2020.03.23.20041467V1.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2020.03.23.20041467V1.Full.Pdf medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome Matthew C Sims*1,2,3, Louisa Mayer*1,2, Janine H Collins*1,2,4, Tadbir K Bariana*1,4,5, Karyn Megy1,2,6, Cecile Lavenu-Bombled7, Denis Seyres1,2,6, Laxmikanth Kollipara8, Frances S Burden1,2,6, Daniel Greene1,6,9, Dave Lee10, Antonio Rodriguez-Romera1,2, Marie-Christine Alessi11, William J Astle2,9, Wadie F Bahou12, Loredana Bury13, Elizabeth Chalmers14, Rachael Da Silva10, Erica De Candia15,16, Sri V V Deevi1,6, Samantha Farrow1,2,6, Keith Gomez5, Luigi Grassi1,2,6, Andreas Greinacher17, Paolo Gresele13, Dan Hart18, Marie-Françoise Hurtaud7, Anne M Kelly1, Ron Kerr19, Sandra Le Quellec20, Thierry Leblanc7, Eva B Leinøe21, Rutendo Mapeta1,6, Harriet McKin- ney1,2,6, Alan D Michelson22, Sara Morais23,24, Diane Nugent25, Sofia Papadia1,2,6, Soo J Park26, John Pasi18, Gian Marco Podda27, Man-Chiu Poon28, Rachel Reed10, Mallika Sekhar29, Hanna Shalev30, Suthesh Sivapalaratnam1,4, Orna Steinberg-Shemer31,32, Jonathan C Stephens1,6, Robert C Tait33, Ernest Turro1,2,6,9, John K M Wu34, Barbara Zieger35, NIHR BioResource6, Taco W Kuijpers36,37, Anthony D Whetton10, Albert Sickmann8,38,39, Kathleen Freson40, Kate Downes1,6, Wendy N Erber41,42, Mattia Frontini1,2,43, Paquita Nurden44, Willem H Ouwehand1,2,6,45, Remi Favier**7,46, and Jose A Guerrero**1,2 1 Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 2 National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK; NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 3 Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK; 4 Department of Haematology, Barts Health NHS Trust, London, UK; 5 Royal Free London, NHS Foundation Trust, London, UK; 6 NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Cam- pus, Cambridge, UK; 7 Assistance Publique-Hôpitaux de Paris, Centre de Reference des Pathologies Plaquettaires, Hôpitaux Armand Trousseau, Bicêtre, Robert Debré, Paris, France; 8 Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Dortmund, Germany; 9 Medical Research Council Biostatistics Unit, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, UK; 10 Stoller Biomarker Discovery Centre, Division of Cancer Sciences, School of Med- ical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; 11 Centre for CardioVascular and Nutrition Research, INSERM 1263, INRAE 1260, Marseille, France; 12 Stony Brook University School of Medicine, Stony Brook, USA; 13 Department of Medicine, Section of Internal and Cardiovascular Medicine, Uni- versity of Perugia, Perugia, Italy; 2 medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 14 Royal Hospital for Sick Children, Glasgow, UK; 15 Institute of Internal Medicine and Geriatrics, Catholic University School of Medi- cine, Rome, Italy; 16 Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; 17 Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greif- swald, Greifswald, Germany; 18 The Royal London Hospital Haemophilia Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; 19 Department of Haematology, Ninewells Hospital and Medical School, Dundee, UK; 20 Service d'hématologie biologique, Hospices Civils de Lyon, Lyon, France; 21 Department of Haematology, Rigshospitalet, Copenhagen, Denmark; 22 Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; 23 Serviço de Hematologia Clínica, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal; 24 Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Bio- médicas, Universidade do Porto, Porto, Portugal; 25 Center for Inherited Bleeding Disorders, Children's Hospital of Orange County, Or- ange, CA, USA; 3 medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 26 University of California San Diego, La Jolla, CA, USA; 27 Unità di Medicina 2, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Sa- lute, Università degli Studi di Milano, Milan, Italy; 28 University of Calgary Cumming School of Medicine and Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Calgary, AB, Canada; 29 Department of Haematology, Royal Free London NHS Trust, London, UK; 30 Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel; 31 Department of Hematology-Oncology, Schneider Children's Medical Center of Is- rael, Petach Tikva, Israel; 32 Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; 33 Department of Haematology, Royal Infirmary, Glasgow, UK; 34 Division