Concluding Remarks

Volume 3 of the set of textbooks devoted to Circulatory and Ventilatory Sys- tems in the framework of Biomathematical and Biomechanical Modeling gives the basic knowledge on the first phases of triggered by extracellular messengers. Signaling determines cell behavior. Numerous process can be modeled to quickly assess effects of parameters, all other agents remaining constant, once the mathematical model has been vali- dated. Advantage of mathematical models is to provide the complete quantity fields, whereas measurements are made in some points or corresponds to averages of ex- ploration windows of the field of the investigated variable. Mathematical description of large, complex biochemical reaction networks, in which molecules are nodes, and modeling of the dynamics of interactions (scaffold- ing, reaction, transcription, etc.) relies on computational simulations. A biochemical reaction network is defined by: (1) a set of variables — the state variables — that de- fine the state of the system and (2) rules of temporal changes and possible transport of involved variables. The network behavior can be analyzed in a single cells and extended to multicellular systems, especially in tumor models. Mathematical models of cascades of chemical reactions are aimed at describing evolution of molecular concentrations 1 using the mass action law or a reaction– diffusion equation set. A given reaction occurs with a certain probability. Stochastic models rely on a stochastic update of system variables. On the other hand, determin- istic models are carried out in systems with a large number of molecules, the time and variable states uniquely defining the state at the next time step. In a deterministic continuous formulation based on the mass action formalism, 2 molecular reactions

1. Typical molecular concentrations, i.e., continuous variables related to the number of molecules per unit volume, range from 0.1 nmol to 1 μmol. 2. The law of mass action states that the rate of a given chemical reaction is proportional to the product of the concentrations of reactants with eventual exponents that are stoichiometric coefficients for the reaction, in the absence of one-to-one stoichiometry. It is based on several assumptions: (1) well mixed media; and (2) low molecular concentrations; and (3) a probabil- ity of diffusing molecules to be available for the reaction proportional to the concentration.

M. Thiriet, Signaling at the Cell Surface in the Circulatory and Ventilatory Systems, 809 Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems 3, DOI 10.1007/978-1-4614-1991-4, © Springer Science+Business Media, LLC 2012 810 Concluding Remarks are described by differential equations defining the rate of change of molecular con- centrations. A rate constant (or affinity parameter) describes the occurrence rate of a reaction when reactants are close each other. In general, a mass action reaction can be written as: NR NP k f ∑ siRi −−−−→ ∑ s jPj, (11.1) i=1 j=1 where NR reactants Ri generate NP products Pj with a given stoichometry sk (relative quantities of reactants and products in the chemical reaction) with a forward rate 3 parameter k f (and a backward rate parameter kb when the reaction is reversible. The modeling procedure for a biochemical network incorporates several steps: (1) definition of the molecular players and their interactions; (2) description of the major molecular interactions by a mathematical model; (3) estimation of values of the model parameters (e.g., diffusion coefficients and reaction rates); and (4) analysis of the dynamical behavior. The dynamics of a continuous system can be described by a set of ordinary differ- ential equations (ODE). In general, this ODE set cannot be solved analytically and, thus require numerical integrations. On the other hand, reaction–diffusion models are based on partial differential equations (PDE). For example, an activator (act)– inhibitor (inh) reaction-diffusion model (Gierer-Meinhardt model) in morphogenesis is given by:

∂ 2 cact cact 2 = p + pact − dact cact + Dact ∇ cact , ∂t cinh ∂ cinh 2 2 = pa + pinh − dinhcinh + Dinh∇ cinh, (11.2) ∂t

where cact is the concentration of a short-range, autocatalytic activator, cinh that of a long-range inhibitor, p the production rate, pact the production rate of the activator required to initiate the activator autocatalysis, pinh the low baseline production rate of the inhibitor, d the decay rate, and D the diffusion coefficient. Cells react to various types of external stimuli, in particular, mechanical stresses. In physiological systems associated with flows, the magnitude and direction of me- chanical stresses applied by the flowing fluid on the wetted surface of conduit wall (i.e., vascular with its glycocalyx or respiratory epithelium with the mucus layer and periciliary fluid) as well as within the vessel wall varies during the cardiac and breathing cycles. The heart generates an unsteady flow with a given frequency spectrum in a network of blood vessels characterized by complicated ar- chitecture and variable geometry both in space and time. Vessel geometry varies over short distances. The vascular network of curved blood vessels is composed of successive geometrical singularities, mainly branchings. The thoracic muscular cage cyclically inflates and deflates, thereby lowering and heightening the intrathoracic pressure, and hence dilating and collapsing lung alveoli and airways to inhale and exhale air. The respiratory tract is characterized by a large wetted surface inside a

3. The reaction constant of a reversible reaction is the ratio k f /kb. Concluding Remarks 811 small volume, especially in the nose and thorax. In the nose, turbinates allows heat and water exchange, but renders air currents less simple. In addition, the laryngeal constriction, the aperture of which varies during the ventilatory cycle, provokes air jet. The bronchial tree is a network of successive branchings at inspiration, or junc- tions at expiration, between short, more or less curved pipes of corrugated walls in large bronchi due to the presence of partial or complete cartilaginous rings. Therefore, blood and air streams correspond to time-dependent, three-dimension- al, developing, as they are conveyed in conduit entrance length, where boundary layer develop (Vol. 7). Moreover, blood vessels and airways are deformable. Changes in transmural pressure (the pressure difference between the pressure at the wetted sur- face of the lumen applied by the moving fluid on the deformable conduit wall and the pressure at the external wall side that depends on the activity on the neighbor organs) can also influence the shape of vessel cross-section, especially when it becomes neg- ative. In addition, in the arterial compartment, the change in cross-section shape can result from taper. More generally, possible prints of adjacent organs with more or less progressive constriction and enlargment, and adaptation to branching (transition zone) also give rise to three-dimensional flows. These flows are commonly displayed by virtual transverse currents, even if the vessel is considered straight. Furthermore, geometrical singularities influence flow pattern both upstream and downstream from it. Local changes in the direction of stress components can also be caused by flow separation and flow reversal during the cardiac and respiratory cycles. Flow separa- tion is set by an adverse pressure gradient when inertia forces and fluid vorticity are high enough, especially in branching segments. Due to its time-dependent feature, flow separation regions spread over a variable length during the flow cycle and can move. The location and variable size of the flow separation region depends on the flow distribution between branches that can vary during the flow cycle. Flow reversal occurs during the diastole of the left ventricle in elastic arteries, such as the aorta, and most of the muscular arteries, such as brachial and femoral arteries (but not in the carotid arteries), as well as during alternates from inspiratory decelerating flow phase and expiratory accelerating flow phase and conversely. In arteries, flow rever- sal can be observed either in a region near the wall, more or less wide with respect to the position of the local center of vessel curvature, or in the entire lumen. Consequently, the stress field experienced by the wall tissues are strongly vari- able both in time and space. Cellular sensors then process mechanical signals by ensemble averaging not only to raise the signal-to-noise ratio, but also to adequately adapt the local size of the conduit lumen, i.e., the local flow resistance to maintain either flow rate or pressure, only in the case of sustained, abnormal stress field. References

