Cumella Vulgaris Class: Multicrustacea, Malacostraca, Eumalacostraca
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comments on Cumacea for LH - Part 6
Comments on Cumacea for LH - Part 6. The Family Nannastacidae dbcadien 14 December 2006 The nannastacids are a very diverse group, with Bacescu listing over 300 species in 20 genera (1992). This number of described species has continued to grow, and forms known locally also include a relatively large number of provisionals. Despite the diversity of genera known world-wide, there are only four present in the NEP, and only two of these are speciose: Campylaspis and Cumella. Both these genera are found from the deep-sea to the intertidal (Jones 1969). Both also have many representatives in shallow and deep waters, but periodic major descriptive works (i.e. Gamo 1964; Jones 1974, 1984; Petrescu and Iliffe 1992; Petrescu et al 1994) continually change the balance of deep vs shallow species. The nominate genus Nannastacus literally means 'tiny crayfish'. Attempting to recognize any similarity with crayfish in this genus quickly leads one to the conclusion that the original name was ill-conceived. Nannastacids are typically rather globose carapaced animals, usually higher posteriorly and sloping towards the pseudorostrum. There are, of course, no chelae or claws as might be suggested by the family name derivation. While most are small, a few of the Campylaspis are relatively large. Cumella species are nearly uniformly small. NEP Nannastacidae from McLaughlin et al (2005) augmented by known provisional taxa. *= Taxa on the SCAMIT Ed 4 list + addenda. Valid taxa bolded, synonyms not. Family Nannastacidae *Campylaspis biplicata Watling and McCann 1997 - Puget Sound to San Diego;47-1372m *Campylaspis blakei Watling and McCann 1997 - Eureka to San Diego; 92- 914m * Campylaspis canaliculata Zimmer 1936 - Fort Bragg to San Diego; 10-644m *Campylaspis hartae Lie 1969 - Puget Sound to San Diego; 7-207m *Campylaspis maculinodulosa Watling and McCann 1997 - Central California to San Diego; 25-154m (note: the synonymy of C. -
Anchialine Cave Biology in the Era of Speleogenomics Jorge L
International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats. -
Cumacea (Crustacea) from Shallow Waters of Bermuda
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Petrescu I., Sterrer W. Artikel/Article: Cumacea (Crustacea) from shallow waters of Bermuda. 89-128 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 89- 128 Wien, Dezember 2001 Cumacea (Crustacea) from shallow waters of Bermuda I. Petrescu* & W. Sterrer** Abstract Seven species of Cumacea, two new {Cumella somersi sp.n. and Schizotrema wittmanni sp.n.) were identified in samples from shallow waters and sea caves of Bermuda. This is the first record of the genus Schizotrema in the Atlantic Ocean, and the first record of Cumella serrata CALM AN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) for Bermuda. The paper includes revisions of all species reported from Bermuda. Keywords: Cumacea, Bermuda, new taxa, revisions. Zusammenfassung Von sieben Cumaceen-Arten aus Seichtwasser- und Meereshöhlenproben von Bermuda sind zwei neu für die Wissenschaft: Cumella somersi sp.n. und Schizotrema wittmanni sp.n. Das Genus Schizotrema wird zum erstenmal aus dem Atlantik vermeldet, und die Arten Cumella serrata CALMAN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) zum erstenmal von Bermuda. Alle bisher in Bermuda gefundenen Arten wer- den kritisch revidiert. Introduction Situated at 32°18'N, 64°46'W in the northwestern Atlantic Ocean, the archipelago of Bermuda is made up of approximately 150 islands and islets, with a total land mass of only 50 km2. Despite its high latitude, the oceanic island of Bermuda boasts the north- ernmost coral reef system in the world, largely thanks to the warm Gulf Stream which passes halfway between the island and North America. -
The Malacostracan Fauna of Two Arctic Fjords (West Spitsbergen): the Diversity And
