The Nile Perch in Lake Victoria: Local Responses and Adaptations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fishing Gear in the Sondu-Miriu River: Level of Use, Preference and Selectivity Waswala-Olewe M
Fishing Gear in the Sondu-Miriu River: Level of Use, Preference and Selectivity Waswala-Olewe M. Brian, Okot-Okumu James and Abila O. Richard Waswala- Olewe M. Brian Okumu James Abila o. Richard Abstract: Artisan fishers of Osodo beach of Sondu-Miriu River (Kenya) use both traditional and modern gear to catch riverine fish species. This study, conducted between August 2006 and July 2007, revealed that fishers most predominantly used gear were the seine nets (42%) and the gill nets (28%). Other used gear include long lines (14%); fish baskets (9%) and weirs (7%). The selectivity of this fishing gear varied with the developmental stages of the fish to be caught. Non- selective gear caught both targeted and non-targeted species irrespective of size and development stages. The ranking of selective to non-selective fishing gear was the long lines, fish baskets, weirs, gill nets and beach nets at 2%, 11%, 16%, 24% and 32%, respectively. The non-selective fishing gear may have negative impacts on the riverine fish by reducing spawning biomass and lacustrine fish recruitment. These findings underscore the need for greater appreciation, research, and adaptation of appropriate fishing gear to ensure sustainable utilization of the riverine fisheries in Sondu-Miriu River. Key words: Sondu-Miriu River, Osodo beach, riverine fish, lacustrine fish, fishing gear Introduction Nile Perch (Lates nilotica) (Ogutu-Ohwayo & Balirwa ish plays an important role in both the aquatic 2006). Fecosystem and to the human population. They are Rivers are crucial breeding and nursery grounds for good indicators of environmental health within rivers the riverine fish species which later repopulate the lakes. -
Preliminary Studies on the Food and Feeding Habits of Synodontis Membraneceus from Ogobiri River, Nigeria
r 233 Preliminary studies on the food and feeding habits of Synodontis membraneceus from Ogobiri River, Nigeria Allison, M. E. / Youdubagha, S. E. Abstract Thefood andfeeding habits of Synodontis membraneceus of Ogobiri River of Bayelsa State, Nigeria was studied using 44 male and 51 female specimens that were boughtfrom fishers in the study area measuring between 5 and 25 em total length. The Numerical and the Frequency of Occurrence method of analysis were used. For the males, thefood items by the numerical method were copepods (168), insects, (118), Cladocera (69), and unidentified items (32). In thefemale specimens, thefood items were Cladocera (286), Insect (216) Copepod (100) and unidentified organisms/materials (65). In the Frequency of Occurrence method for the males, Copepod was still the highest with a total of (48), Cladocera (44), Insects (29) and unidentified (I 6). For thefemales, Cladoera (48), Insects were (30) followed by Copepods (35) and unidentified (J9). The Percentage composition offood items by the Numerical method was Cladocera (45.5%), Insects (34.5%), Copepod (12.5%), and unidentified items (7.0%) while the Percentage Frequency of Occurrence was, Cla• docera (30.5%), Insects (30.9%), Copepod (29.6%), and unidentified items (9.0%). Keywords:Numerical method,frequency of occurrence, S. membraneceus, Ogobiri River. Introduction ish is a very important source of food for humans (FAO, 2010). Information about the food habits of fishes is on defin• ing predator-prey relationship (Saa et al., 1997) and the creation of trophic models as a tool to understanding complete Fecosystem (Lopez-Perata and Arcila, 2002; Bachok et al., 2004). -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Lates Niloticus) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Nile Perch (Lates niloticus) Ecological Risk Screening Summary Web Version – September 2014 Photo: © Biopix: N Sloth 1 Native Range, and Status in the United States Native Range From Schofield (2011): “Much of central, western and eastern Africa: Nile River (below Murchison Falls), as well as the Congo, Niger, Volga, Senegal rivers and lakes Chad and Turkana (Greenwood 1966 [cited by Schofield (2011) but not accessed for this report]). Also present in the brackish Lake Mariot near Alexandria, Egypt.” Lates niloticus Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version - 8/14/2012 Status in the United States From Schofield (2011): “Scientists from Texas traveled to Tanzania in 1974-1975 to investigate the introduction potential of Lates spp. into Texas reservoirs (Thompson et al. 1977 [cited by Schofield (2011) but not accessed for this report]). Temperature tolerance and trophic dynamics were studied for three species (L. angustifrons, L. microlepis and L. mariae). Subsequently, several individuals of these three species were shipped to Heart of the Hills Research Station (HOHRS) in Ingram, Texas in 1975 (Rutledge and Lyons 1976 [cited by Schofield (2011) but not accessed for this report]). Also in 1975, Nile perch (L. niloticus) were transferred from Lake Turkana, Kenya, to HOHRS. All fishes were held in indoor, closed-circulating systems (Rutledge and Lyons 1976).” “From 1978 to 1985, Lates spp. was released into various Texas reservoirs (Howells and Garrett 1992 [cited by Schofield (2011) but not accessed for this report]). Almost 70,000 Lates spp. larvae were stocked into Victor Braunig (Bexar Co.), Coleto Creek (Goliad Co.) and Fairfield (Freestone Co.) reservoirs between 1978 and 1984. -
