Why Swim Upside Down?: a Comparative Study of Two Mochokid Catfishes

Total Page:16

File Type:pdf, Size:1020Kb

Why Swim Upside Down?: a Comparative Study of Two Mochokid Catfishes 130 COPEIA, 1994, NO. 1 haviourand copulationin Dracodussumieri Dum. & REYES,A. Y. 1968. Food habits of Draco volans Lin- Bib. (Reptilia: Sauria).J. Bombay Nat. Hist. Soc. naeus. SillimanJ. 15:353-356. 64:112-115. ROSE,B. 1981. Factorsaffecting activityin Sceloporus -. 1967b. Activity rhythm and thermoregula- virgatus. Ecology 62:706-716. tion in the South Indian flying lizard, Draco dus- SCHMIDT,K. P. 1935. Notes on the breeding behav- sumieriDum. & Bib.J. Anim. Morphol. Physiol. 14: ior of lizards. Zool. Ser. Field Mus. Nat. Hist. 20: 131-139. 71-76. MXGDEFRAU,K. 1991. Haltung, Verhaltenbeobach- SMITH,M. A. 1935. The Fauna of British India, in- tungen und Zuchtversuche von Draco spilopterus cluding Ceylon and Burma. Reptilia and amphibia. (Wiegmann, 1834). Herpetofauna 13:29-34. Vol. II. Sauria. Taylor and Francis Ltd., London, MARTIN,P., AND P. BATESON. 1986. Measuring be- England. haviour: an introductory guide. CambridgeUniv. STAMPS, J. A. 1977. Social behavior and spacing pat- Press, Cambridge,England. terns in lizards, p. 265-334. In: Biology of the Rep- MORI, A., AND T. HIKIDA. 1993. Natural history ob- tilia. Vol. 7. Ecology and behavior. A. C. Gans and servationson the flying lizards,Draco volans suma- D. W. Tinkle (eds.). Academic Press, London, En- tranus (Agamidae, Squamata)from Sarawak,Ma- gland. laysia. RafflesBull. Zool. In Press. MUSTERS, C. J. M. 1983. Taxonomy of the genus Draco L. (Agamidae, Lacertilia, Reptilia). Zool. DEPARTMENT OF ZOOLOGY, FACULTY OF SCIENCE, Verhandelingen No. 199:1-120. KYOTO UNIVERSITY, SAKYO, KYOTO, 606-01 P. 1962. Parades et terri- PFEFFER, comportement JAPAN.Submitted 5 Sept. 1992. Accepted 29 torial chez trois especes de Dragons-volants(Agam- Jan. 1993. Section editor: W. J. Matthews. idae) d'Indonesie. Terre Vie 109:417-427. Copeia, 1994(1), pp. 130-135 Why Swim Upside Down?: A Comparative Study of Two Mochokid Catfishes LAUREN J. CHAPMAN, LES KAUFMAN, AND COLIN A. CHAPMAN Some catfishes in the genus Synodontis and its allied genera (family Mochok- idae) swim upside down and exhibit reverse countershading. We demonstrate a potential respiratory function for this behavior through laboratory observations of upside down (Synodontis nigriventris) and right side up (Synodontis afrofischeri) species exposed to low PO2. Both species used aquatic surface respiration (ASR) at the air-water interface when PO, was <15 mm Hg. With decreasing PO,, S. nigriventris increased the percentage of ASR time spent upside down, did not emerse its body during ASR, and had very modest surface activity levels. Syn- odontis afrofischeri used a vertical posture for ASR that caused emersion of its snout and required constant swimming to maintain position; it used active for- ward motion during ASR at very low PO, and made repeated trips to the bottom. The vertical posture and increased swimming activity associated with ASR by S. afrofischeri is probably less efficient than the inverted ASR of S. nigriventris. M ANY catfishes of the family Mochokidae terning may allow the fish to merge with their are benthic in habit, feeding on bottom- background of light when their ventral surface dwelling organisms or detritus with their ven- is directed upward. Apparently, swimming with tral mouths (Lowe-McConnell, 1975). A few the ventral surface uppermost is used in a feed- species, however, can be found swimming in- ing context, facilitating the exploitation of verted, a habit often associated with exploita- plankton and fine detritus from the surface wa- tion of the water surface. Although similar mor- ters (Bishai and Abu Gideiri, 1963; Holden and phologically to the other mochokids, some Reed, 1972; Lowe-McConnell, 1975). Howev- species that exhibit upside down habits, such as er, a respiratory function has also been ascribed Synodontis nigriventris and Hemisynodontis mem- to this unusual behavior (Holden and Reed, branaceus, are characterized by reverse coun- 1972; Roberts, 1975). tershading (Daget, 1948; Poll, 1971). This pat- Many fish species use aquatic respiration at ? 