate dehydrogenase D (LDHD) 3,385 0 2,148 1,752E-32 n.s. n.s. n.s. n.s. 35 NM_019590 KIAA1217 KIAA1217,MGC31990,DKFZP761L0424,RP11-324E - Homo sapiens KIAA1217 (KIAA1217), mRNA [N 3,353 6,38E-23 2,692 1,663E-33 n.s. n.s. n.s. n.s. 36 NM_002785 PSG11 PSG11,PSG13,PSG14,MGC22484 - pregnancy specific beta-1-glycoprotein 11 3,343 3,66E-15 6,767 0 n.s. n.s. n.s. n.s. 37 AK125231 ENST00000334429 ENST00000334429 - DJ1182A14.3 (Similar to MST1 (Macrophage sti 3,338 3,84E-33 2,549 0 1,878 4,203E-11 n.s. n.s. 38 NM_006120 HLA-DMA HLA-DMA,DMA,HLADM,RING6,D6S222E - major histocompatibility complex, class II, DM al 3,318 2,59E-26 2,242 6,96E-17 n.s. n.s. -2,643 5,736E-24 39 NM_001831 CLU CLU,CLI,AAG4,APOJ,KUB1,SGP2,SGP-2,SP-40,TR - clusterin (complement lysis inhibitor, SP-40,40, s 3,28 4,53E-31 3,63 6,635E-33 2,194 4,79E-11 3,091 1,086E-18 40 AK027147 LOC253970 LOC253970 - Homo sapiens cDNA: FLJ23494 fis, clone LNG0 3,279 0 1,829 2,153E-28 -1,928 2,514E-29 -3,718 1,976E-38 41 NM_144626 TMEM125 TMEM125,MGC17299 - hypothetical protein MGC17299 3,255 3,62E-39 3,061 0 n.s. n.s. n.s. n.s. 42 NM_012385 NUPR1 NUPR1,P8,COM1 - nuclear protein 1 3,234 0 2,311 0 1,669 7,664E-30 n.s. n.s. 43 THC2085019 THC2085019 - Unknown 3,182 1,24E-33 2,984 0 n.s. n.s. n.s. n.s. 44 NM_006163 NFE2 NFE2,p45,NF-E2 - nuclear factor (erythroid-derived 2), 45kD 3,162 1,03E-32 2,657 1,038E-33 1,57 1,078E-11 n.s. n.s. 45 THC2208725 THC2208725 - Unknown 3,125 5,06E-17 n.s. n.s. n.s. n.s. n.s. n.s. 46 NM_000142 FGFR3 FGFR3,ACH,CEK2,JTK4,CD333,HSFGFR3EX - fibroblast growth factor receptor 3 (achondroplas 3,124 0 2,844 1,401E-45 n.s. n.s. n.s. n.s. 47 AK131385 PXK PXK,MONaKA,FLJ20335 - Homo sapiens cDNA FLJ16460 fis, clone BRCA 3,114 6,18E-19 2,332 9,02E-12 n.s. n.s. n.s. n.s. 48 NM_006657 FTCD FTCD,LCHC1 - formiminotransferase cyclodeaminase 3,1 1,43E-15 n.s. n.s. n.s. n.s. n.s. n.s. 49 BX100171 BX100171 BX100171 - BX100171 Soares_testis_NHT Homo sapiens cD 3,066 2,07E-29 n.s. n.s. n.s. n.s. n.s. n.s. 50 AY358725 GRAMD1C GRAMD1C,FLJ35862,FLJ40464,DKFZp434C0328,D - Homo sapiens clone DNA105680 ENLS2543 (U 3,054 5,47E-12 n.s. n.s. n.s. n.s. n.s. n.s. 51 BC028068 JAK3 JAK3,JAKL,LJAK,JAK-3,L-JAK,JAK3_HUMAN - Homo sapiens Janus kinase 3 (a protein tyrosine 3,042 9,63E-17 n.s. n.s. n.s. n.s. n.s. n.s. 52 NM_207443 FLJ45244 FLJ45244 - FLJ45244 protein 3,035 1,54E-44 2,086 2,137E-24 n.s. n.s. n.s. n.s. 53 NM_004862 LITAF LITAF,PIG7,CMT1C,SIMPLE,TP53I7 - LPS-induced TNF-alpha factor 3,027 0 2,307 0 n.s. n.s. -2,008 3,65E-39 54 THC2172359 THC2172359 - BIM_HUMAN (O43521) Bcl-2-like protein 11 (Bc 3,01 0 1,949 1,48E-36 n.s. n.s. n.s. n.s. 55 BC038972 ZNF467 ZNF467,EZI,Zfp467 - Homo sapiens, Similar to hypothetical protein, M 2,992 8,19E-42 2,393 0 n.s. n.s. -1,598 6,924E-24 56 BX091689 BX091689 BX091689 - BX091689 Soares_NFL_T_GBC_S1 Homo sapi 2,987 9,52E-33 2,253 1,906E-23 n.s.