of Hematology-Oncology, University of British Columbia and BC Chil- dren's Hospital, Vancouver, BC, Canada; 35 Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hemato- logy and Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany; 36 Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands; 4 medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 37 Sanquin Research Institute, Department of Blood Cell Research, University of Am- sterdam, Amsterdam, The Netherlands; 38 Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK; 39 Medizinische Fakultät, Medizinisches Proteom Center, Ruhr-Universität Bochum, Bochum, Germany; 40 University of Leuven, Department of Cardiovascular Sciences, Center for Molecu- lar and Vascular Biology, Leuven, Belgium; 41 Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia; 42 PathWest Laboratory Medicine, The University of Western Australia, Nedlands, Australia; 43 British Heart Foundation, Cambridge Centre for Research Excellence, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; 44 Institut Hospitalo-Universitaire LIRYC, PTIB, Hôpital Xavier Arnozan, Pessac, France; 45 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; 46 INSERM UMR 1170, Gustave Roussy Cancer Campus, Universite Paris-Saclay, Villejuif, France 5 medRxiv preprint doi: https://doi.org/10.1101/2020.03.23.20041467; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . * Authors contributed equally to this work ** Authors contributed equally to this work Corresponding authors: Janine H Collins and Jose A Guerrero Department of Haematology NHS Blood and Transplant Building University of Cambridge Cambridge Biomedical Campus Cambridge CB2 0PT UK Email: [email protected]; [email protected] Tel: +441223588095 Abstract Gray platelet syndrome (GPS) is a rare recessive disorder caused by variants in NBEAL2 and characterized by bleeding symptoms, the absence of platelet ɑ-granules, splenomegaly and bone marrow (BM) fibrosis. Due to its rarity, it has been difficult to fully understand the pathogenic processes that lead to these clinical sequelae. To dis- cern the spectrum of pathological features, we performed a detailed clinical genotypic and phenotypic study of 47 GPS patients. We identified 33 new causal variants in NBEAL2. Our GPS patient cohort exhibited known phenotypes, including macro- thrombocytopenia, BM fibrosis, megakaryocyte emperipolesis of neutrophils, splen- omegaly, and elevated serum vitamin B12 levels. We also observed novel clinical 6 medRxiv preprint
Recommended publications
  • Exploring the Potential of the Platelet Membrane Proteome As a Source Of
    Donovan et al. Alzheimer’s Research & Therapy 2013, 5:32 http://alzres.com/content/5/3/32 RESEARCH Open Access Exploring the potential of the platelet membrane proteome as a source of peripheral biomarkers for Alzheimer’s disease Laura E Donovan1†, Eric B Dammer2†, Duc M Duong3, John J Hanfelt4, Allan I Levey1, Nicholas T Seyfried1,3* and James J Lah1* Abstract Introduction: Peripheral biomarkers to diagnose Alzheimer’s disease (AD) have not been established. Given parallels between neuron and platelet biology, we hypothesized platelet membrane-associated protein changes may differentiate patients clinically defined with probable AD from noncognitive impaired controls. Methods: Purified platelets, confirmed by flow cytometry were obtained from individuals before fractionation by ultracentrifugation. Following a comparison of individual membrane fractions by SDS-PAGE for general proteome uniformity, equal protein weight from the membrane fractions for five representative samples from AD and five samples from controls were pooled. AD and control protein pools were further divided into molecular weight regions by one-dimensional SDS-PAGE, prior to digestion in gel. Tryptic peptides were analyzed by reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Ionized peptide intensities were averaged for each identified protein in the two pools, thereby measuring relative protein abundance between the two membrane protein pools. Log2-transformed ratio (AD/control) of protein abundances fit a normal distribution, thereby permitting determination of significantly changed protein abundances in the AD pool. Results: We report a comparative analysis of the membrane-enriched platelet proteome between patients with mild to moderate AD and cognitively normal, healthy subjects.
