Understanding the Value of Features for Coreference Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Value of Features for Coreference Resolution Understanding the Value of Features for Coreference Resolution Eric Bengtson Dan Roth Department of Computer Science University of Illinois Urbana, IL 61801 {ebengt2,danr}@illinois.edu Abstract An American1 official2 announced that American1 President3 Bill Clinton3 met In recent years there has been substantial work his3 Russian4 counterpart5, Vladimir on the important problem of coreference res- Putin5, today. olution, most of which has concentrated on the development of new models and algo- the task is to group the mentions so that those refer- rithmic techniques. These works often show ring to the same entity are placed together into an that complex models improve over a weak equivalence class. pairwise baseline. However, less attention Many NLP tasks detect attributes, actions, and has been given to the importance of selecting relations between discourse entities. In order to strong features to support learning a corefer- discover all information about a given entity, tex- ence model. tual mentions of that entity must be grouped to- This paper describes a rather simple pair- gether. Thus coreference is an important prerequi- wise classification model for coreference res- site to such tasks as textual entailment and informa- olution, developed with a well-designed set tion extraction, among others. of features. We show that this produces a state-of-the-art system that outperforms sys- Although coreference resolution has received tems built with complex models. We suggest much attention, that attention has not focused on the that our system can be used as a baseline for relative impact of high-quality features. Thus, while the development of more complex models – many structural innovations in the modeling ap- which may have less impact when a more ro- proach have been made, those innovations have gen- bust set of features is used. The paper also erally been tested on systems with features whose presents an ablation study and discusses the strength has not been established, and compared to relative contributions of various features. weak pairwise baselines. As a result, it is possible that some modeling innovations may have less im- 1 Introduction pact or applicability when applied to a stronger base- line system. Coreference resolution is the task of grouping all the This paper introduces a rather simple but state- 1 mentions of entities in a document into equivalence of-the-art system, which we intend to be used as a classes so that all the mentions in a given class refer strong baseline to evaluate the impact of structural to the same discourse entity. For example, given the innovations. To this end, we combine an effective sentence (where the head noun of each mention is coreference classification model with a strong set of subscripted) features, and present an ablation study to show the relative impact of a variety of features. 1We follow the ACE (NIST, 2004) terminology: A noun phrase referring to a discourse entity is called a mention, and As we show, this combination of a pairwise an equivalence class is called an entity. model and strong features produces a 1.5 percent- 294 Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 294–303, Honolulu, October 2008. c 2008 Association for Computational Linguistics age point increase in B-Cubed F-Score over a com- in Section 4.4, we add the edge (a, m) to the coref- plex model in the state-of-the-art system by Culotta erence graph Gd. et al. (2007), although their system uses a complex, The resulting graph contains connected compo- non-pairwise model, computing features over partial nents, each representing one equivalence class, with clusters of mentions. all the mentions in the component referring to the same entity. This technique permits us to learn to 2 A Pairwise Coreference Model detect some links between mentions while being ag- nostic about whether other mentions are linked, and Given a document and a set of mentions, corefer- yet via the transitive closure of all links we can still ence resolution is the task of grouping the mentions determine the equivalence classes. into equivalence classes, so that each equivalence We also require that no non-pronoun can refer class contains exactly those mentions that refer to back to a pronoun: If m is not a pronoun, we do the same discourse entity. The number of equiv- not consider pronouns as candidate antecedents. alence classes is not specified in advance, but is bounded by the number of mentions. 2.1.1 Related Models In this paper, we view coreference resolution as For pairwise models, it is common to choose the a graph problem: Given a set of mentions and their best antecedent for a given mention (thereby impos- context as nodes, generate a set of edges such that ing the constraint that each mention has at most one any two mentions that belong in the same equiva- antecedent); however, the method of deciding which lence class are connected by some path in the graph. is the best antecedent varies. We construct this entity-mention graph by learning Soon et al. (2001) use the Closest-Link method: to decide for each mention which preceding men- They select as an antecedent the closest preced- tion, if any, belongs in the same equivalence class; ing mention that is predicted coreferential by a this approach is commonly called the pairwise coref- pairwise coreference module; this is equivalent to erence model (Soon et al., 2001). To decide whether choosing the closest mention whose pc value is two mentions should be linked in the graph, we learn above a threshold. Best-Link was shown to out- a