Recommended publications
  • C1orf21 CRISPR/Cas9 KO Plasmid (H): Sc-417269
    SANTA CRUZ BIOTECHNOLOGY, INC. C1orf21 CRISPR/Cas9 KO Plasmid (h): sc-417269 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and C1orf21 CRISPR/Cas9 KO Plasmid (h) is recommended for the disruption of CRISPR-associated protein (Cas9) system is an adaptive immune response gene expression in human cells. defense mechanism used by archea and bacteria for the degradation of foreign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas hybrid) promoter: drives expression of Cas9 systems. Science 339: 819-823. 2A peptide: allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nuclear localization signal SpCas9 ribonuclease Nat. Protoc. 8: 2281-2308.
    [Show full text]
  • Sorbonne Université́
    Sorbonne Université́ École Doctorale ED515 – Complexité́ du vivant INSERM UMRS 933 : Physiopathologie des maladies génétiques d'expression pédiatrique Mécanismes physiopathologiques impliqués dans la différenciation du tractus génital masculin Matthieu Peycelon Thèse de Doctorat de Génétique Humaine Dirigée par Pr. Jean-Pierre Siffroi Présentée et soutenue publiquement le 19 décembre 2019 Devant un jury composé de : Brigitte BENZACKEN PU-PH Université Paris 13 Rapporteur Anne-Françoise SPINOIT Professeur Université de Gand Rapporteur Irène NETCHINE PU-PH Université Paris 6 Examinateur Nicolas KALFA PU-PH Université de Montpellier Examinateur Alaa EL GHONEIMI PU-PH Université Paris 7 Président Jean-Pierre SIFFROI PU-PH Université Paris 6 Directeur de thèse Sorbonne Université́ École Doctorale ED515 – Complexité́ du vivant INSERM UMRS 933 : Physiopathologie des maladies génétiques d'expression pédiatrique Mécanismes physiopathologiques impliqués dans la différenciation du tractus génital masculin Matthieu Peycelon Thèse de Doctorat de Génétique Humaine Dirigée par Pr. Jean-Pierre Siffroi Présentée et soutenue publiquement le 19 décembre 2019 Devant un jury composé de : Brigitte BENZACKEN PU-PH Université Paris 13 Rapporteur Anne-Françoise SPINOIT Professeur Université de Gand Rapporteur Irène NETCHINE PU-PH Université Paris 6 Examinateur Nicolas KALFA PU-PH Université de Montpellier Examinateur Alaa EL GHONEIMI PU-PH Université Paris 7 Président Jean-Pierre SIFFROI PU-PH Université Paris 6 Directeur de thèse Ce travail de thèse a été réalisé́ sous la direction du Professeur Jean-Pierre Siffroi, au sein de l’unité́ mixte de recherche INSERM / Sorbonne Université UMR_S933 dirigée par le Professeur Serge Amselem. Adresse : Département de Génétique Médicale, Hôpital Armand Trousseau ; 26 avenue du Docteur Arnold Netter, 75012, Paris.
