WES) and Bioinformatics Analysis

Total Page:16

File Type:pdf, Size:1020Kb

WES) and Bioinformatics Analysis Vaisitti T et al. Supplementary Materials and Methods Whole Exome Sequencing (WES) and Bioinformatics Analysis Genomic DNA from each sample was sheared and used for the construction of paired end sequencing library as described in the protocol provided by Illumina. The exome was captured using the SureSelect Human All Exon V6 (Agilent) following the manufacturer’s instructions. Samples were sequenced using Illumina Hiseq4000. We used Genome_GPS v3.0.2 (formerly named as TREAT)(1) as a comprehensive secondary analysis pipeline for exome sequencing data at Mayo Clinic. FASTQ files were aligned to the hg19 reference genome using Novoalign (VN:V2.08.01) with the following options: --hdrhd off -v 120 -c 4 -i PE 425,80 -x 5 -r Random. Realignment and recalibration was performed using GATK (VN:3.3-0) (2) best practices version 3 for each family separately. Multi-sample Variant calling was performed using the GATK (VN: 3.3-0) Haplotype Caller and variants are filtered using variant recalibration Variant Quality Score Recalibrator (VQSR) for both SNVs and INDELs. Somatic Variants were called using Mutect2 from GATK(VN:3.6) using default parameters. Identified variants are annotated using BioR (3) framework with functional features, impact prediction, and clinical significance using CAVA, ClinVar, HGMD, and ExAC population frequencies. BioR includes gene annotation from NCBI/Ensembl and UCSC, Gene annotated pathways (KEGG), tissue specificity, GeneCards and Gene Ontology (GO), dbSNP, GWAS catalog, HapMap, and 1000 Genomes. Furthermore, it provides annotation from the Catalogue of Somatic Mutations in Cancer (COSMIC, Wellcome Trust Sanger Institute), SIFT, and PolyPhen-2. We used the Exome Aggregation Consortium (ExAC) data to filter out common SNPs (http://exac.broadinstitute.org/). Alternate alleles with frequency > 0.0001 in ExAC database were filtered out. Additionally, somatic variant calls with total read depth less than 30X were excluded from further analysis. Finally, non-synonymous variants of significant interest were visually inspected using IGV (4). Copy number variations (CNVs) were calculated using 1 Vaisitti T et al. PatternCNV (5). Targeted deep sequencing Mutations were validated and followed up overtime using semiconductor-sequencing technology (IonTorrent PGM) as per manufacturer’s protocol. Twenty-six genes, previously found to be significantly mutated in CLL and indicated as putative CLL driver genes (6), and two genes with mutations associated with Ibrutinib resistance (BTK and PLCG2) were selected for targeted deep sequencing (Table S3). All coding regions were amplified in 200bp amplicons by multiplex PCR using customized oligos (Ion Ampliseq designer). Libraries were templated and enriched using IonOneTouch2 and IonOneTouch ES automated systems, respectively. Samples were sequenced using the 318TM chip (ThermoFisher). Raw data was aligned and indexed in BAM and BAI files using the IonTorrent suite. Variants were called using IonTorrent Somatic VariantCaller version 4.6.0.7 and low stringency settings (ThermoFisher). VCF files were annotated using BioR. Somatic variants with a Mapping Quality <20 or read depth <10X were removed. Finally, variants of significant interest were visually inspected using Integrative Genomics Viewer (IGV). RNA sequencing data analyses Venn diagrams were obtained with Venny2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). To highlight cell processes that were conserved between PDXs and primary sample, enrichment analysis was performed on sequences with |logFc|<0.5 to exclude minor modulations. To do so, genes were classified according to their GO annotations and cellular pathway association according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, using online tools: Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources (http://david.abcc.ncifcrf.gov/), and GeneCodis (http://genecodis.cnb.csic.es/), and applying cumulative hypergeometric distribution and a cut-off on Bonferroni-corrected P-value (p=0.05). GO were