pairwise coreference function pc that produces a perform Closest-Link in an experiment by Ng and value indicating the probability that the two men- Cardie (2002b). Our model differs from that of Ng tions should be placed in the same equivalence class. and Cardie in that we impose the constraint that The remainder of this section first discusses how non-pronouns cannot refer back to pronouns, and in this function is used as part of a document-level that we use as training examples all ordered pairs of coreference decision model and then describes how mentions, subject to the constraint above. pc we learn the function. Culotta et al. (2007) introduced a model that pre- 2.1 Document-Level Decision Model dicts whether a pair of equivalence classes should be merged, using features computed over all the men- Given a document d and a pairwise coreference scor- tions in both classes. Since the number of possi- ing function pc that maps an ordered pair of men- ble classes is exponential in the number of mentions, tions to a value indicating the probability that they they use heuristics to select training examples. Our are coreferential (see Section 2.2), we generate a method does not require determining which equiva- coreference graph Gd according to the Best-Link de- lence classes should be considered as examples. cision model (Ng and Cardie, 2002b) as follows: For each mention m in document d, let Bm be the 2.2 Pairwise Coreference Function set of mentions appearing before m in d. Let a be Learning the pairwise scoring function pc is a cru- the highest scoring antecedent: cial issue for the pairwise coreference model. We apply machine learning techniques to learn from ex- a = argmax(pc(b, m)). amples a function pc that takes as input an ordered b∈Bm pair of mentions (a, m) such that a precedes m in If pc(a, m) is above a threshold chosen as described the document, and produces as output a value that is 295 interpreted as the conditional probability that m and In the following description, the term head means a belong in the same equivalence class. the head noun phrase of a mention; the extent is the largest noun phrase headed by the head noun phrase. 2.2.1 Training Example Selection The ACE training data provides the equivalence 3.1 Mention Types classes for mentions. However, for some pairs of The type of a mention indicates whether it is a proper mentions from an equivalence class, there is little or noun, a common noun, or a pronoun. This feature, no direct evidence in the text that the mentions are when conjoined with others, allows us to give dif- coreferential. Therefore, training pc on all pairs of ferent weight to a feature depending on whether it is mentions within an equivalence class may not lead being applied to a proper name or a pronoun. For to a good predictor. Thus, for each mention m we our experiments in Section 5, we use gold mention select from m’s equivalence class the closest pre- types as is done by Culotta et al. (2007) and Luo and ceding mention a and present the pair (a, m) as a Zitouni (2005). positive training example, under the assumption that Note that in the experiments described in Sec- there is more direct evidence in the text for the ex- tion 6 we predict the mention types as described istence of this edge than for other edges. This is there and do not use any gold data. The mention similar to the technique of Ng and Cardie (2002b). type feature is used in all experiments. For each m, we generate negative examples (a, m) for all mentions a that precede m and are not in the 3.2 String Relation Features same equivalence class. Note that in doing so we String relation features indicate whether two strings generate more negative examples than positive ones. share some property, such as one being the substring Since we never apply pc to a pair where the first of another or both sharing a modifier word.
Recommended publications
  • Questions Under Discussion: from Sentence to Discourse∗
    Questions under Discussion: From sentence to discourse∗ Anton Benz Katja Jasinskaja July 14, 2016 Abstract Questions under discussion (QUD) is an analytic tool that has recently become more and more popular among linguists and language philosophers as a way to characterize how a sentence fits in its context. The idea is that each sentence in discourse addresses a (of- ten implicit) QUD either by answering it, or by bringing up another question that can help answering that QUD. The linguistic form and the interpretation of a sentence, in turn, may depend on the QUD it addresses. The first proponents of the QUD approach (von Stut- terheim & Klein, 1989; van Kuppevelt, 1995) thought of it as a general approach to the analysis of discourse structure where structural relations between sentences in a coherent discourse are understood in terms of relations between questions they address. However, the idea did not find broad application in discourse structure analysis, where theories aiming at logical discourse representations are predominantly based on the notion of coherence re- lations (Mann & Thompson, 1988; Hobbs, 1985; Asher & Lascarides, 2003). The problem of finding overt markers for QUDs means that they are also difficult to utilize for quanti- tative measures of discourse coherence (McNamara et al., 2010). At the same time QUD proved useful in the analysis of a wide range of linguistic phenomena including accentua- tion, discourse particles, presuppositions and implicatures. The goal of this special issue is to bring together cutting-edge research that demonstrates the success of QUD in linguistics and the need for the development of a comprehensive model of discourse coherence that incorporates the notion of QUD as its integral part.