1994 by the American Society of Ichthyologists and Herpetologists CHAPMAN ET AL.-WHY SWIM UPSIDE DOWN? 131 the surface (Aquatic Surface Respiration, ASR; species, an experimental tank (90 x 30 x 37 Kramer and Mehegan, 1981) when inhabiting cm, maintained at 32 cm of depth) was divided hypoxic waters. ASR works because diffusion into two major compartments (36 x 30 x 37 from the atmosphere provides a thin, well-ox- cm) using a screen partition that limited visi- ygenated microlayer of surface water, even bility and eliminated fish movement between though deeper waters may be hypoxic (Gee et compartments but permitted some water ex- al., 1978; Kramer and McClure, 1982; Kramer, change. Two additional partitions divided the 1983). The upside down habit of certain mo- major compartments from the two ends of the chokid fishes could also provide surface access tank. These smaller end compartments con- for purposes of ASR, an activity that would oth- tained heaters and air stones. Each major com- erwise be difficult for a fish having a ventral partment contained a box filter and two pieces mouth. There is little quantitative data on the of cover that consisted of strips of plastic con- respiratory responses of the upside down cat- nected to a small plexiglass tube. The two spe- fishes to hypoxia or their use of ASR. cies were placed in separate compartments, Here we compare the behavioral responses maintained at 23-26 C, and fed Tetramin food to hypoxia of two mochokid catfish (Synodontis flakes. nigriventris and Synodontis afrofischeri). Unlike Fish were exposed to various concentrations S. nigriventris, S. afrofischeridoes not habitually of oxygen between 0.15 and 8.3 mg/L at 23- swim upside down and, thus, may not respond 26 C (3-154 mm Hg). Twenty-one trials were to hypoxia by swimming ventrally at the surface. conducted over 16 days, with the level of oxy- The percentage of time spent at the surface and gen concentration selected randomly from pre- the behavior of both species is described in re- determined values. No more than two trials were lation to PO2. In addition, we examine behav- conducted each day, with an average of 3 h ioral parameters related to efficiency of respi- between trials on the same day. Fish were main- ratory use of the surface layer. tained at normoxia overnight, and PO2 was re- turned to normoxic levels between trials con- ducted on the same day. Fish were starved for METHODS several hours before a trial to ensure that trips to the surface were not associated with feeding Study species.-Wild-caught S. afrofischeri were at the surface. PO2 was reduced by bubbling N2 obtained from Old World Exotics of Florida through an air stone in each of the two end from a private collector who works on the compartments. To create extreme hypoxia (<1 northern shoreline of Lake Victoria between mg/L), small amounts of sodium sulfite were Entebbe andJinja. The four smallest individuals added to the water (Lewis, 1970; Kramer and were captive spawned from the wild-caught Mehegan, 1981; Gee and Gee, 1991). Oxygen group in the Lake Victoria exhibit at the Frank- content was measured (?0.1 mg/L) with a YSI lin Park Zoo, Boston, Massachusetts. Synodontis (Model 57) 02 meter and converted to P02 us- nigriventris used in this work were purchased ing standard tables (Davis, 1975). For each trial, from Metro Pets, New Jersey. oxygen concentration was reduced over 40-90 Synodontisafrofischeri occurs in the Nile basin, min. Fish were then allowed to acclimate for 30 primarily in Lake Victoria and its affluent riv- min. ers; the Victoria Nile; and lakes Nabugabo, The average amount of time spent at the sur- Kyoga, and Ihema (Greenwood, 1966; Poll, face was determined for each species by