clustered by semantic similarity 2 Vaisitti T et al. using the online tool REVIGO (http://revigo.irb.hr/). To analyze genes that were consistently differentially expressed in PDX samples compared to primary, enrichment analyses were performed on sequences with |logFc|>1 and genes classified as described above. Pathway analysis by qRT-PCR and western blotting RNA was extracted using RNeasy Plus Mini kit (Qiagen, Milan, Italy) and converted to cDNA using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). qRT-PCR was performed using the 7900 HT Fast Real Time PCR System (SDS 2.3 software). Primers for NOTCH1 (Hs01062014_m1), HES1 (Hs00172878_m1), DTX1 (Hs00269995_m1), HES5 (Hs01387463_g1), HEY1 (Hs01114113_m1), HEY2 (Hs00232622_m1), NOTCH2 (Hs01050702_m1), CCL3 (Hs00234142_m1), MYC (Hs00905030_m1), NFKB1 (Hs00765730_m1), RELA (Hs00153294_m1) and B2M (Hs00984230_m1) were from Life Technologies. Reactions were done in triplicate from the same cDNA reaction (technical replicates). For each gene, expression levels were computed as the difference (ΔCT) between the target gene CT and b-2-microglobulin (B2M) CT. Total lysates were resolved by Bolt SDS‐PAGE gels and transferred to nitrocellulose membranes (ThermoFisher Scientific). The following antibodies were used: anti-NF-kB1/p105-p50 (#3035), - p65 (#8242), cleaved Notch1 (#4147), total Notch1 (#4380), P-Btk (#5082), Btk (#8547), c-Myc (#13987), P-Syk (#2710), P-Jnk (#4671), P-p38 (#9211), P-Lyn (#2731), P-PLCg2 (#3871/3874) (all from Cell Signaling Technologies, Milan, Italy). Bands were detected with an HRP-conjugated goat anti‐mouse IgG antibody (PerkinElmer) or anti-rabbit antibody (Santa Cruz Biotechnology). An anti- actin HRP-conjugated antibody was used as a loading control (sc-1616, Santa Cruz Biotechnology). Blots were developed using enhanced chemiluminescence and images acquired with the ImageQuant LAS 4000 ChemiDoc (GE Healthcare). 3 Vaisitti T et al. References 1. Asmann YW, Middha S, Hossain A, Baheti S, Li Y, Chai HS, et al. TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data. Bioinformatics 2012;28:277-8 2. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303 3. Kocher JP, Quest DJ, Duffy P, Meiners MA, Moore RM, Rider D, et al. The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation. Bioinformatics 2014;30:1920-2 4. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24-6 5. Wang C, Evans JM, Bhagwate AV, Prodduturi N, Sarangi V, Middha M, et al. PatternCNV: a versatile tool for detecting copy number changes from exome sequencing data. Bioinformatics 2014;30:2678-80 6. Barrio S, Shanafelt TD, Ojha J, Chaffee KG, Secreto C, Kortum KM, et al. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome. Leukemia 2017;31:170-6 4 Vaisitti T et al. Supplementary Figure Legends Supplementary Figure S2. Schematic representation of the RS-PDX models. Primary leukemic cells were sub-cutaneously (s.c.) injected in NSG mice and left to engraft until tumor masses were palpable. Mice were euthanized and a suspension of leukemic single cells was obtained from the tumor mass, re-implanted and propagated in other mice (continuous line of the box). This step was repeated several times to obtain stable PDXs. After several passages (indicated in the left), both models were implemented by intra-venous (i.v.) injection of RS cells in the tail vein of NSG mice (dotted line of the box). d: days. Supplementary Figure S6. Differentially expressed genes in primary and RS-PDX. (A-B) Graphs showing GO enrichment of genes consistently up- or down-regulated in PDX models compared to the relative primary sample. (C-D) Expression levels of genes enriched in the above mentioned gene ontologies plotted as Log10 RPKM. For each category, genes belonging to primary sample and sequential PDXs are shown. Number in brackets indicates the number of genes to that GO. 5 A Passage Interval of Engrafted; s.c. number Engraftment Engrafted; i.v.. P0 RS9737 P1 45 d RS9737_1A RS9737_1B P2 25 d RS9737_2aA P3 25 d RS9737_3aA RS9737_3aB P4 25 d RS9737_4aA RS9737_4aB P5 30 d RS9737_5aA RS9737_5aB P6 25 d RS9737_6aA RS9737_6aC RS9737_6aD RS9737_6bA RS9737_6bB P7 25 