+ Models OCEANO-95; No. of Pages 24 Oceanologia (2017) xxx, xxx—xxx Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE The malacostracan fauna of two Arctic fjords (west Spitsbergen): the diversity and distribution patterns of its pelagic and benthic components Joanna Legeżyńska *, Maria Włodarska-Kowalczuk, Marta Gluchowska, Mateusz Ormańczyk, Monika Kędra, Jan Marcin Węsławski Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland Received 14 July 2016; accepted 6 January 2017 KEYWORDS Summary This study examines the performance of pelagic and benthic Malacostraca in two Malacostraca; glacial fjords of west Spitsbergen: Kongsfjorden, strongly influenced by warm Atlantic waters, Arctic; and Hornsund which, because of the strong impact of the cold Sørkapp Current, has more of Svalbard; an Arctic character. The material was collected during 12 summer expeditions organized from Diversity; 1997 to 2013. In all, 24 pelagic and 116 benthic taxa were recorded, most of them widely Distribution distributed Arctic-boreal species. The advection of different water masses from the shelf had a direct impact on the structure of the pelagic Malacostraca communities, resulting in the clear dominance of the sub-arctic hyperiid amphipod Themisto abyssorum in Kongsfjorden and the great abundance of Decapoda larvae in Hornsund. The taxonomic, functional and size compositions of the benthic malacostracan assemblages varied between the two fjords, and also between the glacier-proximate inner bays and the main fjord basins, as a result of the varying dominance patterns of the same assemblage of species. There was a significant drop in species richness in the strongly disturbed glacial bays of both fjords, but only in Hornsund was this accompanied by a significant decrease in density and diversity, probably due to greater isolation and poorer quality of sediment organic matter in its innermost basin. -
A New Record of Pseudoleucon Japonicus (Crustacea: Cumacea: Leuconidae) from Korea
Journal72 of Species Research 10(1):72-77, 2021JOURNAL OF SPECIES RESEARCH Vol. 10, No. 1 A new record of Pseudoleucon japonicus (Crustacea: Cumacea: Leuconidae) from Korea Sung-Hyun Kim1 and Chang-Mok Lee2,* 1Department of Biological Sciences, Dankook University, Cheonan 31116, Republic of Korea 2Hanmin High School, Paju 10955, Republic of Korea *Correspondent: [email protected] Only four species of leuconids have been recorded in Korea, all belonging to the genera Eudorella Norman, 1867 and Nippoleucon Watling, 1991. In this study, Pseudoleucon japonicus Gamô, 1964 belonging to family Leuconidae Sars, 1878 is newly recorded for Korean cumacean fauna. Also, for the first time, the male of the species is fully described and illustrated. The specimens were collected from the exclusive economic zone (EEZ) in the western sea (Yellow Sea) of Korea, with a rectangular dredge during 2007-2008. This species is characterized by the following features: the carapace has strong serrations on the antero-lateral margin and a pair of short oblique ridges on the side surface; the ridges begin near the end of frontal lobe and merge with the dorsal median carina; the appendages, such as antenna 1, pereopod 2 and uropod have a lot of simple setae decorated with a bundle of hairs at the end. The present study represents the first record on the genus Pseudoleucon Zimmer, 1903 from Korea. Keywords: Cumacea, Leuconidae, Pseudoleucon, new record, Korea Ⓒ 2021 National Institute of Biological Resources DOI:10.12651/JSR.2021.10.1.072 INTRODUCTION MATERIALS AND METHODS The family Leuconidae Sars, 1878, is composed of The specimens were collected from the exclusive eco- 20 genera with 171 species worldwide (WoRMS, 2021). -
Facts and Arguments for Darwin
22102077550 Med K3642 #• Digitized by the Internet Archive in 2017 with funding from Wellcome Library https://archive.org/details/b29338426 FACTS AND ARGUMENTS FOR DARWIN. BY FRITZ MÜLLER. WITH ADDITIONS BY THE AUTHOR TRANSLATED FROM THE GERMAN By W. S. DALLAS, F.L.S., ASSISTANT SECRETARY TO THE GEOLOGICAL SOCIETY OF LONDON. WITH ILLUSTRATIONS. LONDON: JOHN MURRAY, ALBEMARLE STREET. 1869. EI'/fL.U TT Cblj T« til ! 1a^: MB. DARWIN’S WORKS. A NATURALIST’S VOYAGE ROUND THE WORLD ; being a Journal of Researches into the Natural History and Geology of Couktries Visited. Post 8vo. 9s. THE ORIGIN of SPECIES, by MEANS of NATURAL SELECTION"; or, The Preservation of Favoured Races in the Struggle for Life. Woodcuts. Post 8vo. 15s. THE VARIOUS CONTRIVANCES by wbicb BRITISH and FOREIGN ORCHIDS are FERTILIZED by INSECTS, and on the GOOD EFFECTS of INTERCROSSING. Woodcuts. Post 8vo. 9s. THE VARIATION OF ANIMALS AND PLANTS UNDER DOMESTICATION. Illustrations. 