an ob- 1971). It is benthic, retains a normal orienta- server who sat behind a blind 0.5 m from the tion, feeds on insect larvae and molluscs (Cor- tank. The blind was necessary to prevent dis- bet, 1961), and rarely attains a total length of turbance that would result in fish retreating to over 15 cm. Synodontis nigriventris reaches a cover. A continuous record was kept of the maximum total length of 9.6 cm and occurs in number of fish and their orientation at the sur- streams and rivers of the central Congo (Poll, face for 30 min. Video recordings were used 1971). It has reversed countershading related for assessment of posture, positioning of the to its habit of routinely swimming inverted. barbels, and emersion of the snout. Gill ventilation rates/15 sec were determined The effectofPO2.-Four small S. afrofischeri(mean in relation to the method of ASR employed by Total Length = 64.9 + 4.7 mm) and four S. the fish. Oxygen was lowered slowly. Gill ven- nigriventris (mean Total Length = 64.3 ? 4.1 tilation rates were recorded four times on each mm) were selected from a stock aquarium (59 fish just prior to the ASR threshold level and x 37 x 39 cm, 23-26 C). To determine the after ASR was initiated for each species in dif- effect of hypoxia on the behavior of the two ferent postures. 132 COPEIA, 1994, NO. 1 100 individuals at the surface) was significantly high- er for S. nigriventris (mean = 116 sec) than for S. = 22 sec, t-test, t = 80- Synodontisnigriventris afrofischeri(mean paired 3.80, P = 0.005). 60 Respiratory behavior.--Synodontis afrofischeriwas 40 * never observed to swim on its back. ASR was achieved by positioning the body nearly per- < 20 pendicular to the surface (Fig. 2A). Active movements were required to maintain this pos- I 0 ture. ASR was performed in two ways. The first 100 was to perform ASR while hovering in a vertical position against the wall of the aquarium.
Recommended publications
  • Preliminary Studies on the Food and Feeding Habits of Synodontis Membraneceus from Ogobiri River, Nigeria
    r 233 Preliminary studies on the food and feeding habits of Synodontis membraneceus from Ogobiri River, Nigeria Allison, M. E. / Youdubagha, S. E. Abstract Thefood andfeeding habits of Synodontis membraneceus of Ogobiri River of Bayelsa State, Nigeria was studied using 44 male and 51 female specimens that were boughtfrom fishers in the study area measuring between 5 and 25 em total length. The Numerical and the Frequency of Occurrence method of analysis were used. For the males, thefood items by the numerical method were copepods (168), insects, (118), Cladocera (69), and unidentified items (32). In thefemale specimens, thefood items were Cladocera (286), Insect (216) Copepod (100) and unidentified organisms/materials (65). In the Frequency of Occurrence method for the males, Copepod was still the highest with a total of (48), Cladocera (44), Insects (29) and unidentified (I 6). For thefemales, Cladoera (48), Insects were (30) followed by Copepods (35) and unidentified (J9). The Percentage composition offood items by the Numerical method was Cladocera (45.5%), Insects (34.5%), Copepod (12.5%), and unidentified items (7.0%) while the Percentage Frequency of Occurrence was, Cla• docera (30.5%), Insects (30.9%), Copepod (29.6%), and unidentified items (9.0%). Keywords:Numerical method,frequency of occurrence, S. membraneceus, Ogobiri River. Introduction ish is a very important source of food for humans (FAO, 2010). Information about the food habits of fishes is on defin• ing predator-prey relationship (Saa et al., 1997) and the creation of trophic models as a tool to understanding complete Fecosystem (Lopez-Perata and Arcila, 2002; Bachok et al., 2004).
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • The AQUATIC DESIGN CENTRE
    The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi
    [Show full text]
  • Sensory Biology of Aquatic Animals
    Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc.
