University of Groningen Avian Adaptation Along an Aridity Gradient Tieleman, Bernadine Irene

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Avian Adaptation Along an Aridity Gradient Tieleman, Bernadine Irene University of Groningen Avian adaptation along an aridity gradient Tieleman, Bernadine Irene IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tieleman, B. I. (2002). Avian adaptation along an aridity gradient: Physiology, behavior, and life history. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 ABSTRACT We investigated interindividual variation and intra- individual phenotypic flexibility in basal metabolic rate (BMR), total evaporative water loss (TEWL), body tem- perature (Tb), the minimum dry heat transfer coefficient (h) and organ and muscle size of five species of larks geographically distributed along an aridity gradient. We exposed all species to constant environments of 15 °C or 35 °C, and examined to what extent interspecific diffe- rences in physiology can be attributed to acclimation. We tested the hypothesis that birds from deserts display larger intra-individual phenotypic flexibility and smaller inter- individual variation than species from mesic areas. Larks from arid areas had lower BMR, TEWL and h, but did not have internal organ sizes different from birds from mesic habitats. BMR of 15 °C-acclimated birds was 18.0%, 29.1%, 12.2%, 25.3% and 4.7% higher than of 35 °C- acclimated Hoopoe Larks, Dunn's Larks, Spike-heeled Larks, Skylarks and Woodlarks, respectively. TEWL of 15 °C-acclimated Hoopoe Larks exceeded values for 35 °C- acclimated individuals by 23%, but did not differ between 15 °C- and 35 °C-acclimated individuals in the other species. The dry heat transfer coefficient was increased in 15 °C-acclimated individuals of Skylarks and Dunn's Larks, but not in the other species. Body temperature was on average 0.4 °C (S.E.M. 0.15 °C) lower in 15 °C- acclimated individuals of all species. Increased food inta- ke in 15 °C-acclimated birds stimulated enlargement of intestine (26.9-38.6%), kidneys (9.8%-24.4%), liver (16.5%-27.2%) and stomach (22.0%-31.6%). The pec- toral muscle increased in 15 °C-acclimated Spike-heeled Larks and Skylarks, remained unchanged in Hoopoe Larks, and decreased in 15 °C-acclimated Woodlarks and Dunn's Larks. We conclude that the degree of intra-indi- vidual flexibility varied between physiological traits and among species, but that acclimation does not account for interspecific differences in BMR, TEWL and h in larks. We found no general support for the hypothesis that spe- cies from desert environments display larger intra-indivi- dual phenotypic flexibility than those from mesic areas. The coefficient of variation of larks acclimated to their natural environment was smaller in species from arid than from mesic areas for mass-corrected BMR and surface-spe- cific h, but not for mass-corrected TEWL. The high re- peatabilities of BMR, TEWL and h in several species indi- cated a within-individual consistency on which natural selection could operate. ABSTRACT CHAPTER 6 Physiological adjustments to arid and mesic environments in larks (Alaudidae) B. Irene Tieleman, Joseph B. Williams, and Michael E. Buschur Physiological and Biochemical Zoology 75: 305-313. 2002. ABSTRACT Because deserts are characterized by low food availability, high ambient temperature extremes and absence of drinking water, one might expect that birds that live in these conditions exhibit a lower basal metabolic rate (BMR), a reduced total evaporative water loss (TEWL) and a greater ability to cope with high air temperatures than their mesic counterparts. To minimize confoun- ding effects of phylogeny, we compared the phys- iological performance of four species of larks at ambient temperatures (Ta) ranging from 0 °C to 50 °C: Hoopoe Larks (Alaemon alaudipes) and Dunn's Larks (Eremalauda dunni) live in hot and dry deserts, whereas Skylarks (Alauda arvensis) and Woodlarks (Lullula arborea) occur in tempe- rate mesic areas. Mass-adjusted BMR and TEWL were indistinguishable between Hoopoe Lark and Dunn's Lark and between Skylark and Woodlark. Combining the two desert birds and the two mesic larks, larks from the desert had levels of BMR 43% lower and values of TEWL 27% lower than the mesic species. Their body temperatures (Tb) were 1.1 °C lower and the minimal dry heat transfer coefficients (h) were 26% below values for the mesic larks. When Ta exceeded Tb, the h of Hoopoe Larks and Dunn's Larks was high and indistinguishable from h at 40 °C, in contrast to the prediction that h should be decreased to min- imize