Third International Seabed High-Level Waste Disposal Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Age Progressive Volcanism in the New England Seamounts and the Opening of the Central Atlantic Ocean
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B12, PAGES 9980-9990, NOVEMBER 10, 1984 AGEPROGRESSIVE VOLCANISM IN THENEW ENGLAND SEAMOUNTS AND THE OPENING OF THE CENTRAL ATLANTIC OCEAN R. A. Duncan College of Oceanography, Oregon State University, Corvallis Abstract. Radiometric ages (K-Ar and •øAr- transient featur e•s that allow calculations of 39Ar methods) have been determined on dredged relative motions only. volcanic rocks from seven of the New England The possibility that plate motions may be Seamounts, a prominent northwest-southeast trend- recorded by lines of islands and seamounts in the ing volcanic lineament in the northwestern ocean basins is attractive in this regard. If, Atlantic Ocean. The •øAr-39Ar total fusion and as the Carey-Wilson-Morgan model [Carey, 1958; incren•ental heating ages show an increase in Wilson, 1963; Morgan, 19•1] proposes, sublitho- seamount construction age from southeast to spheric, thermal anomalies called hot spots are northwest that is consistent with northwestward active and fixed with respect to one another in motion of the North American plate over a New the earth's upper mantle, they would then consti- England hot spot between 103 and 82 Ma. A linear tute a reference frame for directly and precisely volcano migration rate of 4.7 cm/yr fits the measuring plate motions. Ancient longitudes as seamount age distribution. These ages fall well as latitudes would be determined from vol- Within a longer age progression from the Corner cano construction ages along the tracks left by Seamounts (70 to 75 Ma), at the eastern end of hot spots and, providing relative plate motions the New England Seamounts, to the youngest phase are also known, quantitative estimates of conver- of volcanism in the White Mountain Igneous gent plate motions can be calculated [Engebretson Province, New England (100 to 124 Ma). -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Deep-Sea Mining: the Basics
A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining. -
Sediments, Fauna and the Dispersal O Radionuclides at the N.E. Atlantic Dumpsite for Low-Level Radioactive Wast
NETHERLANDS INSTITUTE FOR SEA RESEARC Sediments, fauna and the dispersal o radionuclides at the N.E. Atlantic dumpsite for low-level radioactive wast INIS-mf--11394 Report of the Dutch DORA program **? M.M. Rutgers van der Loeff & M.S.S. Lavaleye Front cover: Physiographic Diagram of the North Atlantic by B. C. Heezen and M. Tharp, Copyrighted © 1984 by Marie Thpro, published by permission of Marie Tharp. The posi- tion of the dumpsite is indicated. Tl.e deep water in the eastern basin is ventilated from the south. Back cover: Rat-tail fish Coryphaenoides armatus caught at the dumpsite. Sediments, fauna, and the dispersal of radionuclides at the N.E. Atlantic dumpsite for low-level radioactive waste Report of the Dutch DORA program M.M. Rutgers van der Loeff & M.S.S. Lavaleye Netherlands Institute for Sea Research, P.O. Box 59,NL 1790 AB DEN BURG, TEXEL 1986 SEDIMENTS, FAUNA, AND THE DISPERSAL OF RADIONUCLIDES AT THE NE ATLANTIC DUMPSITE FOR LOW-LEVEL RADIOACTIVE WASTE Final report of the Dutch DORA program MM. RUTGERS VAN DER LOEFF AND M.S.S. LAVALEYE NIOZ, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands. CONTENTS 1. Introduction 1.1. Research at the NEA dumpsite: CRESP and the DORA project 1.2. Acknowledgments 1.3. Source term: the radionuclides of interest 2. Material and methods 2.1. Cruises to the dumpsite 2.2. Sampling scheme 3. Geochemistry 3.1. Introduction 3.2. Methods 3.3. Recent sedimentological history 3.4. Elemental and mineralogical composition of the sediment 3.4.1. -
Deep Sea Drilling Project Initial Reports Volume 5