Introduction

1. Lucretius (1997) De rerum natura (L I-685) [On the Nature of Things]. Garnier Flam- marion, Paris

Chap. 1. Signal Transduction

2. Huang R, Martinez-Ferrando I, Cole PA (2010) Enhanced interrogation: emerg- ing strategies for inhibition. Nature Structural and Molecular Biology 17:646–649 3. Lim WA (2010) Designing customized cell signalling circuits. Nature Reviews – Molecular Cell Biology 11:393–403 4. Manz BN, Groves JT (2010) Spatial organization and signal transduction at intercellu- lar junctions. Nature Reviews – Molecular Cell Biology 11:342–352 5. Alexander SPH, Mathie A, Peters JA (2009) Guide to Receptors and Channels (GRAC), 4th ed., British Journal of Pharmacology 158:S1–S254 (www3.interscience.wiley.com/journal/122684220/issue) 6. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473:167–173 7. Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. Journal of Biological Chemistry 232:1065–1076 8. Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert1 D, Calder1 M, Pitt A, Kholodenko B, W Kolch (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Science Signaling 3:ra90 9. Shimizu TS, Tu Y, Berg HC (2010) A modular gradient-sensing network for chemota- xis in Escherichia coli revealed by responses to time-varying stimuli. Molecular Sys- tems Biology 6:382 10. Lage K, Møllgård K, Greenway S, Wakimoto H, Gorham JM, Workman CT, Bendsen E, Hansen NT, Rigina O, Roque FS, Wiese C, Christoffels VM, Roberts AE, Smoot LB, Pu WT, Donahoe PK, Tommerup N, Brunak S, Seidman CE, Seidman JG, Larsen LA

813 814 References

(2010) Dissecting spatio-temporal protein networks driving human heart development and related disorders. Molecular Systems Biology 6:381 11. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nature Reviews – Molecular Cell Biology 10:609–622 12. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proceedings of the National Academy of Sciences of the United States of America 106:17615–17622 13. Janes KA, Reinhardt HC, Yaffe MB (2008) -induced signaling networks pri- oritize dynamic range over signal strength. Cell 135:343–354 14. Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP pathway. Proceedings of the National Academy of Sciences of the United States of America 105:7165–7170 15. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced . Nature 459:428–432 16. Goentoro L, Shoval O, Kirschner MW, Alon U (2009) The incoherent feedforward loop can provide fold-change detection in regulation. Molecular Cell 36:894–899 17. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling. Molecular Cell 36:872–884 18. Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U (2009) Dynamics and variability of ERK2 response to EGF in individual living cells. Molecular Cell 36:885–893 19. Yang Q, Pando BF, Dong G, Golden SS, van Oudenaarden A (2010) Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 327:1522–1526 20. Perkins TJ, Swain PS (2009) Strategies for cellular decision-making. Molecular Sys- tems Biology 5:326 21. Paszek P, Ryan S, Ashall L, Sillitoe K, Harper CV, Spiller DG, Rand DA, White MR (2010) Population robustness arising from cellular heterogeneity. Proceedings of the National Academy of Sciences of the United States of America 107:11644–11649 22. Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guénolé A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T (2010) Rewiring of genetic networks in response to DNA damage. Science 330:1385– 1389 23. Lee S, Mandic J, Van Vliet KJ (2007) Chemomechanical mapping of ligand– binding kinetics on cells. Proceedings of the National Academy of Sciences of the United States of America 104:9609–9614 24. Pawson CT, Scott JD (2010) Signal integration through blending, bolstering and bifur- cating of intracellular information. Nature Structural and Molecular Biology 17:653– 658 25. Mody A, Weiner J, Ramanathan S (2009) Modularity of MAP allows deforma- tion of their signalling pathways. Nature – Cell Biology 11:484–491 26. Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, Vignali DAA, Gallagher E, Karin M (2008) Essential cytoplasmic translocation of a -assembled signaling complex. Science 321:663–668 27. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Current Opinion in Cell Biology 16:400–406 References 815

28. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ (1994) Compartmental- ization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not in liver parenchyma. EMBO Journal 13:4269–4277 29. Groves JT, Kuriyan J (2010) Molecular mechanisms in signal transduction at the mem- brane. Nature Structural and Molecular Biology 17:659–665 30. Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Computational Biology 4:e1000140 31. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D (2007) Phospholipase D2- generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biology 9:707–712 32. Pike ACW, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S (2008) Activation segment dimerization: a mechanism for kinase au- tophosphorylation of non-consensus sites. EMBO Journal 27:704–714 33. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mannet M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648 34. Grueneberg DA, Degot S, Pearlberg J, Li W, Davies JE, Baldwin A, Endege W, Doench J, Sawyer J, Hu Y, Boyce F, Xian J, Munger K, Harlow E (2008) Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. Proceedings of the National Academy of Sciences of the United States of America 105:16472– 16477 35. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MBA, Schachter H, Wells L, Campbell KP (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for binding. Science 327:88–92 36. Pincet F (2007) Membrane recruitment of scaffold proteins drives specific signaling. PLoS One 2:e977 37. Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integra- tion. Nature Structural and Molecular Biology 17:666–672 38. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004 39. Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular pro- teins creates specific degradation signals. Science 327:973–977 40. Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. Journal of Biochemistry 144:287– 294 41. Johnson D, Bennett ES (2006) Isoform-specific effects of the β2 subunit on voltage- gated sodium channel gating. Journal of Biological Chemistry 281:25875–25881 42. Montpetit ML, Stocker PJ, Schwetz TA, Harper JM, Norring SA, Schaffer L, North SJ, Jang-Lee J, Gilmartin T, Head SR, Haslam SM, Dell A, Marth JD, Bennett ES (2009) Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proceed- ings of the National Academy of Sciences of the United States of America 106:16517– 16522 816 References

43. Miyagi T, Wada T, Yamaguchi K, Hata K, Shiozaki K (2008) Plasma membrane- associated sialidase as a crucial regulator of transmembrane signalling. Journal of Bio- chemistry 144:279–285 44. Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC (2009) Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. American Journal of Physiology – Heart and Circulatory Physiology 296:H13–H28 45. Golks A, Guerini D (2008) The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. EMBO Reports 9:748–753 46. Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW (2010) Extensive crosstalk between O-GlcNAcylation and phos- phorylation regulates cytokinesis. Science Signaling 3:ra2 47. Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phos- phorylation: Site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proceedings of the National Academy of Sciences of the United States of America 105:13793–13798 48. Hakmé A, Wong HK, Dantzer F, Schreiber V (2008) The expanding field of poly(ADP- ribosyl)ation reactions. EMBO Reports 9:1094–1100 49. McBride AE, Silver PA (2001) State of the Arg: protein methylation at arginine comes of age. Cell 106:5–8 50. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nature – Genetics 36:664 (Information Hyperlinked over Proteins (www.ihop-net.org/) 51. Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non- histone proteins. Current Opinion in Genetics and Development 18:152–158 52. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the response. Nature Cell Biology 10:1431– 1439 53. Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, Gudkov AV, Stark GR (2010) Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methyla- tion of p65. Proceedings of the National Academy of Sciences of the United States of America 107:46–51 54. Ea CK, Baltimore D (2009) Regulation of NF-κB activity through lysine monomethy- lation of p65. Proceedings of the National Academy of Sciences of the United States of America 106:18972–18977 55. Huang B, Chen SC, Wang DL (2009) Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovascular Research 83:536–546 56. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mech- anisms and cellular functions. Nature Reviews – Molecular Cell Biology 10:721–732 57. Guo Z, Wu YW, Das D, Delon C, Cramer J, Yu S, Thuns S, Lupilova N, Wald- mann H, Brunsveld L, Goody RS, Alexandrov K, Blankenfeldt W (2008) Structures of RabGGTase-substrate/product complexes provide insights into the evolution of pro- tein prenylation. EMBO Journal 27:2444–2456 58. Moore KL (2009) Protein tyrosine sulfation: a critical posttranslation modification in plants and animals. Proceedings of the National Academy of Sciences of the United States of America 106:14741–14742 References 817

59. BioGRID: General Repository for Interaction Datasets; database of physical and ge- netic interactions for model organisms (www.thebiogrid.org) 60. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488 61. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205 62. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:114–119 63. Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Na- ture Reviews – Molecular Cell Biology 11:479–489 64. Singh M, Roginskaya M, Dalal S, Menon B, Kaverina E, Boluyt MO, Singh K (2010) Extracellular ubiquitin inhibits β-AR-stimulated apoptosis in cardiac myocytes: role of GSK-3β and mitochondrial pathways. Cardiovascular Research 86:20–28 65. Daino H, Matsumura I, Takada K, Odajima J, Tanaka H, Ueda S, Shibayama H, Ikeda H, Hibi M, Machii T, Hirano T, Kanakura Y (2000) Induction of apoptosis by extra- cellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degra- dation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 95:2577–2585 66. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nature Reviews – Molecular Cell Biology 10:550–563 67. Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T, Cohen RE, Wolberger C (2010) Structural insights into the assembly and function of the SAGA deubiquitinating mod- ule. Science 328:1025–1029 68. Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452:709–711 69. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nature Reviews – Molecular Cell Biology 8:947–956 70. Van der Veen AG, Schorpp K, Schlieker C, Buti L, Damon JR, Spooner E, Ploegh HL, Jentsch S (2011) Role of the ubiquitin-like protein Urm1 as a noncanonical lysine- directed protein modifier. Proceedings of the National Academy of Sciences of the United States of America 108:1763–1770 71. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regula- tion of tissue remodelling. Nature Reviews – Molecular Cell Biology 8:221–233 72. Kemble DJ, Sun G (2009) Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proceedings of the Na- tional Academy of Sciences of the United States of America 106:5070–5075 73. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–670 74. Singh DK, Kumar D, Siddiqui Z, Basu SK, Kumar V, Rao KV (2005) The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121:281–293 75. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nature Reviews – Genetics 8,:533–543 76. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (2002) Molecular biology of the cell, 4th ed. Garland Science, New York 818 References

77. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA (2006) Activated signal transduction kinases frequently occupy target . Science 313:533–536 78. Williams RL, Urbé S (2007) The emerging shape of the ESCRT machinery. Nature Reviews – Molecular Cell Biology 8:355–368 79. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nature Reviews – Molecular Cell Biology 1:31–39 80. Harmer NJ, Chirgadze D, Kim KH, Pellegrini L, Blundell TL (2003) The structural biology of activation Biophysical Chemistry 100:545–553 81. Helikar T, Konvalina J, Heidel J, Rogers JA (2008) Emergent decision-making in bio- logical signal transduction networks. Proceedings of the National Academy of Sciences of the United States of America 105:1913–1918 82. Gore J, van Oudenaarden A (2009) Synthetic biology: The yin and yang of nature. Nature 457:271-272 83. Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322:390–395 84. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519 85. Tsai TYC, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–129 86. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457:309–312 87. Miller-Jensen K, Janes KA, Brugge JS, Lauffenburger DA (2007) Common effector processing mediates cell-specific responses to stimuli. Nature 448:604–608 88. Sacks DB (2006) The role of scaffold proteins in MEK/ERK signalling. Biochemical Society Transactions 34:833–836 89. Vandecasteele G, Rochais F, Abi-Gerges A, Fischmeister R (2006) Functional local- ization of cAMP signalling in cardiac myocytes. Biochemical Society Transactions 34:484–488 90. Behar M, Dohlman HG, Elston TC (2007) Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proceedings of the National Academy of Sciences of the United States of America 104:16146–16151 91. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nature Reviews – Molecular Cell Biology 7:165–176 92. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. Journal of Biological Chemistry 274:30169–30181 93. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated signaling network. Science 297:1018–1023 94. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A global anal- ysis of cross-talk in a mammalian cellular signalling network. Nature Cell Biology 8:571–580 95. Whitehurst A, Cobb MH, White MA (2004) Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal- response pathways. Molecular and Cellular Biology 24:10145–10150 References 819

96. Harding A, Tian T, Westbury E, Frische E, Hancock JF (2005) Subcellular localization determines MAP kinase signal output. Current Biology 15:869–873 97. Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biology 9:324– 330 98. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nature Reviews – Molecular Cell Biology 9:770–780 99. Berezhkovskii AM, Coppey M, Shvartsman SY (2009) Signaling gradients in cascades of two-state reaction-diffusion systems. Proceedings of the National Academy of Sci- ences of the United States of America 106:1087–1092 100. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nature Reviews – Molecular Cell Biology 11:252–263 101. Fitz JG (2007) Regulation of cellular ATP release. Transactions of the American Clin- ical and Climatological Association 118:199–208 102. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. Jour- nal of Physiology 586:3307–3312 103. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Science Signaling 3:re1 104. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume- sensitive outwardly rectifying anion channel. Journal of Physiology 587:2141-2149 105. Sabirov RZ, Okada Y (2004) Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophysical Journal 87:1672-1685 106. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends in Pharma- cological Sciences 27:166–176 107. Fields RD, Ni Y (2010) Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Science Signaling 3:ra73 108. Birk AV, Broekman MJ, Gladek EM, Robertson HD, Drosopoulos JH, Marcus AJ, Szeto HH (2002) Role of extracellular ATP metabolism in regulation of platelet reac- tivity. Journal of Laboratory and Clinical Medicine 140:166–175 109. Krötz F, Sohn HY, Keller M, Gloe T, Bolz SS, Becker BF, Pohl U (2002) Depolariza- tion of endothelial cells enhances platelet aggregation through oxidative inactivation of endothelial NTPDase. Arteriosclerosis, Thrombosis, and Vascular Biology 22:2003– 2009 110. Eltzschig HK, Macmanus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends in Cardiovascu- lar Medicine 18:103–107 111. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. American Journal of Physiology – Heart and Circulatory Physiology 271:H2717–2722 112. Wan J, Ristenpart WD, Stone HA (2008) Dynamics of shear-induced ATP release from red blood cells. Proceedings of the National Academy of Sciences of the United States of America 105:16432–16437 113. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Identification of an ecto- nucleoside diphosphokinase and its contribution to interconversion of P2 receptor ago- nists. Journal of Biological Chemistry 272:20402–20407 820 References

114. Lazarowski ER, Paradiso AM, Watt WC, Harden TK, Boucher RC (1997) UDP acti- vates a mucosal-restricted receptor on human nasal epithelial cells that is distinct from the P2Y2 receptor. Proceedings of the National Academy of Sciences of the United States of America 94:2599–2603

Chap. 2. Membrane Ion Carriers

115. Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell–cell communication. Glia Biology 3:199–208 116. Palacios-Prado N, Briggs SW, Skeberdis VA, Pranevicius M, Bennett MV, Bukauskas FF (2010) pH-Dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proceedings of the National Academy of Sciences of the United States of America 107:9897–9902 117. Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2009) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. British Journal of Pharmacology 151:1033–1040

118. Pelegrin P, Surprenant A (2009) The P2X7 receptor-pannexin connection to dye uptake and IL-1β release. Purinergic Signal 5:129–137 119. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. American Journal of Physiology – Heart and Circu- latory Physiology 299:H1146–H1152 120. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355 121. Saier MH, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Re- search 34:D181–D186 122. Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in princi- ple. Nature Reviews – Molecular Cell Biology 10:344–352 123. Zagotta WN (2006) Membrane biology: permutations of permeability. Nature 440:427–429 124. Cymes GD, Grosman C (2008) Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer. Nature Structural and Molecular Biology 15:389– 396 125. Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflügers Archiv – European Journal of Physiology 454:361–371 126. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73 127. Jensen MØ, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE (2010) Principles of conduction and hydrophobic gating in K+ channels. Proceedings of the National Academy of Sciences of the United States of America 107:5833–5838 128. Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage- gated proton channel. Science 312:589–592 References 821

129. Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B (2006) BKCa– 2+ + CaV channel complexes mediate rapid and localized Ca -activated K signaling. Sci- ence 314:615–620 130. Lape R, Colquhoun D, Sivilotti LG (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727 131. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically acti- vated cation channels. Science 330:55-60 132. Gottlieb PA, Suchyna TM, Ostrow LW, Sachs F (2004) Mechanosensitive ion channels as drug targets. Current Drug Targets. CNS and Neurological Disorders 3:287–295 133. Kohl P, Bollensdorff C, Garny A (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Experimental Physiology 91:307–321 134. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nature Reviews – Neuroscience 8:510–521 135. Gudi SRP, Clark CB, Frangos JA (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal trans- duction. Circulation Research 79:834-839 136. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647– 654. 137. Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annual Review of Genetics 19:253-272 138. Putney JW (2007) Multiple mechanisms of TRPC activation (Chap. 1). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 139. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mecha- nism underlies stretch activation and receptor activation of TRPC6 channels. Proceed- ings of the National Academy of Sciences of the United States of America 103:16586– 16591 140. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimer- izes TRPC channels to determine their function as store-operated channels. Nature Cell Biology 9:636–645 141. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiological Review 82:429–472 142. Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin AIP4 regulates the cell surface expression of select TRP channels. EMBO Journal 25:5659– 5669 143. Tominaga M (2007) The role of TRP channels in thermosensation (Chap. 20). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 144. Latorre R, Vargas G, Orta G, Brauchi S (2007) Voltage and temperature gating of ther- moTRP channels (Chap. 21). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 822 References