heat gain through conductance, convec- tion or radiation from the environment when Ta exceeds Tb. ABSTRACT Introduction Animals that live in deserts might be expected to possess behavioral and physio- logical adaptations that would enable them to cope with high ambient tempera- tures (Ta), low food resources and lack of drinking water, the main characteris- tics of these environments (Bartholomew & Cade 1963; Dawson & Schmidt- Nielsen 1964; Williams & Tieleman 2001). Unlike small mammals, that are generally nocturnal and as a result do not experience the temperature extremes of the desert environment, desert birds are exposed to Tas that are among the highest on earth. Shade Ta can exceed 50 °C in some deserts and anecdotical evidence suggests that extreme heat can be a major source of mortality in some bird populations (Serventy 1971). Avian physiological mechanisms that favor survival during extended periods of high Tas are poorly understood. Exposure to high Ta not only requires mechanisms of heat tolerance, but also puts additional strain on the water and energy balance that may already be compromised by lack of drinking water and low food availability. Early investigators hypothesized that low primary productivity, high Ta and absence of drinking water in deserts would select for low levels of basal metabo- lic rate (BMR) and total evaporative water loss (TEWL) in desert birds, but found no general support for this idea (Bartholomew & Cade 1963; Bartholomew 1964; Dawson & Schmidt-Nielsen 1964; Serventy 1971; Dawson 1984). Subsequent studies reported levels of BMR and TEWL below allometric predictions, but because these investigations were often based on a single species, conclusions were tentative (Dawson & Bennett 1973; Weathers 1979; Arad & Marder 1982; Withers & Williams 1990). Across species comparisons between desert and non-desert species support the hypothesis that arid-zone birds have on average a lower BMR (Tieleman & Williams 2000) and a lower TEWL (Williams 1996). Broad-scale interspecific comparisons of BMR and TEWL have the inherent interpretational problem that species not only differ in habitat but also in phy- logenetic background, diet and behavior. In addition, knowledge of minimum ENVIRONMENTS levels of metabolism and TEWL provides limited understanding of the physiolo- MESIC gical responses to varying environmental circumstances, including Ta. AND Restricting comparative analyses to a small group of closely related species occu- ARID ring in different environments provides the opportunity for a more detailed exa- TO mination of physiological adjustment while potentially limiting complications due to markedly different evolutionary history or current dissimilar life styles. At high Ta, birds increase TEWL to maintain body temperature (Tb) below lethal ADJUSTMENTS limits (Calder & King 1974), even when water is in short supply. To minimize evaporative water loss at high Ta, birds could reduce heat production from met- abolism. Another strategy to reduce water requirements for evaporative cooling PHYSIOLOGICAL at high Ta entails minimizing dry heat gain from the environment, quantified by 133 the equation Heat gain = h (Tb - Ta), where Tb - Ta is the gradient between the bird’s Tb and the environment and h is the dry heat transfer coefficient (Dawson & Schmidt-Nielsen 1966; Hinds & Calder 1973; Weathers & Caccamise 1975; Tieleman & Williams 1999). Influenced by feather insulation, skin vasodilation, surface to volume ratios and subcutaneous fat reserves, h is a complex variable that combines heat transfer coefficients for conduction, convection and radia- tion (Calder & King 1974). The optimal response of h to Ta presumably inclu- des adjustments to minimal levels below the thermoneutral zone, an increase to maximum values when Ta approaches Tb, and a decrease to minimal values again when Ta exceeds Tb (Dawson & Schmidt-Nielsen 1966; Hinds & Calder 1973; Tieleman & Williams 1999). We hypothesized that increasing aridity selects for gradually decreasing levels of BMR and TEWL in birds, and for improved physiological performance under exposure to extreme heat. To test these ideas, we studied the temperature regu- lation of four closely related birds, Dunn's Larks and Hoopoe Larks from the hyperarid and arid deserts in Arabia and northern Africa, and Skylarks and Woodlarks that live in the mesic temperate zones of Europe and Asia. We deter- mined metabolism, total evaporative water loss, dry heat transfer coefficient and body temperature at Tas ranging from 0-40 °C in the mesic birds and from 0-50 °C in the arid-zone species.