    [Show full text]
  • University of Florida Thesis Or Dissertation
    EVALUATION OF INDUCED SPAWNING AND EMBRYO DISINFECTION PROTOCOLS FOR FOUR ORNAMENTAL FISH SPECIES By MICHAEL J. SIPOS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 1 © 2018 Michael J. Sipos 2 To my daughter Mia 3 ACKNOWLEDGMENTS This study would not have been possible without the hard work of many individuals. I would like to thank my lab mates Taylor Lipscomb, Amy Wood, Shane Ramee, Elizabeth Groover and Tim Lyons for their assistance in helping me complete the experiments essential to my thesis. I also thank Dr. Quenton Tuckett for allowing me to pick is brain on any statistical questions I had during my analysis of data. I express my appreciation to John Skidmore of Golden Pond Tropicals and Dustin Drawdy of Oak Ridge Fish Hatchery for providing me with the broodstock needed to complete my trials. I would like to thank my committee members Craig Watson and Dr. Cortney Ohs for being valuable resources for all things aquatic. To my advisor Dr. Matthew DiMaggio, I would like to express my sincerest gratitude for the countless hours of mentoring which has made me a better scientist. To my parents and Tori, thank you for providing me with encouragement and support throughout my studies. Without the help of everyone mentioned above, my experience at the University of Florida Tropical Aquaculture Lab would not have been as amazing as it was. The work reported in this publication was supported in part by the Southern Regional Aquaculture Center through Grant No.
    [Show full text]
  • Tis Schall and Synodontis Nigrita (Ostariophysi : Mochokidae) from the Ouémé River, Bénin
    Belg. J. Zool., 136 (2) : 193-201 July 2006 Studies on the biology of two species of catfish Synodon- tis schall and Synodontis nigrita (Ostariophysi : Mochokidae) from the Ouémé River, Bénin Philippe Lalèyè1, Antoine Chikou1, Pierre Gnohossou1, Pierre Vandewalle2, Jean Claude Philippart2 and Guy Teugels3 1 Université d’Abomey Calavi. Faculté des Sciences Agronomiques, Laboratoire d’Hydrobiologie et d’Aquaculture. 01 BP 526 Cotonou. Bénin. 2 Université de Liège, Laboratoire de Morphologie fonctionnelle et évolutive. Institut de Chimie, B6 Sart Tilman. B-4000 Liège et Laboratoire de Démographie des Poissons et d’Aquaculture, 8 Chemin de la Justice. B 4500 Tihange Belgique. 3 Musée Royal de l’Afrique Centrale (MRAC), Laboratoire d’Ichtyologie, B - 3080 Tervuren. Belgique. Corresponding address : Philippe Lalèyè, e-mail : [email protected] / [email protected] ABSTRACT. The abundance and distribution, length-weight, condition factor, diet and reproduction of Synodontis schall and S. nigrita from the Ouémé (Bénin) are described. S. nigrita is less abundant than S. schall in the river. Both species are euryphagous with their diet containing a wide variety of food items that include various types of plankton, invertebrates and plants. This high diversity of the food composition indicates a wide adaptability to the habitats in which they live. This is an important strategy for survival and an advantage over the fish species compet- ing for a specific food item. Size at maturity differs between species for both males (15 cm TL for S. schall and 21 cm TL for S. nigrita) and females (16 cm and 22 cm, respectively). Fecundity range is higher for S.