A Study on Aquatic Biodiversity in the Lake Victoria Basin
A Study on Aquatic Biodiversity in the Lake Victoria Basin EAST AFRICAN COMMUNITY LAKE VICTORIA BASIN COMMISSION A Study on Aquatic Biodiversity in the Lake Victoria Basin © Lake Victoria Basin Commission (LVBC) Lake Victoria Basin Commission P.O. Box 1510 Kisumu, Kenya African Centre for Technology Studies (ACTS) P.O. Box 459178-00100 Nairobi, Kenya Printed and bound in Kenya by: Eyedentity Ltd. P.O. Box 20760-00100 Nairobi, Kenya Cataloguing-in-Publication Data A Study on Aquatic Biodiversity in the Lake Victoria Basin, Kenya: ACTS Press, African Centre for Technology Studies, Lake Victoria Basin Commission, 2011 ISBN 9966-41153-4 This report cannot be reproduced in any form for commercial purposes. However, it can be reproduced and/or translated for educational use provided that the Lake Victoria Basin Commission (LVBC) is acknowledged as the original publisher and provided that a copy of the new version is received by Lake Victoria Basin Commission. TABLE OF CONTENTS Copyright i ACRONYMS iii FOREWORD v EXECUTIVE SUMMARY vi 1. BACKGROUND 1 1.1. The Lake Victoria Basin and Its Aquatic Resources 1 1.2. The Lake Victoria Basin Commission 1 1.3. Justification for the Study 2 1.4. Previous efforts to develop Database on Lake Victoria 3 1.5. Global perspective of biodiversity 4 1.6. The Purpose, Objectives and Expected Outputs of the study 5 2. METHODOLOGY FOR ASSESSMENT OF BIODIVERSITY 5 2.1. Introduction 5 2.2. Data collection formats 7 2.3. Data Formats for Socio-Economic Values 10 2.5. Data Formats on Institutions and Experts 11 2.6. -
Barramundi – the Next Big Global Marine Finfish
Barramundi – the next big global marine finfish Dean Jerry Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Australia Presentation outline . Global changes in food commodity consumption . Barramundi as the gap filler . Biological attributes of barramundi . Broodstock management . Hatchery production . Challenges to farming . Potential in Brazil Changing populations with changing diets 27% Cereals 58% 28% Fruit and vegetables 18% Sugars and 30% alcohol Meat, fish 27% 6% and other 7% products Developing Developed Changing populations with changing diets 27% Cereals 58% 28% Fruit and vegetables 18% Sugars and 30% alcohol Meat, fish 27% 6% and other 7% products Developing Developed Changing populations with changing diets The portfolio gap The portfolio gap What is barramundi? Species: Lates calcarifer Snooks (Americas) Nile perch (Africa) Centropomus sp. Lates niloticus Distribution of barramundi/seabass Australia vs SEAsiaBarramundi vs Australia Australia Indonesia - KM Indonesia - SW SE Asia SE Vietnam Cambodia Philippines Catadromous and protandrous life-history Catadromous - live in fresh water but migrate to marine waters to breed Protandrous Hermaphodite – born males and change sex into females later in life Attractiveness for farming Euryhaline (wide salinity tolerance): Cultured in fresh, brackish or seawater Fast growth: 1 kg in 1 year Accept well artificial food: wean onto pellets early, specialised diets available Good Feed Conversion Ratio FCR = < 1.5 :1 (Kg feed : Kg fish) Hardy: up to 100 kg / m3, 50t/ha Food conversion efficiency Strong consumer preference Versatility of farming systems Freshwater/brackish ponds Sea Cages Intensive raceways RAS Production Statistics - Global Production Statistics - Australia Production Statistics - Australia Broodstock management . Require saltwater (28-35ppt) for final gonadal maturation . -
Threats to the Nyando Wetland CHAPTER 5