Recommended publications
  • Taxonomy of the Mirafra Assamica Complex
    FORKTAIL 13 (1998): 97-107 Taxonomy of the Mirafra assamica complex PER ALSTROM Four taxa are recognised in the Mirafra assamicacomplex: assamica Horsfield, affinis Blyth, microptera Hume, and marionae Baker; subsessorDeignan is considered to be a junior synonym of marionae. These four taxa differ in morphology and especially in vocalizations. Both assamicaand microptera have diagnostic song-flights, while affinis and marionae have similar song-flights. There are also differences in other behavioural aspects and habitat between assamicaand the others. On account of this, it is suggested that Mirafra assamicasensu lato be split into four species:M assamica,M affinis,M micropteraand M marionae.English names proposed are: Bengal Bushlark, ] erdon' s Bushlark, Burmese Bushlark and Indochinese Bushlark, respectively. The Rufous-winged Bushlark Mirafra assamica Horsfield (including the holotype) on my behalf in the Smithsonian is usually divided into five subspecies: assamica Horsfield Institution, Washington, D.C., USA. I have examined c. (1840), affinis Blyth (1845), microptera Hume (1873), 20 specimens of ceylonensis, though I have not compared it subsessor Deignan (1941), and marionae Baker (1915) in detail with affinis, and I have only measured four (Peters 1960, Howard and Moore 1991). One further specimens (of which two were unsexed). For all taxa, taxon, ceylonensis Whistler (1936), is sometimes recognized, measurements of wing length (with the wing flattened and but following Ripley (1946) and Vaurie (1951) most recent stretched; method 3, Svensson 1992), tail length, bill length authors treat it as a junior synonym of affinis. The name (to skull), bill depth (at distal end of nostrils), tarsus length marionae is actually predated by erythrocephala Salvadori and hind-claw length were taken of specimens whose labels and Giglioli (1885), but this does not appear to have been indicated their sex.