145. Patel S, Docampo R (2009) In with the TRP channels: intracellular functions for TRPM1 and TRPM2. Science Signaling 2:pe69 146. Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Köttgen M (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO Journal 28:490–499 147. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proceedings of the National Academy of Sciences of the United States of America 106:11558–11563 148. Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phos- phoinositides. EMBO Journal 27:2809–2816 149. Earley S, Reading S, Brayden JE (2007) Functional significance of transient receptor potential channels in vascular function (Chap. 26). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 150. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America 107:7000–7005 151. Pozsgai G, Bodkin JV, Graepel R, Bevan S, Andersson DA, Brain SD (2010) Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research 87:760–768 152. Guimaraes MZP, Jordt SE (2007) TRPA1: a sensory channel of many talents (Chap. 11). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 153. Planells-Cases R, Ferrer-Montiel A (2007) TRP Channel trafficking (Chap. 23). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 154. Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Acti- vation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proceedings of the National Academy of Sciences of the United States of America 106:20087–20092 155. Eder P, Schindl R, Romanin C, Groschner K (2007) Protein–protein interactions in TRPC channel complexes (Chap. 24). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 156. Rychkov G, Barritt GJ (2007) TRPC1 Ca2+-Permeable Channels in Animal Cells. In Flockerzi V, Nilius B (eds) Transient Receptor Potential (TRP) Channels, Handbook of Experimental Pharmacology, Vol. 179, Part I, 23–52, Springer, Berlin 157. Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glas- nov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium perme- ation through transient receptor potential canonical 3 (TRPC3) to signaling in HL-1 myocytes. Proceedings of the National Academy of Sciences of the United States of America 108:10556–10561 References 823

158. Park HW, Kim JY, Choi SK, Lee YH, Zeng W, Kim KH, Muallem S, Lee MG (2011) Serine–threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proceedings of the National Academy of Sciences of the United States of America 108:10750–10755 159. Cavali A (2007) TRPC4. In Flockerzi V, Nilius B (eds) Transient Receptor Potential (TRP) Channels, Handbook of Experimental Pharmacology, Vol. 179, Part I, 93–108, Springer, Berlin 160. Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72 161. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential chan- nel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America 103:19093-19098 162. Numaga T, Wakamori M, Mori Y (2007) TRPC7. In Flockerzi V, Nilius B (eds) Tran- sient Receptor Potential (TRP) Channels, Handbook of Experimental Pharmacology, Vol. 179, Part I, 143–151, Springer, Berlin 163. Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proceedings of the National Academy of Sciences of the United States of America 106:7239–7244 164. Harteneck C, Schultz G (2007) TRPV4 and TRPM3 as volume-regulated cation chan- nel (Chap. 10). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 165. Liman ER (2007) The Ca2+-activated TRP channels: TRPM4 and TRPM5 (Chap. 15). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 166. Inoue K, Xiong ZG (2009) Silencing TRPM7 promotes growth/proliferation and production of vascular endothelial cells via the ERK pathway. Cardiovascular Research 83:547–557 167. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV (2009) Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. American Journal of Physiology – Heart and Circulatory Physiology 296:H1868–H1877 168. McKemy DD (2007) TRPM8: the cold and menthol receptor (Chap. 13). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 169. Giamarchi A, Delmas P (2007) Activation mechanisms and functional roles of TRPP2 cation channels (Chap. 14). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 824 References

170. Rosenbaum T, Simon SA (2007) TRPV1 Receptors and signal transduction (Chap. 5). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 171. Liedtke WB (2007) TRPV Channel function in osmo- and mechanotransduction (Chap. 22). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 172. Kojima I, Nagasawa M (2007) TRPV2: a calcium-permeable cation channel regulated by insulin-like growth factors (Chap. 7). In Liedtke WB, Heller S (Eds.) TRP ion chan- nel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 173. Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ (2010) Arresting a transient receptor potential (TRP) channel: β-arrestin 1 mediates ubiqui- tination and functional down-regulation of TRPV4. Journal of Biological Chemistry 285:30115–30125 174. Plant TD, Strotmann R (2007) TRPV4: a multifunctional nonselective cation channel with complex regulation (Chap. 9). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 175. Köhler R, Hoyer J (2007) Role of TRPV4 in the mechanotransduction of shear stress in endothelial cells (Chap. 27). In Liedtke WB, Heller S (Eds.) TRP ion channel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 176. Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA (2008) TRPV4 channel partici- pates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 105:12611–12616 177. Andrade YN, Fernandes J, Lorenzo IM, Arniges M, Valverde MA (2007) The TRPV4 channel in ciliated epithelia (Chap. 30). In Liedtke WB, Heller S (Eds.) TRP ion chan- nel function in sensory transduction and cellular signaling cascades, CRC Press (Taylor and Francis Group), Boca Raton, FL, USA 178. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient re- ceptor potential channels in cardiovascular function and disease. Circulation Research 99:119–131 179. Herrmann S, Stieber J, Stöckl G, Hofmann F, Ludwig A (2007) HCN4 provides a “depolarization reserve” and is not required for heart rate acceleration in mice. EMBO Journal 26:4423–4432 180. Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D (2009) Control of heart rate by cAMP sensitivity of HCN channels. Proceedings of the National Academy of Sciences of the United States of America 106:12189–12194 181. Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000) Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Research – Molecular Brain Research 81:129–139 182. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wot- jak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, References 825

Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO Journal 22:216–224 183. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion- selective Cys-loop receptor. Nature 474:54–60 184. Lo WY, Lagrange AH, Hernandez CC, Harrison R, Dell A, Haslam SM, Sheehan JH, Macdonald RL (2010) Glycosylation of β2 subunits regulates GABAA receptor bio- genesis and channel gating. Journal of Biological Chemistry 285:31348–31361 185. Changeux JP (2010) Nicotine addiction and nicotinic receptors: lessons from geneti- cally modified mice. Nature Reviews – Neuroscience 11:389–401 186. Braithwaite SP, Xia H, Malenka RC (2002) Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proceedings of the National Academy of Sciences of the United States of America 99:7096–7101 187. Farrant M, Cull-Candy SG (2010) AMPA receptors – another twist? Science 327:1463– 1465 188. von Engelhardt J, Mack V, Sprengel R, Kavenstock N, Li KW, Stern-Bach Y, Smit AB, Seeburg PH, Monyer H (2010) CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus. Science 327:1518–1522 189. Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF (2000) Con- trol of GluR1 AMPA receptor function by cAMP-dependent protein kinase. Journal of Neuroscience 20:89–102 190. Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–225 191. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances chan- nel conductance of α-amino 3-hydroxy 5-methyl 4-isoxazolepropionate type glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America 96:3269–3274 192. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267 193. Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585 194. Joiner MLA, Lisé MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW (2010) Assembly of a β2-adrenergic receptor-GluR1 signalling complex for localized cAMP signalling. EMBO Journal 29:482–495 195. Krugers HJ, Hoogenraad CC, Groc L (2010) Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nature Reviews – Neuroscience 11:675– 681 196. Piña-Crespo JC, Talantova M, Micu I, States B, Chen HS, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann SF, Zamponi GW, Stys PK, Lipton SA (2010) Excitatory glycine responses of CNS mediated by NR1/NR3 "NMDA" receptor subunits. Journal of Neuroscience 30:11501–11505 826 References

197. Yu XM, Askalan R, Keil GJ, Salter MW (1997) NMDA channel regulation by channel- associated protein Src. Science 275:674–678 198. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor sig- nalling: implications for neurodegenerative disorders. Nature Reviews – Neuroscience 11:682–696 199. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito- Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010) Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328:363– 368 200. Kishore U, Gaboriaud C, Waters P, Shrive AK, Greenhough TJ, Reid KB, Sim RB, Ar- laud GJ (2004) C1q and superfamily: modularity and versatility. Trends in Immunology 25:551–561 201. Lummis SC (2010) 5-Hydroxytryptamine receptor 3A. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 202. Vassort G (2001) Adenosine 5-triphosphate: a P2-purinergic agonist in the myocar- dium. Physiological Reviews 81:767–806 203. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, Diez J, Berman DM, Kenyon NS, Ricordi C, Pileggi A, Molano RD, Berggren PO, Caicedo A (2010) ATP-gated P2X3 receptors constitute a positive au- tocrine signal for insulin release in the human pancreatic β cell. Proceedings of the National Academy of Sciences of the United States of America 107:6465–6470 204. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Science Signaling 4:ra12 205. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacological Reviews 53:553–568 206. Clark K, Langeslag M, van Leeuwen B, L, Ryazanov AG, Figdor CG, Moole- naar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO Journal 25:290–301 207. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nature Reviews – Molecular Cell Biology 11:50–61

Chap. 3. Main Classes of Ion Channels and Pumps

208. Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in princi- ple. Nature Reviews – Molecular Cell Biology 10:344–352 209. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews – Neuroscience 7:548–562 210. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium- apoptosis link. Nature Reviews – Molecular Cell Biology 4:552–565 211. Hénaff M, Antoine S, Mercadier JJ, Coulombe A, Hatem SN (2002) The voltage- independent B-type Ca2+ channel modulates apoptosis of cardiac myocytes. FASEB Journal 16:99–101 References 827

212. Cartwright EJ, Schuh K, Neyses L (2005) Calcium transport in cardiovascular health and disease–the sarcolemmal calcium pump enters the stage. Journal of Molecular and Cellular Cardiology 39:403–406 213. Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285 214. Boscia F, Gala R, Pignataro G, de Bartolomeis A, Cicale M, Ambesi-Impiombato A, Di Renzo G, Annunziato L (2006) Permanent focal brain ischemia induces isoform- dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the is- chemic core, periinfarct area, and intact brain regions. Journal of Cerebral Blood Flow and Metabolism 26:502–517 215. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600 216. Dammermann W, Zhang B, Nebel M, Cordiglieri C, Odoardi F, Kirchberger T, Kawakami N, Dowden J, Schmid F, Dornmair K, Hohenegger M, Flügel A, Guse AH, Potter BV (2009) NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proceedings of the National Academy of Sciences of the United States of America 106:10678–10683 217. Alix JJP, Dolphin AC, Fern R (2008) Vesicular apparatus, including functional cal- cium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. Journal of Physiology 586:4069–4089 218. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296 219. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185 220. Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2009) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nature – Structural and Molecular Biology 17:112–116 221. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120 222. Dellis O, Dedos SG, Tovey SC, Rahman TU, Dubel SL, Taylor CW (2006) Ca2+ entry through plasma membrane IP3 receptors. Science 313:229–233 223. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJS, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biology 8:771–773 224. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nature – Cell Biology 11:669–677 225. Park CY, Shcheglovitov A, Dolmetsch R (2010) The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330:101–105 828 References

226. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109 227. Schindl R, Frischauf I, Bergsmann J, Muik M, Derler I, Lackner B, Groschner K, Ro- manin C (2009) Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proceedings of the National Academy of Sciences of the United States of America 106:19623–19628 228. Lee KP, Yuan JP, Zeng W, So I, Worley PF, Muallem S (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proceedings of the National Academy of Sciences of the United States of America 106:14687–14692 229. Takahashi Y, Watanabe H, Murakami M, Ono K, Munehisa Y, Koyama T (2007) Func- tional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochemical and Biophysical Research Communications 361:934–940 230. Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circulation Research 103:e97–e104 231. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Reports 7:390–396 232. Yazawa M, Ferrante C, Feng J, Mio K, Ogura T, Zhang M, Lin PH, Pan Z, Komazaki S, Kato K, Nishi M, Zhao X, Weisleder N, Sato C, Ma J, Takeshima H (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448:78–82 233. Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proceedings of the National Academy of Sciences of the United States of America 106:15495-15500 234. Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF- hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nature Cell Biology 12:436–446 235. Calderón-Sánchez, Fernández-Tenorio M, Ordóñez A, López-Barneo J, Ureña J (2009) Hypoxia inhibits vasoconstriction induced by metabotropic Ca2+ channel-induced Ca2+ release in mammalian coronary arteries. Cardiovascular Research 82:115–124 236. Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, Pratt WS, Dolphin AC (2010) The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proceed- ings of the National Academy of Sciences of the United States of America 107:1654– 1659 237. Schredelseker J, Shrivastav M, Dayal A, Grabner M (2010) Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling. Proceedings of the National Academy of Sciences of the United States of America 107:5658–5663 238. Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for 2+ spatial Ca selectivity in the calmodulin regulation of CaV channels. Nature 451:830– 834 239. Kim EY, Rumpf CH, Van Petegem F, Arant RJ, Findeisen F, Cooley ES, Isacoff EY, Minor DL (2010) Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO Journal 29:3924–3938 References 829

240. Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mech- anism of calcium channel regulation in the fight-or-flight response. Science Signaling 3:ra70 241. Cheng X, Pachuau J, Blaskova E, Asuncion-Chin M, Liu J, Dopico AM, Jaggar JH (2009) Alternative splicing of CaV 1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties. American Journal of Physiology – Heart and Circulatory Physiology 297:H680–H688 242. Blaich A, Welling A, Fischer S, Wegener JW, Köstner K, Hofmann F, Moosmang S (2010) Facilitation of murine cardiac L-type CaV 1.2 channel is modulated by Calmod- ulin kinase II-dependent phosphorylation of S1512 and S1570. Proceedings of the Na- tional Academy of Sciences of the United States of America 107:10285–10289 243. Zeng Q, Han Y, Bao Y, Li W, Li X, Shen X, Wang X, Yao F, O’Rourke ST, Sun C (2010) 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes. Ameri- can Journal of Physiology – Heart and Circulatory Physiology 299:H1109–H1117 244. Keef KD, Hume JR, Zhong J (2001) Regulation of cardiac and smooth muscle Ca2+ channels (CaV1.2a,b) by protein kinases. American Journal of Physiology – Cell Phys- iology 281:C1743–C1756 245. Smith IF, Wiltgen SM, Shuai J, Parker I (2009) Ca2+ Puffs originate from preestab- lished stable clusters of inositol trisphosphate receptors. Science Signaling 2:ra77 246. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiological Reviews 87:593–658 247. Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K (1991) The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proceedings of the National Academy of Sciences of the United States of America 88:6244–6248 248. Wojcikiewicz RJ (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different pro- portions in different cell types. Journal of Biological Chemistry 270:11678–11683 249. Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation–contraction coupling in the heart. Current Biology 10:939–942 250. Li X, Zima AV, Sheikh F, Blatter LA, Chen J (2005) Endothelin-1-induced arrhyth- mogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate (IP3)-receptor type 2-deficient mice. Circulation Research 96:1274–1281 251. Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA (2008) IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes. American Journal of Physiology – Heart and Circulatory Physi- ology 294:H596–H604 252. Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier TL, Mikoshiba K, Lorenz JN, Blatter LA, Bers DM, Molkentin JD (2010) The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circulation Research 107:659–666 253. Woodcock EA, Kistler PM, Ju YK (2009) Phosphoinositide signalling and cardiac ar- rhythmias. Cardiovascular Research 82:286–295 830 References

254. Janowski E, Berríos M, Cleemann L, Morad M (2010) Developmental aspects of car- diac Ca2+ signaling: interplay between RyR- and IP3R-gated Ca2+ stores. American Journal of Physiology – Heart and Circulatory Physiology 298:H1939–H1950 255. Vermassen E, Parys JB, Mauger JP (2004) Subcellular distribution of the inositol 1,4,5- trisphosphate receptors: functional relevance and molecular determinants. Biology of the Cell 96:3–17 256. Grayson TH, Haddock RE, Murray TP, Wojcikiewicz RJ, Hill CE (2004) Inositol 1,4,5- trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries. Cell Calcium 36:447–458 257. Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH (2008) Type 1 inositol 1,4,5- trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vaso- constriction in cerebral arteries. American Journal of Physiology – Cell Physiology 295:C1376–C1384 258. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C (2008) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. American Journal of Physiology – Cell Physiology 296:C403–C413 259. Bergner A, Sanderson MJ (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. American Journal of Physiology – Lung Cellular and Molecular Physiology 283:L1271–L1279 260. Antigny F, Norez C, Cantereau A, Becq F, Vandebrouck C (2008) Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells. Respiratory Research 9:70 261. Healy JA, Nilsson KR,. Hohmeier HE, Berglund J, Davis J, Hoffman J, Kohler M, Li LS, Berggren PO, Newgard CB, Bennett V (2010) Cholinergic augmentation of insulin release requires ankyrin-B. Science Signaling 3:ra19 262. Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hof- mann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent in- hibition of platelet aggregation and thrombus formation. Blood 109:552–559 263. Casteel DE, Boss GR, Pilz RB (2005) Identification of the interface between cGMP- dependent protein kinase Iβ and its interaction partners TFII-I and IRAG reveals a common interaction motif. Journal of Biological Chemistry 280:38211–38218 264. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ.Nature 404:197–201 265. van Rossum DB, Patterson RL, Cheung KH, Barrow RK, Syrovatkina V, Gessell GS, Burkholder SG, Watkins DN, Foskett JK, Snyder SH (2006) DANGER, a novel reg- ulatory protein of inositol 1,4,5-trisphosphate-receptor activity. Journal of Biological Chemistry 281:37111–37116 266. Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW (2009) Clustering of InsP3 recep- tors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature 458:655–659 267. Wellman GC, Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34:211– 229 268. M Fill, JA Copello (2002) Ryanodine receptor calcium release channels. Physiological Reviews 82:893-922 References 831