d RS9737_7aA RS9737_7aA RS9737_7aB P8 21 d RS9737_8aA RS9737_8aB RS9737_8aA RS9737_8aB P9 21 d RS9737_9aC RS9737_9aD RS9737_9bA RS9737_9bB P10 21 d RS9737_10cA RS9737_10dB B Passage Interval of Not engrafted; s.c. number Engraftment Engrafted; s.c. P0 Engrafted; i.v.. RS1316 P1 180 d RS1316_1A RS1316_1B P2 60 d RS1316_2aA RS1316_2aB RS1316_2aC RS1316_2aD P3 60 d RS1316_3aA RS1316_3aB RS1316_3aC P4 60 d RS1316_4aA RS1316_4aB RS1316_4cA P5 60 d RS1316_5aA P6 60 d RS1316_6aA P7 40 d RS1316_7aA P8 40 d RS1316_8aA RS1316_8aB P9 40 d RS1316_9aA RS1316_9aB RS1316_9bA P10 42 d RS1316_10aA RS1316_10bB RS1316_10bC Supplementary Figure 2 G889V H384N D411Y SETD2 SET LCR 2564 aa EGR2 DUF3446 ZN ZN ZN 467 aa AWS Post-SET WW G44R N1516S P2514fs4 NOTCH1 2555 aa MED12 LCEWAV PQL 2177 aa EGF-like LNR HD ANK TAD PEST NOTCH2 2471 aa MED E88K E96G C481S G13C L19F T58I BTK PH TH SH3 SH2 TK 659 aa KRAS G-domain
Recommended publications
  • HNF6 Antibody (R31338)
    HNF6 Antibody (R31338) Catalog No. Formulation Size R31338 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt Q9UBC0 Applications Western blot : 0.5-1ug/ml IHC (FFPE) : 0.5-1ug/ml IHC (Frozen) : 0.5-1ug/ml Immunocytochemistry : 0.5-1ug/ml Limitations This HNF6 antibody is available for research use only. Western blot testing of HNF6 antibody and Lane 1: rat liver; 2: mouse liver; 3: human HeLa cell lysate. Expected/observed size ~51KD IHC-P: HNF6 antibody testing of human liver cancer tissue ICC testing of HNF6 antibody and HCT116 cells IHC-F testing of rat liver tissue IHC-P testing of rat liver tissue Description One cut homeobox 1 (ONECUT1), also called Hepatocyte nuclear factor 6 (HNF6) is found strong expression in liver and lower expression in testis and skin. The gene encodes a member of the Cut homeobox family of transcription factors. Expression of the encoded protein is enriched in the liver, where it stimulates transcription of liver-expressed genes, and antagonizes glucocorticoid-stimulated gene transcription. This gene may influence a variety of cellular processes including glucose metabolism, cell cycle regulation, and it may also be associated with cancer. Application Notes The stated application concentrations are suggested starting amounts. Titration of the HNF6 antibody may be required due to differences in protocols and secondary/substrate sensitivity.
    [Show full text]
  • Polymorphisms of the BARX1 and ADAMTS17 Locus Genes in Individuals with Gastroesophageal Reflux Disease
    J Neurogastroenterol Motil, Vol. 25 No. 3 July, 2019 pISSN: 2093-0879 eISSN: 2093-0887 https://doi.org/10.5056/jnm18183 JNM Journal of Neurogastroenterology and Motility Original Article Polymorphisms of the BARX1 and ADAMTS17 Locus Genes in Individuals With Gastroesophageal Reflux Disease Alexandra Argyrou,1 Evangelia Legaki,1 Christos Koutserimpas,2 Maria Gazouli,1* Ioannis Papaconstantinou,3 George Gkiokas,3 and George Karamanolis4 1Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; 22nd Department of General Surgery, “Sismanoglio General Hospital of Athens, Athens, Greece; 32nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; and 4Gastroenterology Unit, 2nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece Background/Aims Gastroesophageal reflux disease (GERD) represents a common condition having a substantial impact on the patients’ quality of life, as well as the health system. According to many studies, the BARX1 and ADAMTS17 genes have been suggested as genetic risk loci for the development of GERD and its complications. The purpose of this study is to investigate the potential association between GERD and BARX1 and ADAMTS17 polymorphisms. Methods The present is a prospective cohort study of 160 GERD patients and 180 healthy control subjects of Greek origin, examined for BARX1 and ADAMTS17 polymorphisms (rs11789015 and rs4965272) and a potential correlation to GERD. Results The rs11789015 AG and GG genotypes were found to be significantly associated with GERD (P = 0.032; OR, 1.65; 95% CI, 1.06- 2.57 and P = 0.033; OR, 3.00; 95% CI, 1.15-7.82, respectively), as well as the G allele (P = 0.007; OR, 1.60; 95% CI, 1.14- 2.24).