    [Show full text]
  • Nest Survival in Year-Round Breeding Tropical Red-Capped Larks
    University of Groningen Nest survival in year-round breeding tropical red-capped larks Calandrella cinerea increases with higher nest abundance but decreases with higher invertebrate availability and rainfall Mwangi, Joseph; Ndithia, Henry K.; Kentie, Rosemarie; Muchai, Muchane; Tieleman, B. Irene Published in: Journal of Avian Biology DOI: 10.1111/jav.01645 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Mwangi, J., Ndithia, H. K., Kentie, R., Muchai, M., & Tieleman, B. I. (2018). Nest survival in year-round breeding tropical red-capped larks Calandrella cinerea increases with higher nest abundance but decreases with higher invertebrate availability and rainfall. Journal of Avian Biology, 49(8), [01645]. https://doi.org/10.1111/jav.01645 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Avian Adaptation Along an Aridity Gradient. Physiology, Behavior, And
    AVIAN ADAPTATION ALONG AN ARIDITY GRADIENT PHYSIOLOGY, BEHAVIOR, AND LIFE HISTORY B. Irene Tieleman This research was financially supported by Schuurman Schimmel van Outeren Stichting National Wildlife Research Center, Taif, Saudi Arabia Schure Beijerinck Popping Fonds Lay-out: Heerko Tieleman Figures: Dick Visser Photographs: Irene Tieleman © 2002 Irene Tieleman ISBN-nummer: 90-367-1726-4 Electronic version 90-367-1727-2 RIJKSUNIVERSITEIT GRONINGEN Avian adaptation along an aridity gradient physiology, behavior, and life history Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op dinsdag 10 december 2002 om 13.15 uur door Bernadine Irene Tieleman geboren op 15 juni 1973 te Groningen Promotores: Prof. S. Daan Prof. J.B. Williams Beoordelingscommissie: Prof. W.R. Dawson Prof. R.H. Drent Prof. R.E. Ricklefs Contents PART I: INTRODUCTION 1. General introduction 11 2. Physiological ecology and behavior of desert birds 19 3. The adjustment of avian metabolic rates and water fluxes to desert 61 environments PART II: PHYSIOLOGY AND BEHAVIOR OF LARKS ALONG AN ARIDITY GRADIENT 4. Adaptation of metabolism and evaporative water loss along an 89 aridity gradient 5. Phenotypic variation of larks along an aridity gradient: 105 are desert birds more flexible? 6. Physiological adjustments to arid and mesic environments in larks 131 (Alaudidae) 7. Cutaneous and respiratory water loss in larks from arid and 147 mesic environments 8. Energy and water budgets of larks in a life history perspective: 165 is parental effort related to environmental aridity? PART III: PHYSIOLOGICAL MECHANISMS 9.
    [Show full text]
  • Namibia & the Okavango
    Pel’s Fishing Owl - a pair was found on a wooded island south of Shakawe (Jan-Ake Alvarsson) NAMIBIA & THE OKAVANGO 21 SEPTEMBER – 8 OCTOBER 2017 LEADER: STEVE BRAINE For most of the country the previous three years drought had been broken and although too early for the mi- grants we did however do very well with birding generally. We searched and found all the near endemics as well as the endemic Dune Lark. Besides these we also had a new write-in for the trip! In the floodplains after observing a wonderful Pel’s Fishing Owl we travelled down a side channel of the Okavango River to look for Pygmy Geese, we were lucky and came across several pairs before reaching a dried-out floodplain. Four birds flew out of the reedbeds and looked rather different to the normal weavers of which there were many, a closer look at the two remaining birds revealed a beautiful pair of Cuckoo Finches. These we all enjoyed for a brief period before they followed the other birds which had now disappeared into the reedbeds. Very strong winds on three of the birding days made birding a huge challenge to say the least after not finding the rare and difficult Herero Chat we had to make alternate arrangements at another locality later in the trip. The entire tour from the Hosea Kutako International Airport outside the capital Windhoek and returning there nineteen days later delivered 375 species. Out of these, four birds were seen only by the leader, a further three species were heard but not seen.
    [Show full text]
  • Identification of Oriental Skylark
    Identification of Oriental Skylark Hadoram Shirihai he Oriental Skylark Alauda gulgula (also sometimes known as Small TSkylark, Lesser Skylark or Eastern Skylark) is found across a large area of southern Asia. Eleven races were recognised by Vaurie (1959), most of which are resident in tropical Asia, but A. g. inconspicua, which breeds west to central Asia and Iran, is migratory, though its winter quarters are not known. The species has not yet been reliably recorded in Europe, although there are several recent records for Israel (see final section, and Shirihai in prep.) and it is possible that the Oriental Skylark will eventually be found in western Europe, and perhaps even Britain and Ireland. The main confusion species is Skylark A. arvensis, especially the smaller races. Given good views, however, the careful observer should not find separating them a serious problem. This paper summarises the main identification features of Oriental Skylark and its distinction from Skylark and other larks. Identification in the field In the field, Oriental Skylark resembles Skylark in coloration, but Wood- lark Lullula arborea in shape and flight. Its pointed bill is relatively long and thick, and it has a shortish tail and relatively long legs. From a distance, it might even be confused with Short-toed Calandrella brachydactyla or Lesser Short-toed Lark C. rufescens. The following are important points to observe when identifying the Oriental Skylark in the field. SILHOUETTE AND SIZE Size as Woodlark lark's. Wings rather short, primaries project- (about 16 cm in length), significantly smaller ing little, if at all, beyond tertials, unlike than nominate Skylark (18.5 cm).
