Password Authenticated Key Exchange by Juggling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public Key Cryptography And
PublicPublic KeyKey CryptographyCryptography andand RSARSA Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/ Washington University in St. Louis CSE571S ©2011 Raj Jain 9-1 OverviewOverview 1. Public Key Encryption 2. Symmetric vs. Public-Key 3. RSA Public Key Encryption 4. RSA Key Construction 5. Optimizing Private Key Operations 6. RSA Security These slides are based partly on Lawrie Brown’s slides supplied with William Stallings’s book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011. Washington University in St. Louis CSE571S ©2011 Raj Jain 9-2 PublicPublic KeyKey EncryptionEncryption Invented in 1975 by Diffie and Hellman at Stanford Encrypted_Message = Encrypt(Key1, Message) Message = Decrypt(Key2, Encrypted_Message) Key1 Key2 Text Ciphertext Text Keys are interchangeable: Key2 Key1 Text Ciphertext Text One key is made public while the other is kept private Sender knows only public key of the receiver Asymmetric Washington University in St. Louis CSE571S ©2011 Raj Jain 9-3 PublicPublic KeyKey EncryptionEncryption ExampleExample Rivest, Shamir, and Adleman at MIT RSA: Encrypted_Message = m3 mod 187 Message = Encrypted_Message107 mod 187 Key1 = <3,187>, Key2 = <107,187> Message = 5 Encrypted Message = 53 = 125 Message = 125107 mod 187 = 5 = 125(64+32+8+2+1) mod 187 = {(12564 mod 187)(12532 mod 187)... (1252 mod 187)(125 mod 187)} mod 187 Washington University in -
The Twin Diffie-Hellman Problem and Applications
The Twin Diffie-Hellman Problem and Applications David Cash1 Eike Kiltz2 Victor Shoup3 February 10, 2009 Abstract We propose a new computational problem called the twin Diffie-Hellman problem. This problem is closely related to the usual (computational) Diffie-Hellman problem and can be used in many of the same cryptographic constructions that are based on the Diffie-Hellman problem. Moreover, the twin Diffie-Hellman problem is at least as hard as the ordinary Diffie-Hellman problem. However, we are able to show that the twin Diffie-Hellman problem remains hard, even in the presence of a decision oracle that recognizes solutions to the problem — this is a feature not enjoyed by the Diffie-Hellman problem in general. Specifically, we show how to build a certain “trapdoor test” that allows us to effectively answer decision oracle queries for the twin Diffie-Hellman problem without knowing any of the corresponding discrete logarithms. Our new techniques have many applications. As one such application, we present a new variant of ElGamal encryption with very short ciphertexts, and with a very simple and tight security proof, in the random oracle model, under the assumption that the ordinary Diffie-Hellman problem is hard. We present several other applications as well, including: a new variant of Diffie and Hellman’s non-interactive key exchange protocol; a new variant of Cramer-Shoup encryption, with a very simple proof in the standard model; a new variant of Boneh-Franklin identity-based encryption, with very short ciphertexts; a more robust version of a password-authenticated key exchange protocol of Abdalla and Pointcheval. -
Ch 13 Digital Signature
1 CH 13 DIGITAL SIGNATURE Cryptography and Network Security HanJung Mason Yun 2 Index 13.1 Digital Signatures 13.2 Elgamal Digital Signature Scheme 13.3 Schnorr Digital Signature Scheme 13.4 NIST Digital Signature Algorithm 13.6 RSA-PSS Digital Signature Algorithm 3 13.1 Digital Signature - Properties • It must verify the author and the date and time of the signature. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • The digital signature function includes authentication. 4 5 6 Attacks and Forgeries • Key-Only attack • Known message attack • Generic chosen message attack • Directed chosen message attack • Adaptive chosen message attack 7 Attacks and Forgeries • Total break • Universal forgery • Selective forgery • Existential forgery 8 Digital Signature Requirements • It must be a bit pattern that depends on the message. • It must use some information unique to the sender to prevent both forgery and denial. • It must be relatively easy to produce the digital signature. • It must be relatively easy to recognize and verify the digital signature. • It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message. • It must be practical to retain a copy of the digital signature in storage. 9 Direct Digital Signature • Digital signature scheme that involves only the communication parties. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • Thus, the digital signature function includes the authentication function. -
Implementation and Performance Evaluation of XTR Over Wireless Network