    [Show full text]
  • Coreference Resolution for Spoken French Loïc Grobol
    Coreference resolution for spoken French Loïc Grobol To cite this version: Loïc Grobol. Coreference resolution for spoken French. Computation and Language [cs.CL]. Université Sorbonne Nouvelle - Paris 3, 2020. English. tel-02928209v2 HAL Id: tel-02928209 https://hal.archives-ouvertes.fr/tel-02928209v2 Submitted on 9 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License École Doctorale 622 — Sciences du langage Lattice, Inria Thèse de doctorat en sciences du langage de l’Université Sorbonne Nouvelle Coreference resolution for spoken French présentée et soutenue publiquement par Loïc Grobol le 15 juillet 2020 Sous la direction d’Isabelle Tellier† et de Frédéric Landragin Et co-encadrée par Éric Villemonte de la Clergerie et Marco Dinarelli Jury : Massimo Poesio, Professor (Queen Mary University), Rapporteur, Sophie Rosset, Directrice de recherche (LIMSI), Rapportrice, Béatrice Daille, Professeur (Université de Nantes), Examinatrice, Pascal Amsili, Professeur (Université Sorbonne Nouvelle), Examinateur, Frédéric Landragin, Directeur de recherche (Lattice), Directeur, Éric Villemonte de la Clergerie, Chargé de recherche (Inria), Co-encadrant, Marco Dinarelli, Chargé de recherche (LIG), Co-encadrant. Reconnaissance automatique de chaînes de coréférences en français parlé Résumé Une chaîne de coréférences est l’ensemble des expressions linguistiques — ou mentions — qui font référence à une même entité ou un même objet du discours.
    [Show full text]
  • Mind the GAP: a Balanced Corpus of Gendered Ambiguous Pronouns
    Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns Kellie Webster and Marta Recasens and Vera Axelrod and Jason Baldridge Google AI Language fwebsterk|recasens|vaxelrod|[email protected] Abstract (1) In May, Fujisawa joined Mari Motohashi’s rink as the team’s skip, moving back from Karuizawa to Ki- Coreference resolution is an important task tami where she had spent her junior days. for natural language understanding, and the resolution of ambiguous pronouns a long- With this scope, we make three key contributions: standing challenge. Nonetheless, existing • We design an extensible, language- corpora do not capture ambiguous pronouns in sufficient volume or diversity to accu- independent mechanism for extracting rately indicate the practical utility of mod- challenging ambiguous pronouns from text. els. Furthermore, we find gender bias in • We build and release GAP, a human-labeled existing corpora and systems favoring mas- corpus of 8,908 ambiguous pronoun-name culine entities. To address this, we present pairs derived from Wikipedia.2 This dataset and release GAP, a gender-balanced labeled targets the challenges of resolving naturally- corpus of 8,908 ambiguous pronoun-name occurring ambiguous pronouns and rewards pairs sampled to provide diverse coverage systems which are gender-fair. of challenges posed by real-world text. We explore a range of baselines which demon- • We run four state-of-the-art coreference re- strate the complexity of the challenge, the solvers and several competitive simple base- best achieving just 66.9% F1. We show lines on GAP to understand limitations in that syntactic structure and continuous neu- current modeling, including gender bias.
    [Show full text]
  • Constraints on Donkey Pronouns
    Constraints on Donkey Pronouns The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Grosz, P. G., P. Patel-Grosz, E. Fedorenko, and E. Gibson. “Constraints on Donkey Pronouns.” Journal of Semantics 32, no. 4 (July 15, 2014): 619–648. As Published http://dx.doi.org/10.1093/jos/ffu009 Publisher Oxford University Press Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/102962 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ CONSTRAINTS ON DONKEY PRONOUNS Patrick Grosz, Pritty Patel-Grosz, Evelina Fedorenko, Edward Gibson Abstract This paper reports on an experimental study of donkey pronouns, pronouns (e.g. it) whose meaning covaries with that of a non-pronominal noun phrase (e.g. a donkey) even though they are not in a structural relationship that is suitable for quantifier-variable binding. We investigate three constraints, (i) the preference for the presence of an overt NP antecedent that is not part of another word, (ii) the salience of the position of an antecedent that is part of another word, and (iii) the uniqueness of an intended antecedent (in terms of world knowledge). We compare constructions in which intended antecedents occur in a context such as who owns an N / who is an N-owner with constructions of the type who was without an N / who was N-less. Our findings corroborate the existence of the overt NP antecedent constraint, and also show that the salience of an unsuitable antecedent’s position matters.