    [Show full text]
  • Multilocus Phylogeny of the Avian Family Alaudidae (Larks) Reveals
    1 Multilocus phylogeny of the avian family Alaudidae (larks) 2 reveals complex morphological evolution, non- 3 monophyletic genera and hidden species diversity 4 5 Per Alströma,b,c*, Keith N. Barnesc, Urban Olssond, F. Keith Barkere, Paulette Bloomerf, 6 Aleem Ahmed Khang, Masood Ahmed Qureshig, Alban Guillaumeth, Pierre-André Crocheti, 7 Peter G. Ryanc 8 9 a Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese 10 Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China 11 b Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, 12 SE-750 07 Uppsala, Sweden 13 c Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, 14 University of Cape Town, Rondebosch 7700, South Africa 15 d Systematics and Biodiversity, Gothenburg University, Department of Zoology, Box 463, SE- 16 405 30 Göteborg, Sweden 17 e Bell Museum of Natural History and Department of Ecology, Evolution and Behavior, 18 University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA 19 f Percy FitzPatrick Institute Centre of Excellence, Department of Genetics, University of 20 Pretoria, Hatfield, 0083, South Africa 21 g Institute of Pure & Applied Biology, Bahauddin Zakariya University, 60800, Multan, 22 Pakistan 23 h Department of Biology, Trent University, DNA Building, Peterborough, ON K9J 7B8, 24 Canada 25 i CEFE/CNRS Campus du CNRS 1919, route de Mende, 34293 Montpellier, France 26 27 * Corresponding author: Key Laboratory of Zoological Systematics and Evolution, Institute of 28 Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, P. R. China; E- 29 mail: [email protected] 30 1 31 ABSTRACT 32 The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea.
    [Show full text]
  • Western India Tour Report 2019
    We had great views of the critically endangered Great Indian Bustard in Desert National Park (Frédéric Pelsy). WESTERN INDIA 23 JANUARY – 8 FEBRUARY 2019 LEADER: HANNU JÄNNES Another very successful Birdquest tour to western of India traced an epic route through the states of Punjab, Rajasthan and Gujarat, with a short visit to the state of Maharasthra to conclude. We recorded no fewer than 326 bird species and 20 mammals, and, more importantly, we found almost every bird specialty of the dry western and central regions of the subcontinent including a number of increasingly scarce species with highly restricted ranges. Foremost of these were the impressive Great Indian Bustard (with a world population of less than 100 individuals), the stunningly patterned White-naped Tit, White-browed (or Stoliczka’s) Bush Chat and the Critically Endangered Indian Vulture. Many Indian subcontinent endemics were seen with Rock Bush Quail, Red Spurfowl, Red-naped (or Black) Ibis, Indian Courser, Painted Sandgrouse, the very localized Forest Owlet, Mottled Wood Owl and Indian Eagle-Owl, White-naped Woodpecker, Plum-headed and Malabar Parakeets, Bengal Bush, Rufous-tailed and Sykes’s Larks, Ashy- crowned Sparrow-Lark, the lovely White-bellied Minivet, Marshall’s Iora, Indian Black-lored Tit, Brahminy 1 BirdQuest Tour Report: Western India www.birdquest-tours.com Starling, Rufous-fronted Prinia, Rufous-vented Grass-Babbler, Green Avadavat, Indian Scimitar Babbler, Indian Spotted Creeper, Vigors’s Sunbird, Sind Sparrow and the range restricted western form
    [Show full text]
  • Phenotypic Variation of Larks Along an Aridity Gradient Tieleman, BI; Williams, JB; Buschur, ME; Brown, CR