    [Show full text]
  • Identification of Key Pathways and Genes in Endometrial Cancer Using Bioinformatics Analyses
    ONCOLOGY LETTERS 17: 897-906, 2019 Identification of key pathways and genes in endometrial cancer using bioinformatics analyses YAN LIU, TENG HUA, SHUQI CHI and HONGBO WANG Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China Received March 16, 2018; Accepted October 12, 2018 DOI: 10.3892/ol.2018.9667 Abstract. Endometrial cancer (EC) is one of the most Introduction common gynecological cancer types worldwide. However, to the best of our knowledge, its underlying mechanisms Endometrial carcinoma (EC) is one of the most common remain unknown. The current study downloaded three mRNA gynecological cancer types, with increasing global incidence and microRNA (miRNA) datasets of EC and normal tissue in recent years (1). A total of 60,050 cases of EC and 10,470 samples, GSE17025, GSE63678 and GSE35794, from the EC-associated cases of mortality were reported in the USA in Gene Expression Omnibus to identify differentially expressed 2016 (1), which was markedly higher than the 2012 statistics genes (DEGs) and miRNAs (DEMs) in EC tumor tissues. of 47,130 cases and 8,010 mortalities (2). Although numerous The DEGs and DEMs were then validated using data from studies have been conducted to investigate the mechanisms of The Cancer Genome Atlas and subjected to gene ontology endometrial tumorigenesis and development, to the best of our and Kyoto Encyclopedia of Genes and Genomes pathway knowledge, the exact etiology remains unknown. Understanding analysis. STRING and Cytoscape were used to construct a the potential molecular mechanisms underlying EC initiation protein-protein interaction network and the prognostic effects and progression is of great clinical significance.
    [Show full text]
  • Identifying the Optimal Gene and Gene Set in Hepatocellular Carcinoma Based on Differential Expression and Differential Co-Expression Algorithm
    1066 ONCOLOGY REPORTS 37: 1066-1074, 2017 Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm LI-YANG DONG1*, WEI-ZHONG ZHOU1*, JUN-WEI NI1, WEI XIANG1, WEN-HAO HU1, CHANG YU1 and HAI-YAN LI2 Departments of 1Invasive Technology and 2Rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Ouhai, Wenzhou, Zhejiang 325000, P.R. China Received June 23, 2016; Accepted August 10, 2016 DOI: 10.3892/or.2016.5333 * Abstract. The objective of this study was to identify the with ΔG = 18.681 and 24 HDE-HDC partitions in total. In optimal gene and gene set for hepatocellular carcinoma conclusion, we successfully investigated the optimal gene, (HCC) utilizing differential expression and differential MAPRE1, and gene set, nucleoside metabolic process, which co-expression (DEDC) algorithm. The DEDC algorithm may be potential biomarkers for targeted therapy and provide consisted of four parts: calculating differential expression significant insight for revealing the pathological mechanism (DE) by absolute t-value in t-statistics; computing differential underlying HCC. co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and Introduction the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different Hepatocellular carcinoma (HCC) is the fifth most common partitions to determine the optimal gene set with highest mean cancer worldwide and the third leading cause of cancer-related * minimum functional information (FI) gain (ΔG). The optimal mortality (1), making it urgent to identify early diagnostic thresholds divided genes into four partitions, high DE and markers and therapeutic targets (2).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen C1orf21 Product Datasheet