    [Show full text]
  • Arxiv:1805.11824V1 [Cs.CL] 30 May 2018
    Artificial Intelligence Review manuscript No. (will be inserted by the editor) Anaphora and Coreference Resolution: A Review Rhea Sukthanker · Soujanya Poria · Erik Cambria · Ramkumar Thirunavukarasu Received: date / Accepted: date Abstract Entity resolution aims at resolving repeated references to an entity in a document and forms a core component of natural language processing (NLP) research. This field possesses immense potential to improve the performance of other NLP fields like machine translation, sentiment analysis, paraphrase detection, summarization, etc. The area of entity resolution in NLP has seen proliferation of research in two separate sub-areas namely: anaphora resolution and coreference resolution. Through this review article, we aim at clarifying the scope of these two tasks in entity resolution. We also carry out a detailed analysis of the datasets, evaluation metrics and research methods that have been adopted to tackle this NLP problem. This survey is motivated with the aim of providing the reader with a clear understanding of what constitutes this NLP problem and the issues that require attention. Keywords Entity Resolution · Coreference Resolution · Anaphora Resolution · Natural Language Processing · Sentiment Analysis · Deep Learning 1 Introduction A discourse is a collocated group of sentences which convey a clear understanding only when read together. The etymology of anaphora is ana (Greek for back) and pheri (Greek for to bear), which in simple terms means repetition. In computational linguistics, anaphora is typically defined as references to items mentioned earlier in the discourse or \pointing back" reference as described by (Mitkov, 1999). The most prevalent type of anaphora in natural language is the pronominal anaphora (Lappin and Leass, 1994).
    [Show full text]
  • Event Coreference Resolution: a Survey of Two Decades of Research
    Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) Event Coreference Resolution: A Survey of Two Decades of Research Jing Lu and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas Richardson, TX 75083-0688 fljwinnie,[email protected] Abstract Recent years have seen a gradual shift of focus from entity-based tasks to event-based tasks in informa- tion extraction research. Being a core event-based task, event coreference resolution is less studied but arguably more challenging than entity corefer- ence resolution. This paper provides an overview of the major milestones made in event coreference research since its inception two decades ago. Figure 1: The standard information extraction pipeline 1 Introduction It should be easy to see from this example that to per- Compared to entity coreference resolution, event coreference form end-to-end event coreference resolution, one has to resolution is less studied but arguably more challenging. To build an information extraction (IE) pipeline (cf. Figure 1) see its difficulty, consider the following example on within- that involves (1) extracting the entity mentions from a given document event coreference resolution, whose goal is to de- document (the entity extraction component) and determining termine which event mentions in a document refer to the same which of them are coreferent (the entity coreference compo- real-world event: nent); (2) extracting the event mentions by identifying their trigger words/phrases and determining which entity mentions Georges Cipriani fleftg a prison in Ensisheim ev1 are their arguments (the event extraction component); and (3) in northern France on parole on Wednesday.
    [Show full text]
  • Binding and Coreference in Vietnamese
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 Binding and Coreference in Vietnamese Thuy Bui University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Psycholinguistics and Neurolinguistics Commons, Semantics and Pragmatics Commons, and the Syntax Commons Recommended Citation Bui, Thuy, "Binding and Coreference in Vietnamese" (2019). Doctoral Dissertations. 1694. https://doi.org/10.7275/ncqc-n685 https://scholarworks.umass.edu/dissertations_2/1694 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. BINDING AND COREFERENCE IN VIETNAMESE A Dissertation Presented by THUY BUI Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2019 Linguistics c Copyright by Thuy Bui 2019 All Rights Reserved BINDING AND COREFERENCE IN VIETNAMESE A Dissertation Presented by THUY BUI Approved as to style and content by: ————————————————– Kyle Johnson, Co-Chair ————————————————– Brian Dillon, Co-Chair ————————————————– Rajesh Bhatt, Member ————————————————– Adrian Staub, Member ————————————————– Joe Pater, Department Chair Department of Linguistics ACKNOWLEDGMENTS I now realize how terrible I really am at feelings, words, and expressing feelings with words, as I spent the past three weeks trying to make these acknowledge- ments sound right, and they just never did. With this acute awareness and abso- lutely no compensating skills, I am going to include a series of inadequate thank yous to the many amazing people whose overflowing acts of kindness towards me exceeds what words can possibly describe anyway.