    University of Groningen Phenotypic variation of larks along an aridity gradient Tieleman, BI; Williams, JB; Buschur, ME; Brown, CR Published in: Ecology DOI: 10.1890/0012-9658%282003%29084%5B1800%3APVOLAA%5D2.0.CO%3B2 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tieleman, BI., Williams, JB., Buschur, ME., & Brown, CR. (2003). Phenotypic variation of larks along an aridity gradient: Are desert birds more flexible? Ecology, 84(7), 1800-1815. https://doi.org/10.1890/0012- 9658%282003%29084%5B1800%3APVOLAA%5D2.0.CO%3B2 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • OSME List V3.4 Passerines-2
    The Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME) The OSME Region List of Bird Taxa: Part C, Passerines. Version 3.4 Mar 2017 For taxa that have unproven and probably unlikely presence, see the Hypothetical List. Red font indicates either added information since the previous version or that further documentation is sought. Not all synonyms have been examined. Serial numbers (SN) are merely an administrative conveninence and may change. Please do not cite them as row numbers in any formal correspondence or papers. Key: Compass cardinals (eg N = north, SE = southeast) are used. Rows shaded thus and with yellow text denote summaries of problem taxon groups in which some closely-related taxa may be of indeterminate status or are being studied. Rows shaded thus and with white text contain additional explanatory information on problem taxon groups as and when necessary. A broad dark orange line, as below, indicates the last taxon in a new or suggested species split, or where sspp are best considered separately. The Passerine Reference List (including References for Hypothetical passerines [see Part E] and explanations of Abbreviated References) follows at Part D. Notes↓ & Status abbreviations→ BM=Breeding Migrant, SB/SV=Summer Breeder/Visitor, PM=Passage Migrant, WV=Winter Visitor, RB=Resident Breeder 1. PT=Parent Taxon (used because many records will antedate splits, especially from recent research) – we use the concept of PT with a degree of latitude, roughly equivalent to the formal term sensu lato , ‘in the broad sense’. 2. The term 'report' or ‘reported’ indicates the occurrence is unconfirmed.
    [Show full text]
  • See the Checklist
    Official Reader Rendezvous Checklist Portugal: Birding an Ancient Land Lisbon, Portugal April 2017 ü (Common) Shelduck Tadorna tadorna ü Great Bustard Otis tarda ü Mallard Anas platyrhynchos ü Little Bustard Tetrax tetrax ü Gadwall Anas strepera ü (Eurasian) Oystercatcher Haematopus ostralegus ü (Northern) Shoveler Anas clypeata ü (Pied) Avocet Recurvirostra avosetta ü Garganey Anas querquedula ü Black-winged Stilt Himantopus himantopus ü (Common) Pochard Aythya ferina ü Stone Curlew Burhinus oedicnemus ü Red-crested Pochard Netta rufina ü Collared Pratincole Glareola pratincola ü Red-legged Partridge Alectoris rufa ü Little Ringed Plover Charadrius dubius ü (Common) Quail Coturnix coturnix ü (Common) Ringed Plover Charadrius hiaticula ü Little Grebe Tachybaptus ruficollis ü Kentish Plover Charadrius alexandrinus ü Great Crested Grebe Podiceps cristatus ü Grey Plover Pluvialis squatarola ü Cory's Shearwater Calonectris diomedea borealis ü (Northern) Lapwing Vanellus vanellus ü Balearic Shearwater Puffinus mauretanicus ü (Red) Knot Calidris canutus ü (Northern) Gannet Morus bassanus ü Sanderling Calidris alba ü (Great) Cormorant Phalacrocorax carbo ü (Ruddy) Turnstone Arenaria interpres ü (European) Shag Phalacrocorax aristotelis ü Dunlin Calidris alpina ü Little Bittern Ixobrychus minutus ü Curlew Sandpiper Calidris ferruginea ü (Black-crowned) Night Heron Nycticorax nycticorax ü Little Stint Calidris minuta ü Cattle Egret Bubulcus ibis ü Wood Sandpiper Tringa glareola ü Squacco Heron Ardeola ralloides ü Common Sandpiper Actitis hypoleucos