30. LITHOLOGIC SUMMARY Oscar E. Weser, Chevron Oil Field Research Company, La Habra, California INTRODUCTION Using this added distinction, one can account for the seeming contradiction that some pelagic sediments A broad spectrum of terrigenous and pelagic sedi- had a higher sedimentation rate than some terrigenous ments was encountered on Leg 5. The terrigenous sediments. The former contained significant amounts sediments occur only in those sites drilled closest to (up to 95 per cent) of siliceous and/or calcareous tests land masses. The more distant drill sites penetrated of planktonic microorganisms. It is obvious that when pelagic sediments. Pelagic deposits were also found in employing a system of dividing sediments into pelagic two nearshore sites at Holes 32 and 36. The distribu- and terrigenous deposits based on the rate continental tion of these two classes of sediment for the Leg 5 detritus accumulates, the products of plankton pro- drill sites is shown on Figure 1. duction act as a biasing diluent. By compensating for the biogenous constituents, one can generalize that Of the 1808 meters1 of sediment penetrated on Leg 5, most terrigenous sediments found on Leg 5 did have a 1344 meters (75 per cent) are terrigenous2 and 464 higher sedimentation rate than the pelagic sediments. meters (25 per cent) are pelagic. Table 1 lists the sedimentary constituents encountered In this inquiry, the main criterion used to differentiate in the terrigenous and pelagic deposits of the various pelagic from terrigenous deposits was color: pelagic holes on Leg 5. This table includes only those con- sediments typically were red, brown or yellow; green, stituents which were recognized while making visual blue and black characterized the terrigenous sediments. -
Particle Size Distribution and Estimated Carbon Flux Across the Arabian Sea Oxygen Minimum Zone François Roullier, L
Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone François Roullier, L. Berline, Lionel Guidi, Xavier Durrieu de Madron, M. Picheral, Antoine Sciandra, Stephane Pesant, Lars Stemman To cite this version: François Roullier, L. Berline, Lionel Guidi, Xavier Durrieu de Madron, M. Picheral, et al.. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences, European Geosciences Union, 2014, 11, pp.4541-4557. 10.5194/bg-11-4541-2014. hal-01059610 HAL Id: hal-01059610 https://hal.archives-ouvertes.fr/hal-01059610 Submitted on 30 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Biogeosciences, 11, 4541–4557, 2014 www.biogeosciences.net/11/4541/2014/ doi:10.5194/bg-11-4541-2014 © Author(s) 2014. CC Attribution 3.0 License. Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone F. Roullier1,2, L. Berline1,2, L. Guidi1,2, -
Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting
OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 Editors Melanie McKay Copy Editor Judith Nides Production Editor Debra Vigil Editor Prepared under MMS Contract 1435-00-01-CA-31060 by University of New Orleans Office of Conference Services New Orleans, Louisiana 70814 Published by New Orleans U.S. Department of the Interior Minerals Management Service October 2001 Gulf of Mexico OCS Region iii DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the University of New Orleans, Office of Conference Services. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of this report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Numbers: (504) 736-2519 1-800-200-GULF CITATION This study should be cited as: McKay, M., J. Nides, and D. Vigil, eds. 2001. Proceedings: Twentieth annual Gulf of Mexico information transfer meeting, December 2000. -
Patterns of Suspended Particulate Matter Across the Continental Margin in the Canadian Beaufort Sea Jens K
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-261 Manuscript under review for journal Biogeosciences Discussion started: 21 June 2018 c Author(s) 2018. CC BY 4.0 License. Patterns of suspended particulate matter across the continental margin in the Canadian Beaufort Sea Jens K. Ehn1, Rick A. Reynolds2, Dariusz Stramski2, David Doxaran3, and Marcel Babin4 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada. 2Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, U.S.A. 3Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefanche, Villefranche-sur-mer 06230, France. 