Implementation and Performance Evaluation of XTR over Wireless Network By Basem Shihada [email protected] Dept. of Computer Science 200 University Avenue West Waterloo, Ontario, Canada (519) 888-4567 ext. 6238 CS 887 Final Project 19th of April 2002 Implementation and Performance Evaluation of XTR over Wireless Network 1. Abstract Wireless systems require reliable data transmission, large bandwidth and maximum data security. Most current implementations of wireless security algorithms perform lots of operations on the wireless device. This result in a large number of computation overhead, thus reducing the device performance. Furthermore, many current implementations do not provide a fast level of security measures such as client authentication, authorization, data validation and data encryption. XTR is an abbreviation of Efficient and Compact Subgroup Trace Representation (ECSTR). Developed by Arjen Lenstra & Eric Verheul and considered a new public key cryptographic security system that merges high level of security GF(p6) with less number of computation GF(p2). The claim here is that XTR has less communication requirements, and significant computation advantages, which indicate that XTR is suitable for the small computing devices such as, wireless devices, wireless internet, and general wireless applications. The hoping result is a more flexible and powerful secure wireless network that can be easily used for application deployment. This project presents an implementation and performance evaluation to XTR public key cryptographic system over wireless network. The goal of this project is to develop an efficient and portable secure wireless network, which perform a variety of wireless applications in a secure manner. The project literately surveys XTR mathematical and theoretical background as well as system implementation and deployment over wireless network. -
2.4 the Random Oracle Model
國 立 交 通 大 學 資訊工程學系 博 士 論 文 可證明安全的公開金鑰密碼系統與通行碼驗證金鑰 交換 Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols 研 究 生:張庭毅 指導教授:楊維邦 教授 黃明祥 教授 中 華 民 國 九 十 五 年 十 二 月 可證明安全的公開金鑰密碼系統與通行碼驗證金鑰交換 Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols 研 究 生:張庭毅 Student:Ting-Yi Chang 指導教授:楊維邦 博士 Advisor:Dr. Wei-Pang Yang 黃明祥 博士 Dr. Min-Shiang Hwang 國 立 交 通 大 學 資 訊 工 程 學 系 博 士 論 文 A Dissertation Submitted to Department of Computer Science College of Computer Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science December 2006 Hsinchu, Taiwan, Republic of China 中華民國九十五年十二月 ¡¢£¤¥¦§¨© ª« ¬ Æ ¯ « ¡¨ © ¡¢£¤¥ ¦§¨©¢ª«¬ Æ ¯ Æ Æ Æ ¡ ElGamal ¦§ °±¥ ²³´ ·§±¥¸¹º»¼½¶¾¿§¾¿¸¹³ °µ¶ p ° p§¾¿ ElGamal Hwang §°À¡Á²±¥·§ÂÃÄŨ© ElGamal-like È ÆÇ§È¤ÉÀÊËÌ¡ÍÎϧElGamal-like IND-CPA ¡¦ÃÅ Á²±¥·ÁÃÄŧ¨©§Æ ° ½¡ÐÑÒµ§ IND-CPA ElGamal IND- ±È¤±¥ÓÔÕ§ CCA2§ ElGamal-extended ¡Öר¬Ù¶ÚÀÛܰ§¨©ÝÞ°ÛÜß§ ¡¦§ËÌ IND-CPAPAIR ElGamal-extended Ô°°ÃÄÅ ¬§DZàáâ ãäåæçèé°¡êÛܰëìíîï§åÉ i ïíîÛܰ먩ǰ § ðñòóô ¨©õö÷°§Àäå øùרú§ûüÀÆý°þÿì° ÛÜµÌ °Ûܱ¡ Bellare-Pointcheval-Rogaway ¯À°úÐÑÒ·§¨© ° Diffie-Hellman õ°Ý§¡¦§ ò°¥§§±¥§Diffie- Hellman ¯§¥§§Èç§§ Èç§§ô§§ç±Ûܧ §ÐÑÒ ii Provably Secure Public Key Cryptosystems and Password Authenticated Key Exchange Protocols Student: Ting-Yi Chang Advisor: Dr. Wei-Pang Yang Dr. Min-Shiang Hwang Institute of Computer Science and Engineering National Chiao Tung University ABSTRACT In this thesis, we focus on two topics: public key cryptosystems and pass- word authenticated key exchange protocols. -
Key Improvements to XTR
To appear in Advances in Cryptology|Asiacrypt 2000, Lecture Notes in Computer Science 1976, Springer-Verlag 2000, 220-223. Key improvements to XTR Arjen K. Lenstra1, Eric R. Verheul2 1 Citibank, N.A., Technical University Eindhoven, 1 North Gate Road, Mendham, NJ 07945-3104, U.S.A., [email protected] 2 PricewaterhouseCoopers, GRMS Crypto Group, Goudsbloemstraat 14, 5644 KE Eindhoven, The Netherlands, Eric.Verheul@[nl.pwcglobal.com, pobox.com] Abstract. This paper describes improved methods for XTR key rep- resentation and parameter generation (cf. [4]). If the ¯eld characteristic is properly chosen, the size of the XTR public key for signature appli- cations can be reduced by a factor of three at the cost of a small one time computation for the recipient of the key. Furthermore, the para- meter set-up for an XTR system can be simpli¯ed because the trace of a proper subgroup generator can, with very high probability, be com- puted directly, thus avoiding the probabilistic approach from [4]. These non-trivial extensions further enhance the practical potential of XTR. 1 Introduction In [1] it was shown that conjugates of elements of a subgroup of GF(p6)¤ of order 2 dividing Á6(p) = p ¡ p + 1 can be represented using 2 log2(p) bits, as opposed to the 6 log2(p) bits that would be required for their traditional representation. In [4] an improved version of the method from [1] was introduced that achieves the same communication advantage at a much lower computational cost. The resulting representation method is referred to as XTR, which stands for E±cient and Compact Subgroup Trace Representation. -
Efficient Encryption on Limited Devices