    [Show full text]
  • Immunoglobulin G Is a Platelet Alpha Granule-Secreted Protein
    Immunoglobulin G is a platelet alpha granule-secreted protein. J N George, … , L K Knieriem, D F Bainton J Clin Invest. 1985;76(5):2020-2025. https://doi.org/10.1172/JCI112203. Research Article It has been known for 27 yr that blood platelets contain IgG, yet its subcellular location and significance have never been clearly determined. In these studies, the location of IgG within human platelets was investigated by immunocytochemical techniques and by the response of platelet IgG to agents that cause platelet secretion. Using frozen thin-sections of platelets and an immunogold probe, IgG was located within the alpha-granules. Thrombin stimulation caused parallel secretion of platelet IgG and two known alpha-granule proteins, platelet factor 4 and beta-thromboglobulin, beginning at 0.02 U/ml and reaching 100% at 0.5 U/ml. Thrombin-induced secretion of all three proteins was inhibited by prostaglandin E1 and dibutyryl-cyclic AMP. Calcium ionophore A23187 also caused parallel secretion of all three proteins, whereas ADP caused virtually no secretion of any of the three. From these data and a review of the literature, we hypothesize that plasma IgG is taken up by megakaryocytes and delivered to the alpha-granules, where it is stored for later secretion by mature platelets. Find the latest version: https://jci.me/112203/pdf Rapid Publication Immunoglobulin G Is a Platelet Alpha Granule-secreted Protein James N. George, Sherry Saucerman, Shirley P. Levine, and Linda K. Knieriem Division ofHematology, Department ofMedicine, University of Texas Health Science Center, and Audie L. Murphy Veterans Hospital, San Antonio, Texas 78284 Dorothy F.
    [Show full text]
  • MYH9-Related Platelet Disorders
    Reprinted with permission from Thieme Medical Publishers (Semin Thromb Hemost 2009;35:189-203) Homepage at www.thieme.com MYH9-Related Platelet Disorders Karina Althaus, M.D.,1 and Andreas Greinacher, M.D.1 ABSTRACT Myosin heavy chain 9 (MYH9)-related platelet disorders belong to the group of inherited thrombocytopenias. The MYH9 gene encodes the nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cytoskeletal contractile protein. Several mutations in the MYH9 gene lead to premature release of platelets from the bone marrow, macro- thrombocytopenia, and cytoplasmic inclusion bodies within leukocytes. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss, and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. To date, 31 mutations of the MYH9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid 1400 are more likely associated with syndromic manifestations than the downstream mutations. This review provides a short history of MYH9-related disorders, summarizes the clinical and laboratory character- istics, describes a diagnostic algorithm, presents recent results of animal models, and discusses aspects of therapeutic management. KEYWORDS: MYH9 gene, nonmuscle myosin IIA, May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, Sebastian platelet syndrome, macrothrombocytopenia The correct diagnosis of hereditary chronic as isolated platelet count reductions or as part of thrombocytopenias is important for planning appropri- more complex clinical syndromes.