    [Show full text]
  • Long-Distance Reflexivization and Logophoricity in the Dargin Language Muminat Kerimova Florida International University
    Florida International University FIU Digital Commons MA in Linguistics Final Projects College of Arts, Sciences & Education 2017 Long-Distance Reflexivization and Logophoricity in the Dargin Language Muminat Kerimova Florida International University Follow this and additional works at: https://digitalcommons.fiu.edu/linguistics_ma Part of the Linguistics Commons Recommended Citation Kerimova, Muminat, "Long-Distance Reflexivization and Logophoricity in the Dargin Language" (2017). MA in Linguistics Final Projects. 3. https://digitalcommons.fiu.edu/linguistics_ma/3 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in MA in Linguistics Final Projects by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida LONG-DISTANCE REFLEXIVIZATION AND LOGOPHORICITY IN THE DARGIN LANGUAGE A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS in LINGUISTICS by Muminat Kerimova 2017 ABSTRACT OF THE THESIS LONG-DISTANCE REFLEXIVIZATION AND LOGOPHORICITY IN THE DARGIN LANGUAGE by Muminat Kerimova Florida International University, 2017 Miami, Florida Professor Ellen Thompson, Major Professor The study of anaphora challenges us to determine the conditions under which the pronouns of a language are associated with possible antecedents. One of the theoretical questions is whether the distribution of pronominal forms is best explained by a syntactic, semantic or discourse level analysis. A more practical question is how we distinguish between anaphoric elements, e.g. what are the borders between the notions of pronouns, locally bound reflexives and long-distance reflexives? The study analyzes the anaphora device saj in Dargin that is traditionally considered to be a long-distance reflexivization language.
    [Show full text]
  • Modeling the Lifespan of Discourse Entities with Application to Coreference Resolution
    Journal of Artificial Intelligence Research 52 (2015) 445-475 Submitted 09/14; published 03/15 Modeling the Lifespan of Discourse Entities with Application to Coreference Resolution Marie-Catherine de Marneffe [email protected] Linguistics Department The Ohio State University Columbus, OH 43210 USA Marta Recasens [email protected] Google Inc. Mountain View, CA 94043 USA Christopher Potts [email protected] Linguistics Department Stanford University Stanford, CA 94035 USA Abstract A discourse typically involves numerous entities, but few are mentioned more than once. Dis- tinguishing those that die out after just one mention (singleton) from those that lead longer lives (coreferent) would dramatically simplify the hypothesis space for coreference resolution models, leading to increased performance. To realize these gains, we build a classifier for predicting the singleton/coreferent distinction. The model’s feature representations synthesize linguistic insights about the factors affecting discourse entity lifespans (especially negation, modality, and attitude predication) with existing results about the benefits of “surface” (part-of-speech and n-gram-based) features for coreference resolution. The model is effective in its own right, and the feature represen- tations help to identify the anchor phrases in bridging anaphora as well. Furthermore, incorporating the model into two very different state-of-the-art coreference resolution systems, one rule-based and the other learning-based, yields significant performance improvements. 1. Introduction Karttunen imagined a text interpreting system designed to keep track of “all the individuals, that is, events, objects, etc., mentioned in the text and, for each individual, record whatever is said about it” (Karttunen, 1976, p. 364).