    [Show full text]
  • Common Birds of Namibia and Botswana 1 Josh Engel
    Common Birds of Namibia and Botswana 1 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp, with the support of Connie Keller and the Mellon Foundation. © Science and Education, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [fieldguides.fieldmuseum.org/guides] Rapid Color Guide #584 version 1 01/2015 1 Struthio camelus 2 Pelecanus onocrotalus 3 Phalacocorax capensis 4 Microcarbo coronatus STRUTHIONIDAE PELECANIDAE PHALACROCORACIDAE PHALACROCORACIDAE Ostrich Great white pelican Cape cormorant Crowned cormorant 5 Anhinga rufa 6 Ardea cinerea 7 Ardea goliath 8 Ardea pupurea ANIHINGIDAE ARDEIDAE ARDEIDAE ARDEIDAE African darter Grey heron Goliath heron Purple heron 9 Butorides striata 10 Scopus umbretta 11 Mycteria ibis 12 Leptoptilos crumentiferus ARDEIDAE SCOPIDAE CICONIIDAE CICONIIDAE Striated heron Hamerkop (nest) Yellow-billed stork Marabou stork 13 Bostrychia hagedash 14 Phoenicopterus roseus & P. minor 15 Phoenicopterus minor 16 Aviceda cuculoides THRESKIORNITHIDAE PHOENICOPTERIDAE PHOENICOPTERIDAE ACCIPITRIDAE Hadada ibis Greater and Lesser Flamingos Lesser Flamingo African cuckoo hawk Common Birds of Namibia and Botswana 2 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp,
    [Show full text]
  • W. TOMLINSON, Bird Notes from the NF District
    JAN. 1950 W. TOMLINSON, Bird Notes from the N.F. District 225 BIRD NOTES CHIEFLY FROM THE NORTHERN FRONTIER DISTRICT OF KENYA PART II by W. Tomlinson. ALAUDIDAE Mirafra albicauda Reichenow. White-tailed Lark. Thika, April. Mirafra hypermetra hypermetra (Reichenow) Red-winged Bush-lark. Angata Kasut; Merille; Thika. In the Kasut to the south-west of Marsabit Mountain this large lark was fairly common,haunting a patch of desert where there was some bush and even grass following rain. Runs well in quick spurts; but, pursued, usually takes wing. The flight is strong, although it seldom goes far before ducking down again, usually perching on tops of bushes. In the heat of the day seen sheltering under bush. Has a clear and loud, two• Il)ted call and a very pretty song of four or fivenotes. The cinnamon-rufous of its plum• age shows in flight but is invisible in the bird when at rest. At Merille, the Kasut and at Th;ka, where this bird occurred, the ground was the same russet colour as the bird's plumage. Mirafra africana dohertyi Hartert Kikuyu Red-naped Lark. Thika; Nanyuki. Mirafra fischeri fischeri (Reichenow) Flappet Lark. Thika. Mirafra africanoides intercedens Reichenow. Masai Fawn-coloured Lark. Merille; North Horr. A " flappet-Iark," fairly common at Merille in January, was I think this. At the time a small cricket was in thousands in patches of open country, followed up by Larks and Wattled Starlings. Mirafra poecilosterna poecilosterna (Reichenow). Pink-breasted Singing Lark. Merille. A bird frequently flushed from the ground, which flew to bushes and low trees, was I think this.
    [Show full text]