    [Show full text]
  • Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen Under Flow in Mice Lacking the Atypical Rho Gtpase Rhobtb3
    cells Article Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen under Flow in Mice Lacking the Atypical Rho GTPase RhoBTB3 Martin Berger 1,2, David R. J. Riley 1, Julia Lutz 1, Jawad S. Khalil 1, Ahmed Aburima 1, Khalid M. Naseem 3 and Francisco Rivero 1,* 1 Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, HU6 7RX Hull, UK; [email protected] (M.B.); [email protected] (D.R.J.R.); [email protected] (J.L.); [email protected] (J.S.K.); [email protected] (A.A.) 2 Department of Internal Medicine 1, University Hospital, RWTH Aachen, 52074 Aachen, Germany 3 Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9NL Leeds, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1482-466433 Received: 8 January 2019; Accepted: 7 February 2019; Published: 11 February 2019 Abstract: Typical Rho GTPases, such as Rac1, Cdc42, and RhoA, act as molecular switches regulating various aspects of platelet cytoskeleton reorganization. The loss of these enzymes results in reduced platelet functionality. Atypical Rho GTPases of the RhoBTB subfamily are characterized by divergent domain architecture. One family member, RhoBTB3, is expressed in platelets, but its function is unclear. In the present study we examined the role of RhoBTB3 in platelet function using a knockout mouse model. We found the platelet count, size, numbers of both alpha and dense granules, and surface receptor profile in these mice were comparable to wild-type mice.
    [Show full text]
  • Adhesion Molecules and Relationship to Leukocyte Levels in Allergic Eye Disease
    Adhesion Molecules and Relationship to Leukocyte Levels in Allergic Eye Disease Annette S. Bacon,1'5 James I. McGill,5 David F. Anderson,13 Susan Baddeley,1 Susan L Lightman,2 and Stephen T. Holgate1 PURPOSE. TO evaluate the conjunctival expression of leukocyte cell adhesion molecules (CAMs) and their relationship to leukocyte patterns on the microvasculature in the different clinical subtypes of allergic eye disease. METHODS. Immunohistochemical analysis, using appropriate monoclonal antibodies, was applied to glycolmethacrylate-embedded biopsies of bulbar and tarsal conjunctival tissue. The proportion of total blood vessels expressing a particular CAM was derived and related to individual cell types identified by cell-specific markers, such as mast cells, eosinophils, neutrophils, T cells, and macrophages. Statistical analysis was used to correlate adhesion molecule expression and, ulti- mately, cell type. RESULTS. There was a basal expression of intercellular adhesion molecule-1 (ICAM-1) (21% bulbar, 18% tarsal), E-selectin (15% bulbar, 21% tarsal), and vascular cell adhesion molecule-1 (VCAM-1) (13% bulbar and tarsal) in normal controls. In seasonal and perennial (bulbar and tarsal conjunc- tival) allergic tissue, ICAM-1 and E-selectin were expressed in 40% to 78% of vessels; in chronic disease, they were expressed in 45% to 80% of vessels; and in vernal giant papillae, they were expressed in as many as 90% of vessels. There was also increased expression of endothelial VCAM-1 in all forms of allergic eye disease; the greatest values were found in vernal giant papillae (64%). Biopsies taken in winter from seasonal sufferers demonstrated a marked reduction in levels of all three CAMs compared with those taken in the pollen season.
    [Show full text]
  • CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
    + CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells.
    [Show full text]
  • A Rare Variant in MCF2L Identified Using Exclusion Linkage in A
    European Journal of Human Genetics (2016) 24, 86–91 & 2016 Macmillan Publishers Limited All rights reserved 1018-4813/16 www.nature.com/ejhg ARTICLE A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis Stephanie Maiwald1,7, Mahdi M Motazacker1,7,8, Julian C van Capelleveen1, Suthesh Sivapalaratnam1, Allard C van der Wal2, Chris van der Loos2, John JP Kastelein1, Willem H Ouwehand3,4, G Kees Hovingh1, Mieke D Trip1,5, Jaap D van Buul6 and Geesje M Dallinga-Thie*,1 Cardiovascular disease (CVD) is a major cause of death in Western societies. CVD risk is largely genetically determined. The molecular pathology is, however, not elucidated in a large number of families suffering from CVD. We applied exclusion linkage analysis and next-generation sequencing to elucidate the molecular defect underlying premature CVD in a small pedigree, comprising two generations of which six members suffered from premature CVD. A total of three variants showed co-segregation with the disease status in the family. Two of these variants were excluded from further analysis based on the prevalence in replication cohorts, whereas a non-synonymous variant in MCF.2 Cell Line Derived Transforming Sequence-like protein (MCF2L, c.2066A4G; p.(Asp689Gly); NM_001112732.1), located in the DH domain, was only present in the studied family. MCF2L is a guanine exchange factor that potentially links pathways that signal through Rac1 and RhoA. Indeed, in HeLa cells, MCF2L689Gly failed to activate Rac1 as well as RhoA, resulting in impaired stress fiber formation. Moreover, MCF2L protein was found in human atherosclerotic lesions but not in healthy tissue segments.