Rochester Institute of Technology RIT Scholar Works Theses 2006 Efficient encryption on limited devices Roderic Campbell Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Campbell, Roderic, "Efficient encryption on limited devices" (2006). Thesis. Rochester Institute of Technology. Accessed from This Master's Project is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Masters Project Proposal: Efficient Encryption on Limited Devices Roderic Campbell Department of Computer Science Rochester Institute of Technology Rochester, NY, USA [email protected] June 24, 2004 ________________________________________ Chair: Prof. Alan Kaminsky Date ________________________________________ Reader: Prof. Hans-Peter Bischof Date ________________________________________ Observer: Prof. Leonid Reznik Date 1 1 Summary As the capstone of my Master’s education, I intend to perform a comparison of Elliptic Curve Cryptography(ECC) and The XTR Public Key System to the well known RSA encryption algorithm. The purpose of such a project is to provide a further understanding of such types of encryption, as well as present an analysis and recommendation for the appropriate technique for given circumstances. This comparison will be done by developing a series of tests on which to run identical tasks using each of the previously mentioned algorithms. Metrics such as running time, maximum and average memory usage will be measured as applicable. There are four main goals of Crypto-systems: Confidentiality, Data Integrity, Authentication and Non-repudiation[5]. This implementation deals only with confidentiality of symmetric key exchange. -
Multi-Server Authentication Key Exchange Approach in Bigdata Environment
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072 MULTI-SERVER AUTHENTICATION KEY EXCHANGE APPROACH IN BIGDATA ENVIRONMENT Miss. Kiran More1, Prof. Jyoti Raghatwan2 1Kiran More, PG Student. Dept. of Computer Engg. RMD Sinhgad school of Engineering Warje, Pune 2Prof. Jyoti Raghatwan, Dept. of Computer Engg. RMD Sinhgad school of Engineering Warje, Pune ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The key establishment difficulty is the maximum Over-all Equivalent Files System. Which are usually required central issue and we learn the trouble of key organization for for advanced scientific or data exhaustive applications such secure many to many communications for past several years. as digital animation studios, computational fluid dynamics, The trouble is stimulated by the broadcast of huge level and semiconductor manufacturing. detached file organizations behind similar admission to In these milieus, hundreds or thousands of file various storage space tactics. Our chore focal ideas on the structure clients bit data and engender very much high current Internet commonplace for such folder systems that is summative I/O load on the file coordination supporting Parallel Network Folder System [pNFS], which generates petabytes or terabytes scale storage capacities. Liberated of employment of Kerberos to establish up similar session keys the enlargement of the knot and high-performance flanked by customers and storing strategy. Our evaluation of computing, the arrival of clouds and the MapReduce the available Kerberos bottommost procedure validates that it program writing model has resulted in file system such as has a numeral of borders: (a) a metadata attendant make the Hadoop Distributed File System (HDFS). -
Speke Cycle Route
www.LetsTravelWise.org 1253 330 0151 Telephone: need. might you else 090305/IS/TM/08O9/P anything and times, the through you talk will bike. by easily more Speke around get and person local a – 33 22 200 0871 travel to way wiser a is cycling how shows leaflet This future. our and us on Traveline call want, for move wise a is out them trying Merseyside, in options of lots have We Updated you train or bus which out find To Getting around Speke on your bike your on Speke around Getting September journey. each making of way Manchester. best the about think to need all we cities big other in seen pollution and and Widnes Warrington, in stations 2011. congestion the avoid to want we If slower. getting is travel car meaning Cycle Speke Cycle for outwards and Centre City the in MA. rapidly, rising is Merseyside in car by made being trips of number the Central Liverpool and Street Lime but journeys, their of many or all for TravelWise already are people Most Liverpool towards stations rail Cross Hunts and Parkway South Liverpool from both operate trains Line City and Northern Frequent Centre. City car. a without journeys make the to Parkway South Liverpool from minutes 15 to 10 about takes only It to everyone for easier it make to aim we Merseytravel, and Authorities Local Merseyside the by Funded sharing. car and transport public cycling, trains. Merseyside walking, more – travel sustainable more encourage to aims TravelWise all on free go Bikes problem. a be can parking where Centre City Liverpool into travelling when or workplace, your or school to get to easier it makes www.transpenninetrail.org.uk Web: This way. -
Authentication and Key Distribution in Computer Networks and Distributed Systems