    [Show full text]
  • Zootaxa, Synodontis Acanthoperca (Siluriformes: Mochokidae)
    Zootaxa 1125: 45–56 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1125 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Synodontis acanthoperca, a new species from the Ogôoué River sys- tem, Gabon with comments on spiny ornamentation and sexual dimorphism in mochokid catfishes (Siluriformes: Mochokidae) JOHN P. FRIEL1 & THOMAS R. VIGLIOTTA2 Cornell University Museum of Vertebrates, 159 Sapsucker Woods Road, Ithaca, NY 14850-1923, USA; 1 Email: [email protected], 2 [email protected] Abstract Synodontis acanthoperca, a new species of mochokid catfish, is described from rapids within the Ogôoué River system of Gabon. This relatively small species (<50 mm SL) is distinguished from all congeners by a distinctive pigmentation pattern that includes a pair of dark patches on the caudal fin and by the presence of hypertrophied opercular spines in sexually mature males. Key words: Siluriformes, Mochokidae, Synodontis, new species, Africa, Gabon, Ogôoué River, spiny ornamentation, sexual dimorphism Résumé Synodontis acanthoperca, une nouvelle espèce de poisson-chat de la famille des Mochokidae, est décrite des rapides du système fluvial de l’Ogôoué au Gabon. Cette espèce relativement petite (<50 mm SL) se distingue de tous ses congénères par un patron de pigmentation distinctif qui inclut deux taches foncées sur la nageoire caudale et par la présence d’épines operculaires hypertrophiées chez les males sexuellement matures. Introduction The genus Synodontis Cuvier, 1816 is the most species rich and widespread genus of mochokid catfishes. As currently recognized the genus contains approximately 120 valid species distributed throughout most of the freshwaters of sub-Saharan Africa and the Nile River system.
    [Show full text]
  • Food and Feeding Habits of Catfish ( Synodontis Nigrita Cuvier and Valenciennes) in River Rima, Sokoto, Nigeria
    Available online at http://ajol.info/index.php/njbas/index ISSN 0794-5698 Nigerian Journal of Basic and Applied Science (2010), 18(2): 304-307 Food and Feeding Habits of Catfish ( Synodontis nigrita Cuvier And Valenciennes) In River Rima, Sokoto, Nigeria B.A. Shinkafi, L.A. Argungu and H.S Akanbi Department of Forestry and Fisheries, Usmanu Danfodiyo University, Sokoto Nigeria ABSTRACT: The food and feeding habits of Synodontis nigrita (Cuvier and Valenciennes) from River Rima were studied. One hundred and three samples were collected from September to October 2006. The stomachs were analyzed using frequency of occurrence method. The mean total length of the samples was 13.04±2.55SD, mean total weight 30.42±21.84SD and mean gut length 39.57±8.92SD. The fish is an omnivore, feeding mainly on phytoplankton, zooplankton, detritus, plant tissues, insects, crustaceans and insect parts. The presence of detritus in almost all the stomachs indicated bottom feeding. The fish gut length was 3 times the body length. Key words : Synodontis nigrita ; Stomach contents; Gut length INTRODUCTION: The fish Family Synodontis eupterus. Both studies were Mochokidae is represented mainly by Genus conducted with samples from River Rima. Synodontis, commonly known as catfish. Reed The state of knowledge on the various et al., (1967) described twenty Synodontis Synodontis species in Nigeria is largely on species found in Northern Nigeria, while their gross anatomy and some behavioral Holden and Reed (1972) indicated that at least characteristics. The available scientific twenty one species have been identified in the investigations on their biology are still Niger.
    [Show full text]
  • Food Habits of Bryconaethiops Boulengeri Pellegrin, 1900 (Characiformes: Alestidae) of Djiri River Tributary of the Right Bank of Congo River
    Open Journal of Ecology, 2018, 8, 510-521 http://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 Food Habits of Bryconaethiops boulengeri Pellegrin, 1900 (Characiformes: Alestidae) of Djiri River Tributary of the Right Bank of Congo River M. Mikia1*, I. Mady-Goma Dirat1, A. Tsoumou1, J. Vouidibio2 1Research Laboratory of Animal Biology and Ecology, ENS, University Marien Ngouabi, Brazzaville, Congo 2Faculty of Sciences and Techniques, University Marien Ngouabi, Brazzaville, Congo How to cite this paper: Mikia, M., Ma- Abstract dy-Goma Dirat, I., Tsoumou, A. and Voui- dibio, J. (2018) Food Habits of Bryconae- Diet of 300 specimens of Bryconaethiops boulengeri from Djiri River (Congo thiops boulengeri Pellegrin, 1900 (Characi- Brazzaville) caught with cash nets was studied according to the size of fish, formes: Alestidae) of Djiri River Tributary sampling stations and hydrological season. Sampling focused on twelve an- of the Right Bank of Congo River. Open Journal of Ecology, 8, 510-521. nual withdrawals made during three years. The relative importance index https://doi.org/10.4236/oje.2018.89031 combining numerical and weight percentages of occurrence was calculated and also the sex ratio was evaluated. Bryconaethiops boulengeri consumes Received: August 7, 2018 Accepted: September 22, 2018 terrestrial and aquatic insects and everything that falls into the water (birds Published: September 25, 2018 feathers, plant debris, fruits, etc.). The percentage of emptiness is 9.66% of the three sampling stations selected; no significant difference in diet was observed Copyright © 2018 by authors and whatever the season. Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International Keywords License (CC BY 4.0).