    [Show full text]
  • AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
    AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • PIK3C2G (NM 004570) Human Mutant ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC402758 PIK3C2G (NM_004570) Human Mutant ORF Clone Product data: Product Type: Mutant ORF Clones Product Name: PIK3C2G (NM_004570) Human Mutant ORF Clone Mutation Description: P146L Affected Codon#: 146 Affected NT#: 437 Nucleotide Mutation: PIK3C2G Mutant (P146L), Myc-DDK-tagged ORF clone of Homo sapiens phosphoinositide-3- kinase, class 2, gamma polypeptide (PIK3C2G) as transfection-ready DNA Effect: Dibees, ype 2, ssoiion wih Symbol: PIK3C2G Synonyms: PI3K-C2-gamma; PI3K-C2GAMMA Vector: pCMV6-Entry (PS100001) Tag: Myc-DDK ACCN: NM_004570 ORF Size: 4335 bp ORF Nucleotide >RC402758 representing NM_004570 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCATATTCTTGGCAAACGGATCCAAATCCTAATGAATCACACGAAAAGCAGTATGAACACCAAGAAT TTCTCTTTGTAAATCAACCCCATTCTTCTAGCCAAGTCAGTCTGGGTTTTGATCAGATAGTAGATGAGAT CAGTGGCAAAATTCCACACTACGAGAGTGAAATTGATGAAAACACCTTTTTTGTGCCCACTGCACCAAAA TGGGACTCAACAGGGCATTCATTAAATGAAGCACACCAAATATCCTTGAATGAATTCACTTCTAAAAGCC GTGAACTCTCCTGGCATCAAGTTAGCAAAGCACCAGCAATTGGTTTTAGTCCTTCTGTGTTACCAAAACC TCAAAATACGAATAAAGAATGCTCCTGGGGAAGCCCCATAGGAAAACATCATGGTGCTGATGATTCCAGA TTCAGTATTTTAGCTCTATCATTCACAAGTTTGGATAAAATTAATCTAGAGAAAGAATTAGAAAATGAAA ATCATAACTACCATATAGGATTTGAAAGTAGCATTCCTCCAACAAATTCATCCTTCTCAAGTGACTTCAT GCCGAAAGAAGAGAATAAAAGGAGTGGACATGTGAACATTGTGGAACCATCTTTGATGCTTTTGAAAGGC
    [Show full text]
  • Sequence Analysis of Familial Neurodevelopmental Disorders
    SEQUENCE ANALYSIS OF FAMILIAL NEURODEVELOPMENTAL DISORDERS by Joseph Mark Tilghman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December 2020 © 2020 Joseph Tilghman All Rights Reserved Abstract: In the practice of human genetics, there is a gulf between the study of Mendelian and complex inheritance. When diagnosis of families affected by presumed monogenic syndromes is undertaken by genomic sequencing, these families are typically considered to have been solved only when a single gene or variant showing apparently Mendelian inheritance is discovered. However, about half of such families remain unexplained through this approach. On the other hand, common regulatory variants conferring low risk of disease still predominate our understanding of individual disease risk in complex disorders, despite rapidly increasing access to rare variant genotypes through sequencing. This dissertation utilizes primarily exome sequencing across several developmental disorders (having different levels of genetic complexity) to investigate how to best use an individual’s combination of rare and common variants to explain genetic risk, phenotypic heterogeneity, and the molecular bases of disorders ranging from those presumed to be monogenic to those known to be highly complex. The study described in Chapter 2 addresses putatively monogenic syndromes, where we used exome sequencing of four probands having syndromic neurodevelopmental disorders from an Israeli-Arab founder population to diagnose recessive and dominant disorders, highlighting the need to consider diverse modes of inheritance and phenotypic heterogeneity. In the study described in Chapter 3, we address the case of a relatively tractable multifactorial disorder, Hirschsprung disease.