4Joint International ULaval-CNRS Laboratory Takuvik, Québec-Océan, Département de Biologie, Université Laval, Québec, Québec, Canada. Correspondence: Jens K. Ehn ([email protected]) Abstract. The particulate beam attenuation coefficient at 660 nm, cp(660), was measured in conjunction with properties of suspended particle assemblages in August 2009 within the Canadian Beaufort Sea continental margin, a region heavily influenced by sediment discharge from the Mackenzie River. The suspended particulate matter mass concentration (SPM) 3 ranged from 0.04 to 140 g m− , its composition varied from mineral to organic-dominated, and the median particle diameter 5 ranged determined over the range 0.7–120 µm varied from 0.78 to 9.45 µm, with the fraction of particles < 1 µm highest in surface layers influenced by river water or ice melt. A relationship between SPM and cp(660) was developed and used to determine SPM distributions based on measurements of cp(660) taken during summer seasons of 2004, 2008 and 2009, as well as fall 2007. -
Particulate Organic Carbon Fluxes on the Slope of the Mackenzie Shelf
Available online at www.sciencedirect.com Journal of Marine Systems 68 (2007) 39–54 www.elsevier.com/locate/jmarsys Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): Physical and biological forcing of shelf-basin exchanges ⁎ Alexandre Forest a, , Makoto Sampei a, Hiroshi Hattori b, Ryosuke Makabe c, Hiroshi Sasaki c, Mitsuo Fukuchi d, Paul Wassmann e, Louis Fortier a a Québec-Océan, Université Laval, Québec, QC, Canada, G1K 7P4 b Hokkaido Tokai University, Minamisawa, Minamiku Sapporo, Hokkaido 005-8601, Japan c Senshu University of Ishinomaki, Ishinomaki, Miyagi 986-8580, Japan d National Institute of Polar Research, 9-10, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515, Japan e Norwegian College of Fishery Science, University of Tromsø, N-9037, Tromsø, Norway Received 27 July 2006; received in revised form 25 October 2006; accepted 27 October 2006 Available online 12 December 2006 Abstract To investigate the mechanisms underlying the transport of particles from the shelf to the deep basin, sediment traps and oceanographic sensors were moored from October 2003 to August 2004 over the 300- and 500-m isobaths on the slope of the Mackenzie Shelf (Beaufort Sea, Arctic Ocean). Seasonal variations in the magnitude and nature of the vertical particulate organic carbon (POC) fluxes were related to sea-ice thermodynamics on the shelf and local circulation. From October to April, distinct increases in the POC flux coincided with the resuspension and advection of shelf bottom particles by thermohaline convection, windstorms, and/or current surges and inversions. Once resuspended and incorporated into the Benthic Nepheloid Layer (BNL), particles of shelf origin were transported over the slope by the isopycnal intrusion of the BNL into the Polar-Mixed Layer off-shelf. -
Seabed Mapping: a Brief History from Meaningful Words
geosciences Review Seabed Mapping: A Brief History from Meaningful Words Pedro Smith Menandro and Alex Cardoso Bastos * Marine Geosciences Lab (Labogeo), Departmento Oceanografia, Universidade Federal do Espírito Santo, Vitória-ES 29075-910, Brazil; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 7 July 2020; Published: 16 July 2020 Abstract: Over the last few centuries, mapping the ocean seabed has been a major challenge for marine geoscientists. Knowledge of seabed bathymetry and morphology has significantly impacted our understanding of our planet dynamics. The history and scientific trends of seabed mapping can be assessed by data mining prior studies. Here, we have mined the scientific literature using the keyword “seabed mapping” to investigate and provide the evolution of mapping methods and emphasize the main trends and challenges over the last 90 years. An increase in related scientific production was observed in the beginning of the 1970s, together with an increased interest in new mapping technologies. The last two decades have revealed major shift in ocean mapping. Besides the range of applications for seabed mapping, terms like habitat mapping and concepts of seabed classification and backscatter began to appear. This follows the trend of investments in research, science, and technology but is mainly related to national and international demands regarding defining that country’s exclusive economic zone, the interest in marine mineral and renewable energy resources, the need for spatial planning, and the scientific challenge of understanding climate variability. The future of seabed mapping brings high expectations, considering that this is one of the main research and development themes for the United Nations Decade of the Oceans. -