2 vols., 8vo. 28s. TRANSLATOR’S PREFACE. My principal reason for undertaking the translation of Dr. Fritz Muller’s admirable work on the Crustacea, entitled ‘Für Darwin,’ was that it was still, although published as long ago as 1864, and highly esteemed by the author’s scientific countrymen, absolutely unknown to a great number of English naturalists, including some who have occupied themselves more or less specially with the subjects of which it treats. It possesses a value quite independent of its reference to Darwinism, due to the number of highly interesting and important facts in the natural history and par¬ ticularly the developmental history of the Crustacea, which its distinguished author, himself an unwearied and original investigator of these matters, has brought together in it. -
Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs. -
Title CUMACEAN CRUSTACEA from AKKESHI BAY, HOKKAIDO Author(S) Gamo, Sigeo Citation PUBLICATIONS of the SETO MARINE BIOLOGICAL LA
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CUMACEAN CRUSTACEA FROM AKKESHI BAY, Title HOKKAIDO Author(s) Gamo, Sigeo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(3): 187-219 Issue Date 1965-10-30 URL http://hdl.handle.net/2433/175407 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 CUMACEAN CRUSTACEA FROM AKKESHI BAY, HOKKAID0 ) SIGEO GAMO Faculty of Liberal Arts and Education, Yokohama National University, Kamakura, Kanagawa-Ken With 12 Text-figures Our knowledge of the Cumacea of Hokkaido and its adjacent waters is due to the contributions of DERZHA VIN (1923, 1926), U:ENo (1933, 1936), ZIMMER (1929, 1939, 1940, 1943) and LOMAKINA (1955 a-b; 1958 a-b). + Tomata Sempoji krn Fig. 1. Map of Akkeshi Bay. Solid circles with numbers indicate the stations where the cumaceans were collected by the Ekman-Berge bottom-sampling grab, 19-21 show the places where the subsurface towing of plankton-net was made at night. "~---------- ---- ---"---~- 1) Contributions from the Akkeshi Marine Biological Station, No. 126. Publ. Seto Mar. Biol. Lab., XIII (3), 187-219, 1965. (Article 10) f-l ~ Table 1. Occurrence of cumaceans in Akkeshi Bay. Station number 1_1_ _:__3___ 4 ___ 5 ___ 6 ___7 ___8_1_9_ 10 11-12~_::_~~~~ 18 19120121 Depth (m) 2 1 3 8 2 0.3 9 11 11 14 8-12 6 13 14 15 0.3 0.3 night ______B_o_t_t-om_c_h-aracter ~~~~~sis~~~~ sM s andMI s ~s~ss ~~~~~~ Srecies of cumaceans Bodotriidae I I I I I I I I I I I I I I I I . -
Crustacea, Malacostraca)*
SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young. -
Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species
Gulf and Caribbean Research Volume 22 Issue 1 2010 Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species David T. Drumm University of Southern Mississippi Richard W. Heard University of Southern Mississippi, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Drumm, D. T. and R. W. Heard. 2010. Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species. Gulf and Caribbean Research 22 (1): 29-41. Retrieved from https://aquila.usm.edu/gcr/vol22/iss1/4 DOI: https://doi.org/10.18785/gcr.2201.04 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research Vol 22, 29-41, 2010 Manuscript received November 12, 2009; accepted January 19, 2010 OBSERVATIONS ON THE KALLIAPSEUDID TANAIDACEA (CRUSTACEA: MALACOSTRACA: PERACARIDA) FROM THE NORTHWESTERN ATLANTIC, WITH AN ILLUSTRATED KEY TO THE SPECIES David T. Drumm and Richard W. Heard Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, e-mail: david.drumm@ usm.edu ABSTRACT: New information for the kalliapseudid Tanaidacea occurring in the northwestern Atlantic is presented and discussed, including data on range extensions and new depth ranges for 4 species. The taxa studied came from the shelf and coastal waters of the southeastern United States, Puerto Rico and Trinidad. -
Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2003 Springer‐Verlag. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Marshall, N. J., Cronin, T. W., & Frank, T. M. (2003). Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments. (pp. 343‐372). Berlin: Springer‐Verlag. doi: 10.1007/978‐0‐387‐22628‐6_18 18 Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects N. Justin Marshall, Thomas W. Cronin, and Tamara M. Frank Abstract Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sen sitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dra matically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.