    [Show full text]
  • Genome-Wide Association Study Identifies Eight Novel Loci
    cells Article Genome-Wide Association Study Identifies Eight Novel Loci for Susceptibility of Scrub Typhus and Highlights Immune-Related Signaling Pathways in Its Pathogenesis Yong-Chan Kim 1,2, Soriul Kim 3, Hee-Kwon Kim 4, Yi Lee 5 , Chol Shin 3,6, Chang-Seop Lee 7,8,* and Byung-Hoon Jeong 1,2,* 1 Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; [email protected] 2 Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea 3 Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (S.K.); [email protected] (C.S.) 4 Molecular Imaging & Therapeutic Medicine Research Center, Department of Nuclear Medicine, Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, Jeonbuk 54907, Korea; [email protected] 5 Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, Chungbuk 28644, Korea; [email protected] 6 Department of Internal Medicine, Division of Pulmonary Sleep and Critical Care Medicine, Korea University Ansan Hospital, Ansan 15355, Korea 7 Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Korea Citation: Kim, Y.-C.; Kim, S.; Kim, 8 Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea H.-K.; Lee, Y.; Shin, C.; Lee, C.-S.; * Correspondence: [email protected] (C.-S.L.); [email protected] (B.-H.J.); Jeong, B.-H. Genome-Wide Tel.: +82-63-250-2391 (C.-S.L.); +82-63-900-4040 (B.-H.J.); Fax: +82-63-254-1609 (C.-S.L.); +82-63-900-4012 (B.-H.J.) Association Study Identifies Eight Novel Loci for Susceptibility of Scrub Abstract: Scrub typhus is a fatal zoonotic disease caused by Orientia tsutsugamushi.
    [Show full text]
  • Structural Basis for DEAH-Helicase Activation by G-Patch Proteins
    Structural basis for DEAH-helicase activation by G-patch proteins Michael K. Studera, Lazar Ivanovica, Marco E. Webera, Sabrina Martia, and Stefanie Jonasa,1 aInstitute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved February 21, 2020 (received for review August 12, 2019) RNA helicases of the DEAH/RHA family are involved in many essential RNA bases are stacked in the RNA binding channel between a long cellular processes, such as splicing or ribosome biogenesis, where β-hairpin in RecA2 (β14 to β15 in hsDHX15/scPrp43; SI Appendix, they remodel large RNA–protein complexes to facilitate transitions Fig. S1) and a conserved loop in RecA1 (termed “Hook-turn”). to the next intermediate. DEAH helicases couple adenosine tri- This means that during progression into the open state, the phosphate (ATP) hydrolysis to conformational changes of their β-hairpin and two other RNA-binding patches in RecA2 (termed catalytic core. This movement results in translocation along RNA, “Hook-loop” and “motif V”; SI Appendix, Fig. S1) have to shift 1 which is held in place by auxiliary C-terminal domains. The activity nucleotide (nt) toward the 5′ end of the RNA. Thus, when the of DEAH proteins is strongly enhanced by the large and diverse RecA domains close back up, at the start of the next hydrolysis class of G-patch activators. Despite their central roles in RNA me- cycle, the RNA is pushed by 1 nt through the RNA channel.