    [Show full text]
  • Petfish.Net Guide to Catfish and Loaches
    The PetFish.Net Guide To Catfish And Loaches Part of the PetFish.Net Guide Series Table Of Contents Corydoras Catfish Albino Bristlenose Plecos Botia kubotai Questions about Cories Yoyo Loach Whiptail Catfish The Upside-Down Catfish Tadpole Madtom Catfish Siamese Algea Eater Rubber-Lipped Pleco Royal Pleco Raising Corydoras Fry Porthole Catfish The Common Pleco Pictus Catfish In Pursuit of the Panda Corydoras Otocinclus Indepth Otocinclus Kuhli Loach - A.K.A. Coolie Loach Hoplo Catfish Glass Catfish Emerald Catfish Dojo Loach Breeding The Dojo Loach Keeping And Spawning Corydoras Catfish Clown Pleco Clown Loaches The Clown Loach Chinese Algae Eater Bronze Corydoras Keeping and Spawning Albino Bristle Nose Pleco Borneo Sucker or Hillstream Loach Corydoras Catfish By: Darren Common Name: Corys Latin Name: Corydoras Origin: South America-Brazil Temperature: 77-83 Ease Of Keeping: Easy Aggressivness: Peaceful Lighting: All lightings, although it prefers dimmer lightings. Adult Size: About 6 cm Minimum Tank Size: 18g Feeding: Flakes, Algae wafers and shrimp pellets, live food, frozen food, blanched vegetables. Spawning Method: Egg-layer Corydoras (AKA cory cats and cories) are very hardy and make good beginner fish for a community tank. For species tank, the dwarf cories do better. There are generally 2 types of cory, the dwarf cory and the normal cory. Brochis are not cories. The dwarf cory is great for nano tanks because it usually remains less than 3cm long ( about 1.3 inch). They do well in community tanks too and the only special care they require is not putting them together with aggressive fish like Cichlids. Dwarf Cichlids may do well with them occasionally but avoid them if you can.
    [Show full text]
  • Mitochondrial Phylogeny and Phylogeography of East African
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis) Stephan Koblmüller1, Christian Sturmbauer1, Erik Verheyen2, Axel Meyer3 and Walter Salzburger*3 Address: 1Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria, 2Vertebrate Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium and 3Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78467 Konstanz, Germany Email: Stephan Koblmüller - [email protected]; Christian Sturmbauer - [email protected]; Erik Verheyen - [email protected]; Axel Meyer - [email protected]; Walter Salzburger* - walter.salzburger@uni- konstanz.de * Corresponding author Published: 19 June 2006 Received: 10 April 2006 Accepted: 19 June 2006 BMC Evolutionary Biology 2006, 6:49 doi:10.1186/1471-2148-6-49 This article is available from: http://www.biomedcentral.com/1471-2148/6/49 © 2006 Koblmüller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Squeaker catfishes (Pisces, Mochokidae, Synodontis) are widely distributed throughout Africa and inhabit a biogeographic range similar to that of the exceptionally diverse cichlid fishes, including the three East African Great Lakes and their surrounding rivers. Since squeaker catfishes also prefer the same types of habitats as many of the cichlid species, we hypothesized that the East African Synodontis species provide an excellent model group for comparative evolutionary and phylogeographic analyses.
    [Show full text]