Intern Report
Insights from abyssal lebensspuren Jennifer Durden, University of Southampton, UK Mentors: Ken Smith, Jr., Christine Huffard, Katherine Dunlop Summer 2014 Keywords: lebensspuren, traces, abyss, megafauna, deposit-feeding, benthos, sediment ABSTRACT The seasonal input of food to the abyss impacts the benthic community, and changes to that temporal cycle, through changes to the climate and surface ocean conditions impact the benthic assemblage. Most of the benthic fauna are deposit feeders, and many leave traces (‘lebensspuren’) of their activity in the sediment. These traces provide an avenue for examining the temporal variations in the activity of these animals, with insights into the usage of food inputs to the system. Traces of a variety of functions were identified in photographs captured in 2011 and 2012 from Station M, a soft-sedimented abyssal site in the northeast Pacific. Lebensspuren creation, holothurian tracking, and lebensspuren duration were estimated from hourly time-lapse images, while trace densities, diversity and seabed coverage were assessed from photographs captured with a seabed- transiting vehicle. The creation rates and duration of traces on the seabed appeared to vary over time, and may have been related to food supply, as may tracking rates of holothurians. The density, diversity and seabed coverage by lebensspuren of different types varied with food supply, with different lag times for POC flux and salp coverage. These are interpreted to be due to selectivity of 1 deposit feeders, and different response times between trace creators. These variations shed light on the usage of food inputs to the abyss. INTRODUCTION Deep-sea benthic communities rely on a seasonal food supply of detritus from the surface ocean (Billett et al., 1983, Rice et al., 1986). -
Rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL
INTERNAL DOCUMENT rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL [This document should not be cited in a published bibliography, and is supplied for the use of the recipient only]. a - INSTITUTE OF \ z OCEAN OGRAPHIC SCIENCES %V. '"oos INSTITUTE OF OCEANOGRAPHIC SCIENCES Worm ley, Godalming, Surrey, GU8 BUB. (042-879-4141) (Director: Dr. A. S. Laughton) Bidston Observatory, Crossway, Birkenhead, Taunton, Merseyside, L43 7RA. Somerset, TA1 2DW. (051 652-2396) (0823-86211) (Assistant Director: Dr. D. E. Cartwright) (Assistant Director: M.J. Tucker) OCEANOGRAPHY rslatsd to DEBP SEA. WASTE DISPOSAL A Survev commissioned bv the Department of the Environment In^tltnt^ or Oceanogr^phie Sciences, Woruloy, ^onalming, Surrey GDW September 1978 •r; Wn fr^'W'w , -ig^at igGr^SSjes*'': 'i'-.r '� 4 i®i": iSSfflSj*-; ,*h :gSm '# .f f. .-< ' ^ ' \" . ' .- : - '-' '"i" "'"Tn'fWr^ ^ "rf'iVf. i.^t. %& g,*;gh^ h#wk^, . '::Y '"?' "%v t /:;,f »"-^iY: ^jw&j ,<1.^....-L. ,. t '.4..^,.,.. r X e^^TDy; . '.*,,.:'*,;wVk..^... , .. WIS3 li A) pi if r 31*: 'AM jngraa $#* ;- :Y^-; •••••: if'**J KAW W!&#' %wt;pfy W,.x u t wk%Wg%#&0 '•'£i'5dteii>irt PAWR t .* jpM»rtte»ai«l'*<M»r» •"i £i 'li-,'".!,,• -•t'iA^r., - !MfcSs-d»e. * CONTENTS Page i-% INTRODUCTION 1.1 CHAPTER 1 GEOLOGY AND GEOPHYSICS 2.1 CHAPTER 2 GEOCHEMISTRY 3.1 CHAPTER 3 PHYSICAL OCEANOGRAPHY 4.1 CHAPTER 4 MARINE BIOLOGY INTROnUCTZON The Sixth Report of the Royal CommisaioA on Environmental Pollution (Cmnd 66l8) recommended that a programme of research is needed to ensure that safe containment for an indefinite period of lon^-lived, highly radioactive wastes is feasible before a commitment is made to a large scale nuclear programme, In response to the Commission^ recommendations the Government decided to keep open and study further two options for the disposal of waste in the ocean (Cmnd 6820).