    [Show full text]
  • High-Fidelity CRISPR/Cas9
    ARTICLE DOI: 10.1038/s41467-018-05766-5 OPEN High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis Xingbo Xu1,2, Xiaoying Tan2,3, Björn Tampe 3, Tim Wilhelmi1,2, Melanie S. Hulshoff1,2,4, Shoji Saito3, Tobias Moser 5, Raghu Kalluri6, Gerd Hasenfuss1,2, Elisabeth M. Zeisberg1,2 & Michael Zeisberg2,3 fi 1234567890():,; While suppression of speci c genes through aberrant promoter methylation contributes to different diseases including organ fibrosis, gene-specific reactivation technology is not yet available for therapy. TET enzymes catalyze hydroxymethylation of methylated DNA, reac- tivating gene expression. We here report generation of a high-fidelity CRISPR/Cas9-based gene-specific dioxygenase by fusing an endonuclease deactivated high-fidelity Cas9 (dHFCas9) to TET3 catalytic domain (TET3CD), targeted to specific genes by guiding RNAs (sgRNA). We demonstrate use of this technology in four different anti-fibrotic genes in different cell types in vitro, among them RASAL1 and Klotho, both hypermethylated in kidney fibrosis. Furthermore, in vivo lentiviral delivery of the Rasal1-targeted fusion protein to interstitial cells and of the Klotho-targeted fusion protein to tubular epithelial cells each results in specific gene reactivation and attenuation of fibrosis, providing gene-specific demethylating technology in a disease model. 1 Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany. 2 German Center for Cardiovascular Research (DZHK) Partner Site, Göttingen, Germany. 3 Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany. 4 Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 Groningen, GZ, Netherlands.
    [Show full text]
  • De Novo Frameshift Mutation in ASXL3 in a Patient with Global Developmental Delay, Microcephaly, and Craniofacial Anomalies
    Children's Mercy Kansas City SHARE @ Children's Mercy Manuscripts, Articles, Book Chapters and Other Papers 9-17-2013 De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. Darrell L. Dinwiddie Sarah E. Soden Children's Mercy Hospital Carol J. Saunders Children's Mercy Hospital Neil A. Miller Children's Mercy Hospital Emily G. Farrow Children's Mercy Hospital See next page for additional authors Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers Part of the Medical Genetics Commons Recommended Citation Dinwiddie, D. L., Soden, S. E., Saunders, C. J., Miller, N. A., Farrow, E. G., Smith, L. D., Kingsmore, S. F. De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. BMC Med Genomics 6, 32-32 (2013). This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact [email protected]. Creator(s) Darrell L. Dinwiddie, Sarah E. Soden, Carol J. Saunders, Neil A. Miller, Emily G. Farrow, Laurie D. Smith, and Stephen F. Kingsmore This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/1414 Dinwiddie et al. BMC Medical Genomics 2013, 6:32 http://www.biomedcentral.com/1755-8794/6/32 CASE REPORT Open Access De novo frameshift
    [Show full text]
  • A Heterozygous Microdeletion of 20Q13.13 Encompassing ADNP Gene in a Child with Helsmoortel–Van Der Aa Syndrome
    European Journal of Human Genetics (2018) 26:1497–1501 https://doi.org/10.1038/s41431-018-0165-8 ARTICLE A heterozygous microdeletion of 20q13.13 encompassing ADNP gene in a child with Helsmoortel–van der Aa syndrome 1,2 1 3 1 4 Minh-Tuan Huynh ● Elise Boudry-Labis ● Alfred Massard ● Caroline Thuillier ● Bruno Delobel ● 4 5 Bénédicte Duban-Bedu ● Catherine Vincent-Delorme Received: 8 September 2017 / Revised: 3 April 2018 / Accepted: 11 April 2018 / Published online: 13 June 2018 © European Society of Human Genetics 2018 Abstract Helsmoortel–van der Aa (SWI/SNF autism-related or ADNP syndrome) is an autosomal dominant monogenic syndrome caused by de novo variants in the last exon of ADNP gene and no deletions have been documented to date. We report the first case of a 3 years and 10 months old boy exhibiting typical features of ADNP syndrome, including intellectual disability, autistic traits, facial dysmorphism, hyperlaxity, mood disorder, behavioral problems, and severe chronic constipation. 60K Agilent array-comparative genomic hybridization (CGH) identified a heterozygous interstitial microdeletion at 20q13.13 chromosome region, encompassing ADNP and DPM1. Taking into account the clinical phenotype of previously reported cases with ADNP single-point variants, – – 1234567890();,: 1234567890();,: genotype phenotype correlation in the proband was established and the diagnosis of Helsmoortel van der Aa syndrome was made. Our report thus confirms that ADNP haploinsufficiency is associated with Helsmoortel–van der Aa syndrome as well as highlights the utility of whole-genome array-CGH for detection of unbalanced submicroscopic chromosomal rearrangements in routine clinical setting in patients with unexplained intellectual disability and/or syndromic autism.
    [Show full text]