Threats to the Nyando Wetland. Item Type Book Section Authors Masese, F.O.; Raburu, P.O.; Kwena, F. Publisher Kenya Disaster Concern & VIRED International & UNDP Download date 26/09/2021 22:39:27 Link to Item http://hdl.handle.net/1834/7415 CHAPTER 5 Threats to the Nyando Wetland Masese F.O., Raburu P.O and Kwena F. Summary All over the world, wetlands are hot spots of biodiversity and as a result they supply a plethora of goods and services to people living within them and in their adjoining areas. As a consequence, increased human pressure pose the greatest challenge to the well-being of wetlands, with Climate Change and nutrient pollution becoming increasingly important. Globally, the processes that impact on wetlands fall into five main categories that include the loss of wetland area, changes to the water regime, changes in water quality, overexploitation of wetland resources and introductions of alien species. Overall, the underlying threat to wetlands is lack of recognition of the importance of wetlands and the roles they play in national economies and indigenous peoples’ livelihoods. Wetlands form a significant component of the land area; covering around 6% of the land area. However, many of the wetlands have been degraded because of a combination of socioeconomic factors and lack of awareness compounded by lack of frameworks and guidelines for wetland conservation and management. In the Nyando Wetland, major threats include encroachment by people and animals for agriculture, settlement and grazing, overharvesting of papyrus, droughts, fire (burning), soil erosion in the uplands that cause siltation in the wetlands, invasion by alien species such as Mimosa pudica and water hyacinth Eichornia crassipes, and resource use conflicts. -
The Importance of Freshwater Species to Livelihoods in the Lake Victoria Basin
Chapter 10 The importance of freshwater species to livelihoods in the Lake Victoria Basin Sayer, C.A.1, Máiz-Tomé, L.1, Akwany, L.O.2*, Kishe-Machumu, M.A.3*, Natugonza, V.4*, Whitney, C.W.5**, Omondi, R.6**, Nshutiyayesu, S.7** and Kabuye, C.S.8** 10.1 Introduction ...................................................................................................................................................................................................136 10.2 Methods ........................................................................................................................................................................................................137 10.2.1 Data collection ....................................................................................................................................................................................137 10.2.2 Taxonomic scope ...............................................................................................................................................................................137 10.2.3 Species use and livelihoods workshop ..............................................................................................................................................137 10.3 Freshwater fishes ..........................................................................................................................................................................................138 10.3.1 Summary of data ................................................................................................................................................................................138 -
View/Download
CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what -
The AQUATIC DESIGN CENTRE
The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi -
Sensory Biology of Aquatic Animals
Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. -
Why Swim Upside Down?: a Comparative Study of Two Mochokid Catfishes
130 COPEIA, 1994, NO. 1 haviourand copulationin Dracodussumieri Dum. & REYES,A. Y. 1968. Food habits of Draco volans Lin- Bib. (Reptilia: Sauria).J. Bombay Nat. Hist. Soc. naeus. SillimanJ. 15:353-356. 64:112-115. ROSE,B. 1981. Factorsaffecting activityin Sceloporus -. 1967b. Activity rhythm and thermoregula- virgatus. Ecology 62:706-716. tion in the South Indian flying lizard, Draco dus- SCHMIDT,K. P. 1935. Notes on the breeding behav- sumieriDum. & Bib.J. Anim. Morphol. Physiol. 14: ior of lizards. Zool. Ser. Field Mus. Nat. Hist. 20: 131-139. 71-76. MXGDEFRAU,K. 1991. Haltung, Verhaltenbeobach- SMITH,M. A. 1935. The Fauna of British India, in- tungen und Zuchtversuche von Draco spilopterus cluding Ceylon and Burma. Reptilia and amphibia. (Wiegmann, 1834). Herpetofauna 13:29-34. Vol. II. Sauria. Taylor and Francis Ltd., London, MARTIN,P., AND P. BATESON. 1986. Measuring be- England. haviour: an introductory guide. CambridgeUniv. STAMPS, J. A. 1977. Social behavior and spacing pat- Press, Cambridge,England. terns in lizards, p. 265-334. In: Biology of the Rep- MORI, A., AND T. HIKIDA. 1993. Natural history ob- tilia. Vol. 7. Ecology and behavior. A. C. Gans and servationson the flying lizards,Draco volans suma- D. W. Tinkle (eds.). Academic Press, London, En- tranus (Agamidae, Squamata)from Sarawak,Ma- gland. laysia. RafflesBull. Zool. In Press. MUSTERS, C. J. M. 1983. Taxonomy of the genus Draco L. (Agamidae, Lacertilia, Reptilia). Zool. DEPARTMENT OF ZOOLOGY, FACULTY OF SCIENCE, Verhandelingen No. 199:1-120. KYOTO UNIVERSITY, SAKYO, KYOTO, 606-01 P. 1962. Parades et terri- PFEFFER, comportement JAPAN.Submitted 5 Sept. 1992. Accepted 29 torial chez trois especes de Dragons-volants(Agam- Jan.