    [Show full text]
  • 1 Discourse and Logical Form: Pronouns, Attention and Coherence
    Discourse and Logical Form: Pronouns, Attention and Coherence 1 Introduction The meaning of the pronoun ‘he’ does not seem ambiguous in the way that, say, the noun ‘bank’ is. Yet what we express in uttering ‘He is happy,’ pointing at Bill, differs from what we express when uttering it, pointing at a different person, Sam. ‘he’ in the first case refers to Bill, in the second to Sam. And further with an utterance of ‘A man always drives the car he owns,’ or ‘A man came in. He sat down,’ without an accompanying pointing gesture, ‘he’ refers not at all; its interpretation, instead, co- varies with possible instances in the range of the quantifier ‘A man’. Those uses in which the pronoun is interpreted referentially are usually called ‘demonstrative,’ and those in which it is interpreted non-referentially are usually called ‘bound’. We immediately face two questions: what is the semantic value of a pronoun in a context, given that it can have both bound and demonstrative uses? And, since this value can vary with context, how does context fix it? The first question concerns the semantics of pronouns, and the second their meta-semantics. The received view answers the first question by positing an ambiguity: bound uses of ‘he’ function as bound variables; demonstrative ones, by contrast, are referential. The received view’s answer to the second question is that the semantic value of a bound use co-varies with possible instances in the range of a binding expression, and for demonstrative uses, linguistic meaning constrains, but does not fully determine, its semantic value in context.
    [Show full text]
  • Discourse-Givenness of Noun Phrases Theoretical and Computational Models
    Discourse-Givenness of Noun Phrases Theoretical and Computational Models Dissertation zur Erlangung des akademischen Grades Doktor der Philosophie (Dr. phil.) der Humanwissenschaftlichen Fakult¨at der Universit¨atPotsdam vorgelegt von Julia Ritz Stuttgart, Mai 2013 Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2014/7081/ URN urn:nbn:de:kobv:517-opus-70818 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70818 Erkl¨arung(Declaration of Authenticity of Work) Hiermit erkl¨areich, dass ich die beigef¨ugteDissertation selbstst¨andigund ohne die un- zul¨assigeHilfe Dritter verfasst habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel genutzt. Alle w¨ortlich oder inhaltlich ¨ubernommenen Stellen habe ich als solche gekennzeichnet. Ich versichere außerdem, dass ich die Dissertation in der gegenw¨artigenoder einer an- deren Fassung nur in diesem und keinem anderen Promotionsverfahren eingereicht habe, und dass diesem Promotionsverfahren keine endg¨ultiggescheiterten Promotionsverfahren vorausgegangen sind. Im Falle des erfolgreichen Abschlusses des Promotionsverfahrens erlaube ich der Fakult¨at, die angef¨ugtenZusammenfassungen zu ver¨offentlichen. Ort, Datum Unterschrift iii iv iv Contents Preface xiii 1 Introduction 1 1.1 Discourse-Givenness and Related Concepts . .3 1.2 Goal . .4 1.3 Motivation . .6 1.4 The Field of Discourse-Givenness Classification . 10 1.5 Structure of this Document . 11 2 Concepts and Definitions 13 2.1 Basic Concepts and Representation . 13 2.1.1 Basic Concepts in Discourse . 14 2.1.2 Formal Representation . 15 2.2 Reference . 18 2.2.1 Identifying Basic Units . 20 2.2.2 Non-Referring Use of Expressions .
    [Show full text]
  • Lecture 5. Introduction to Issues in Anaphora 1. What Is Anaphora? 2
    Formal Semantics and Current Problems of Semantics, Lecture 5 Formal Semantics and Current Problems of Semantics, Lecture 5 Barbara H. Partee, RGGU, March 4, 2008 p. 1 Barbara H. Partee, RGGU, March 4, 2008 p. 2 Lecture 5. Introduction to Issues in Anaphora in (1a) and what is sometimes called a deictic use1 of he in (2), as it might be uttered while looking at someone who just walked by, where there is no linguistic antecedent. 1. What is Anaphora? ..................................................................................................................................... 1 (2) He looks lost. 2. Coreference vs. variable-binding................................................................................................................ 2 3. Syntactic aspects of anaphora, and syntax-semantics interface issues ....................................................... 4 Two notes on terminology. In the broad sense of the term anaphora, all of the examples 4. Definite NPs as anaphoric expressions: debates......................................................................................... 7 above as well as the ones in (3) below involve anaphora. There are two narrower senses 5. Issues and puzzles in anaphora. Preview of coming lectures ..................................................................... 7 5.1. Donkey anaphora and discourse anaphora with indefinite antecedents and the rise of Dynamic in which anaphora or anaphor are distinguished from other terms. Semantics. Weeks 6-8...............................................................................................................................
    [Show full text]