    [Show full text]
  • Diagnosis of Inherited Platelet Disorders on a Blood Smear
    Journal of Clinical Medicine Article Diagnosis of Inherited Platelet Disorders on a Blood Smear Carlo Zaninetti 1,2,3 and Andreas Greinacher 1,* 1 Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany; [email protected] 2 University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy 3 PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy * Correspondence: [email protected]; Tel.: +49-3834-865482; Fax: +49-3834-865489 Received: 19 January 2020; Accepted: 12 February 2020; Published: 17 February 2020 Abstract: Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further.
    [Show full text]
  • NBEAL2 Is Required for Neutrophil and NK Cell Function and Pathogen Defense
    The Journal of Clinical Investigation BRIEF REPORT NBEAL2 is required for neutrophil and NK cell function and pathogen defense John M. Sowerby,1 David C. Thomas,1 Simon Clare,2 Marion Espéli,1,3 Jose A. Guerrero,4,5 Kim Hoenderdos,1 Katherine Harcourt,2 Morgan Marsden,6 Juneid Abdul-Karim,6 Mathew Clement,6 Robin Antrobus,7 Yagnesh Umrania,7 Philippa R. Barton,7 Shaun M. Flint,1 Jatinder K. Juss,1 Alison M. Condliffe,1 Paul A. Lyons,1 Ian R. Humphreys,6 Edwin R. Chilvers,1 Willem H. Ouwehand,2,4,5 Gordon Dougan,1,2 and Kenneth G.C. Smith1 1Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom. 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom. 3INSERM UMR-996, Inflammation, Chemokines and Immunopathology, Université Paris-Sud, Université Paris-Saclay, Clamart, France. 4Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom. 5NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom. 6Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom. 7Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, United Kingdom. Mutations in the human NBEAL2 gene cause gray platelet syndrome (GPS), a bleeding diathesis characterized by a lack of α granules in platelets. The functions of the NBEAL2 protein have not been explored outside platelet biology, but there are reports of increased frequency of infection and abnormal neutrophil morphology in patients with GPS. We therefore investigated the role of NBEAL2 in immunity by analyzing the phenotype of Nbeal2-deficient mice. We found profound abnormalities in the Nbeal2-deficient immune system, particularly in the function of neutrophils and NK cells.