13 Authentication and key distribution in computer networks and distributed systems Rolf Oppliger University of Berne Institute for Computer Science and Applied Mathematics {JAM) Neubruckstrasse 10, CH-3012 Bern Phone +41 31 631 89 51, Fax +41 31 631 39 65, [email protected] Abstract Authentication and key distribution systems are used in computer networks and dis tributed systems to provide security services at the application layer. There are several authentication and key distribution systems currently available, and this paper focuses on Kerberos (OSF DCE), NetSP, SPX, TESS and SESAME. The systems are outlined and reviewed with special regard to the security services they offer, the cryptographic techniques they use, their conformance to international standards, and their availability and exportability. Keywords Authentication, key distribution, Kerberos, NetSP, SPX, TESS, SESAME 1 INTRODUCTION Authentication and key distribution systems are used in computer networks and dis tributed systems to provide security services at the application layer. There are several authentication and key distribution systems currently available, and this paper focuses on Kerberos (OSF DCE), NetSP, SPX, TESS and SESAME. The systems are outlined and reviewed with special regard to the security services they offer, the cryptographic techniques they use, their conformance to international standards, and their availability and exportability. It is assumed that the reader of this paper is familiar with the funda mentals of cryptography, and the use of cryptographic techniques in computer networks and distributed systems (Oppliger, 1992 and Schneier, 1994). The following notation is used in this paper: • Capital letters are used to refer to principals (users, clients and servers). -
Strong Password-Based Authentication in TLS Using the Three-Party Group Diffie–Hellman Protocol
284 Int. J. Security and Networks, Vol. 2, Nos. 3/4, 2007 Strong password-based authentication in TLS using the three-party group Diffie–Hellman protocol Michel Abdalla* École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] *Corresponding author Emmanuel Bresson Department of Cryptology, CELAR Technology Center, Bruz, France E-mail: [email protected] Olivier Chevassut Lawrence Berkeley National Laboratory, Berkeley, CA, USA E-mail: [email protected] Bodo Möller Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany E-mail: [email protected] David Pointcheval École normale supérieure – CNRS, LIENS, Paris, France E-mail: [email protected] Abstract: The internet has evolved into a very hostile ecosystem where ‘phishing’ attacks are common practice. This paper shows that the three-party group Diffie-Hellman key exchange can help protect against these attacks. We have developed password-based ciphersuites for the Transport Layer Security (TLS) protocol that are not only provably secure but also believed to be free from patent and licensing restrictions based on an analysis of relevant patents in the area. Keywords: password authentication; group Diffie–Hellman key exchange; transport layer security; TLS. Reference to this paper should be made as follows: Abdalla, M., Bresson, E., Chevassut, O., Möller, B. and Pointcheval, D. (2007) ‘Strong password-based authentication in TLS using the three-party group Diffie-Hellman protocol’, Int. J. Security and Networks, Vol. 2, Nos. 3/4, pp.284–296. Biographical notes: Michel Abdalla is currently a Researcher with the Centre National de la Recherche Scientifique (CNRS), France and a Member of the Cryptography Team at the Ecole Normale Supérieure (ENS), France. -
The RSA Algorithm
The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau of Standards (NBS) algorithm. Most impor- tantly, RSA implements a public-key cryptosystem, as well as digital signatures. RSA is motivated by the published works of Diffie and Hellman from several years before, who described the idea of such an algorithm, but never truly developed it. Introduced at the time when the era of electronic email was expected to soon arise, RSA implemented two important ideas: 1. Public-key encryption. This idea omits the need for a \courier" to deliver keys to recipients over another secure channel before transmitting the originally-intended message. In RSA, encryption keys are public, while the decryption keys are not, so only the person with the correct decryption key can decipher an encrypted message. Everyone has their own encryption and decryption keys. The keys must be made in such a way that the decryption key may not be easily deduced from the public encryption key. 2. Digital signatures. The receiver may need to verify that a transmitted message actually origi- nated from the sender (signature), and didn't just come from there (authentication). This is done using the sender's decryption key, and the signature can later be verified by anyone, using the corresponding public encryption key. Signatures therefore cannot be forged. Also, no signer can later deny having signed the message. This is not only useful for electronic mail, but for other electronic transactions and transmissions, such as fund transfers.