    PrEST Antigen C1orf21 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen C1orf21 Product Number APrEST71329 Gene Description chromosome 1 open reading frame 21 Alternative Gene PIG13 Names Corresponding Anti-C1orf21 (HPA026831) Antibodies Description Recombinant protein fragment of Human C1orf21 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: AKHVATVQNEEEAQKGKNYQNGDVFGDEYRIKPVEEVKYMKNGAEEEQKI AARNQENLEKSASSNVRLKTNKEVPGLVHQPRANMHISESQQEFFRMLDE KIEKGRDYCSEE Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 31 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Supplementary Tables
    Supp Table 1. Patient characteristics of samples used for colony assays, xenografts and intracellular colony assays Sr.No Age Sex Diagnosis Blast% Cytogenetics Mutations (IPSS) (AF%) Patient samples used for colony assays 1. 68 F Low risk 1% N/A None MDS 2. 78 M RAEB-1 7% N/A DNMT3A 3. 66 F High risk 12.2% 5q-,7q-,+11, DNMT3A MDS 20q- (28%) TP53 (58%) 4. 61 M High risk 6.2% Monosomy 7 ASXL1 (36%) MDS EZH2 (77%) RUNX1(18%) 5. 63 M Low risk Normal ETV6 (34%), MDS KRAS(15%), RUNX1 (40%), SRSF2 (43%), ZRSR2 (86%) 6. 62 F RAEB-2 Del 5q TP53 (7%) 7. 76 F t-MDS <1% Normal TET2(10%) 8. 80 M Low risk 5% Normal SF3B1(21%) MDS TET2(8%) ZRZR2(62%) 9. 74 F MPN 5% JAK2V617F+ 10. 76 M Low risk <1% Deletion Y None MDS 11. 84 M Low risk N/A N/A N/A MDS 12. 86 M Int-2 MDS 4-8% Normal U2AF1 (43%) blasts CBL (15%) 13. 64 M low risk 1-3% 20q deletion ASXL1 (17%) MDS SETBP1(17%) U2AF1(15%) 14. 81 F Low risk <1% Normal None MDS Patient samples used for PDX 15. 87 F Int-2 risk 1.2% Complex SETBP1 (38%) MDS cytogenetics, del 7, dup 11, del 13q 16. 59 F High-risk 7-10% Complex NRAS (12%), MDS cytogenetics RUNX1 (20%), (-5q31, -7q31, SRSF2 (22%), trisomy 8, del STAG2 (17%) 11q23 17. 79 F Int-2 risk 5-8% None MDS 18. 67 M MPN 6.6% Normal CALR (51%) IDH1(47%) PDGFRB (47%) Patient samples used for intracellular ASO uptake 19.
    [Show full text]
  • Genome-Wide Association Study Identifies Loci for Arterial Stiffness
    www.nature.com/scientificreports OPEN Genome-wide association study identifes loci for arterial stifness index in 127,121 UK Biobank Received: 1 February 2019 Accepted: 5 June 2019 participants Published: xx xx xxxx Kenneth Fung1, Julia Ramírez 2, Helen R. Warren2,3, Nay Aung 1, Aaron M. Lee1, Evan Tzanis2,3, Stefen E. Petersen 1,3 & Patricia B. Munroe2,3 Arterial stifness index (ASI) is a non-invasive measure of arterial stifness using infra-red fnger sensors (photoplethysmography). It is a well-suited measure for large populations as it is relatively inexpensive to perform, and data can be acquired within seconds. These features raise interest in using ASI as a tool to estimate cardiovascular disease risk as prior work demonstrates increased arterial stifness is associated with elevated systolic blood pressure, and ASI is predictive of cardiovascular disease and mortality. We conducted genome-wide association studies (GWASs) for ASI in 127,121 UK Biobank participants of European-ancestry. Our primary analyses identifed variants at four loci reaching genome-wide signifcance (P < 5 × 10−8): TEX41 (rs1006923; P = 5.3 × 10−12), FOXO1 (rs7331212; P = 2.2 × 10−11), C1orf21 (rs1930290, P = 1.1 × 10−8) and MRVI1 (rs10840457, P = 3.4 × 10−8). Gene- based testing revealed three signifcant genes, the most signifcant gene was COL4A2 (P = 1.41 × 10−8) encoding type IV collagen. Other candidate genes at associated loci were also involved in smooth muscle tone regulation. Our fndings provide new information for understanding the development of arterial stifness. Arterial stifness measures have been reported as independent markers of vascular ageing1,2, hypertension3,4, car- diovascular disease (CVD)5,6 and mortality6,7.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]