    [Show full text]
  • Gri Trombosit Sendromu
    Cukurova Medical Journal Cukurova Med J 2017;42(2):360-362 ÇUKUROVA ÜNİVERSİTESİ TIP FAKÜLTESİ DERGİSİ DOI: 10.17826/cutf.322967 OLGU SUNUMU / CASE REPORT Gray platelet syndrome Gri trombosit sendromu Fatima Ayaz1, Saeed Bin Ayaz2, Sunila Tashfeen2, Muhammad Furrukh1 1Benazir Bhutto Hospital, Rawalpindi, Punjab, Pakistan 2Combined Military Hospital, Okara, Punjab, Pakistan Cukurova Medical Journal 2017;42(2):360-362 Abstract Öz Gray platelet syndrome (GPS) is an autosomal recessive Gri trombosit (platelet) sendromu (GPS), trombositopeni disorder characterized by thrombocytopenia and defective ve ışık mikroskopunda soluk görünen kusurlu platelets that appear pale on light microscope. Patients trombositlerle karakterize, otozomal resesif geçişli bir present with easy bruisability, nose bleeds, menorrhagia hastalıktır. Hastalarda kolay morarma, burun kanaması, and prolonged bleeding. There is no specific treatment for menoraji ve uzun kanamalar görülmektedir. GPS için GPS and the management includes anticipating risks and spesifik bir tedavi bulunmamaktadır dolayısı ile hastalığa preventing bleeding by avoiding drugs that impair platelet karşı, riskleri öngörmek ve kanamanın önlenmesi function. We present here report of a case who presented için trombosit fonksiyonunu bozan ilaçlardan kaçınmak with repeated episodes of abnormal bleeding and was gerekmektedir. Bu olgu sunumunda, tekrarlayan anormal found to have GPS. kanama atakları olan ve GPS bulgusu bulunan bir vaka sunulmaktadır. Key words: Bleeding disorder, gray platelet syndrome, Anahtar
    [Show full text]
  • NBEAL2 Gene Neurobeachin Like 2
    NBEAL2 gene neurobeachin like 2 Normal Function The NBEAL2 gene provides instructions for making a protein whose function is unclear. The protein appears to be critical for the normal development of platelets, which are small blood cells involved in blood clotting. Platelets are produced in bone marrow, the spongy tissue in the center of long bones that produces most of the blood cells the body needs. Platelets are formed from large precursor cells known as megakaryocytes. Within these cells, the NBEAL2 protein is thought to play a role in the development of sacs called alpha-granules, which are the most abundant components of platelets. Alpha-granules contain growth factors and other proteins that are important for blood clotting and wound healing. In response to an injury that causes bleeding, the proteins stored in alpha-granules help platelets stick to one another to form a plug that seals off damaged blood vessels and prevents further blood loss. Health Conditions Related to Genetic Changes Gray platelet syndrome At least 35 mutations in the NBEAL2 gene have been found to cause gray platelet syndrome, a disorder associated with abnormal bleeding. Most people with gray platelet syndrome also develop a condition called myelofibrosis, which is characterized by the buildup of scar tissue (fibrosis) in the bone marrow that prevents it from making enough normal blood cells. Mutations in the NBEAL2 gene disrupt the normal production of alpha-granules in megakaryocytes. Without alpha-granules, platelets are abnormally large and fewer in number than usual (macrothrombocytopenia). The abnormal platelets also appear gray when viewed under a microscope, which gives this condition its name.
    [Show full text]
  • Identification of Potential Pathogenic Genes Associated with Osteoporosis
    610.BJBJR0010.1302/2046-3758.612.BJR-2017-0102 research-article2017 Freely available online OPEN ACCESS BJR RESEARCH Identification of potential pathogenic genes associated with osteoporosis Objectives B. Xia, Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteo- Y. Li, porosis. J. Zhou, Methods B. Tian, Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples L. Feng and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma pack- Jining No. 1 People’s age (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Hospital, Jining, Genomes enrichment analyses were performed to identify biological functions. Further- Shandong Province, more, the transcriptional regulatory network was established between the top 20 DEGs and China transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating char- acteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs. Results A total of 1320 DEGs were obtained, of which 855 were up-regulated and 465 were down- regulated. These differentially expressed genes were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, mainly associated with gene expres- sion and osteoclast differentiation. In the transcriptional regulatory network, there were 6038 interactions pairs involving 88 transcriptional factors. In addition, the quantitative reverse transcriptase-polymerase chain reaction result validated the expression of several genes (VPS35, FCGR2A, TBCA, HIRA, TYROBP, and JUND). Finally, ROC analyses showed that VPS35, HIRA, PHF20 and NFKB2 had a significant diagnostic value for osteoporosis.
    [Show full text]