269. Ledbetter MW, Preiner JK, Louis CF, Mickelson JR (1994) Tissue distribution of ryan- odine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. Journal of Biological Chemistry 269:31544–31551 270. Bose DD, Pessah IN (2011) Ryanodine receptor type I UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 271. Siekierka JJ, Wiederrecht G, Greulich H, Boulton D, Hung SH, Cryan J, Hodges PJ, Sigal NH (1990) The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans . Journal of Biological Chemistry 265:21011–21015 272. Qi Y, Ogunbunmi EM, Freund EA, Timerman AP, Fleischer S (1998) FK-binding pro- tein is associated with the ryanodine receptor of skeletal muscle in vertebrate animals. Journal of Biological Chemistry 273:34813–34819 273. Chen SR, Li X, Ebisawa K, Zhang L (1997) Functional characterization of the recom- binant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. Journal of Biological Chemistry 272:24234–24246 274. Vanterpool CK, Vanterpool EA, Pearce WJ, Buchholz JN (2006) Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia. Journal of Applied Physiology 101:392–400 275. Hart JD, Dulhunty AF (2000) Nitric oxide activates or inhibits skeletal muscle ryan- odine receptors depending on its concentration, membrane potential and ligand bind- ing. Journal of Membrane Biology 173:227–236 276. Sonnleitner A, Fleischer S, Schindler H (1997) Gating of the skeletal calcium release channel by ATP is inhibited by 1 but not by Mg2+. Cell Calcium 21:283–290 277. Benkusky NA, Weber CS, Scherman JA, Farrell EF, Hacker TA, John MC, Powers PA, Valdivia HH (2007) Intact β-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major phosphorylation site in the cardiac ryanodine receptor. Circulation Research 101:819–829 278. Noguchi N, Yoshikawa T, Ikeda T, Takahashi I, Shervani NJ, Uruno A, Yamauchi A, Nata K, Takasawa S, Okamoto H, Sugawara A (2008) FKBP12.6 disruption impairs glucose-induced insulin secretion. Biochemical and Biophysical Research Communi- cations 371:735–740 279. Zhang F, Jin S, Yi F, Xia M, Dewey WL, Li PL (2008) Local production of O2− by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+ regulation. Cellular Signalling 20:637–644 280. Arendshorst WJ, Thai TL (2009) Regulation of the renal microcirculation by ryanodine receptors and calcium-induced calcium release. Current Opinion in Nephrology and Hypertension 18:40–49 281. Yamasaki-Mann M, Demuro A, Parker I (2009) cADPR stimulates SERCA activity in Xenopus oocytes. Cell Calcium 45:293–299 282. Jiang D, Xiao B, Li X, Chen SR (2003) Smooth muscle tissues express a major dom- inant negative splice variant of the type 3 Ca2+ release channel (ryanodine receptor). Journal of Biological Chemistry 278:4763–4769 283. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. American Journal of Physiology – Cell Physiology 245:C1-14 832 References

284. Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned ca- nine cardiac Purkinje cell. Journal of General Physiology 85:247–289 285. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637 286. Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E (2006) Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proceedings of the National Academy of Sciences of the United States of America 103:2982–2987 287. Lamb GD, Stephenson DG (1996) Effects of FK506 and rapamycin on excitation- contraction coupling in skeletal muscle fibres of the rat. Journal of Physiology 494:569–576 288. Tripathy A, Xu L, Mann G, Meissner G (1995) Calmodulin activation and inhibi- tion of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophysical Journal 69:106–119 289. Ono M, Yano M, Hino A, Suetomi T, Xu X, Susa T, Uchinoumi H, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Mat- suzaki M (2010) Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca2+ release in heart failure. Cardiovascular Research 87:609–617 290. Fruen BR, Black DJ, Bloomquist RA, Bardy JM, Johnson JD, Louis CF, Balog EM (2003) Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+- insensitive mutants of calmodulin. Biochemistry 42:2740–2747 291. Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF (2000) Differential Ca(2+) sensitivity of skeletal and ryanodine receptors in the presence of cal- modulin. American Journal of Physiology – Cell Physiology 279:C724–C733 292. Smith JS, Rousseau E, Meissner G (1989) Calmodulin modulation of single sarcoplas- mic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circulation Research 64:352–359 293. Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ (2008) S100A1 and calmodulin compete for the same on ryanodine receptor. Jour- nal of Biological Chemistry 283:26676–26683 294. Kushnir A, Shan J, Betzenhauser MJ, Reiken S, Marks AR (2010) Role of CaMKIIδ phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proceedings of the National Academy of Sciences of the United States of America 107:10274–10279 295. Beard NA, Wei L, Dulhunty AF (2009) Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. European Biophysics Journal 39:27–36 296. Knudson CM, Stang KK, Jorgensen AO, Campbell KP (1993) Biochemical charac- terization of ultrastructural localization of a major junctional sarcoplasmic reticulum glycoprotein (triadin). Journal of Biological Chemistry 268:12637–12645 297. Knudson CM, Stang KK, Moomaw CR, Slaughter CA, Campbell KP (1993) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). Journal of Biological Chemistry 268:12646–12654 298. Lim KY, Hong CS, Kim DH (2000) cDNA cloning and characterization of human cardiac junctin. Gene 255:35-42 References 833

299. Park H, Park IY, Kim E, Youn B, Fields K, Dunker AK, Kang C (2004) Compar- ing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization. Journal of Bio- logical Chemistry 279:18026–18033 300. Knollmann BC (2009) New roles of calsequestrin and triadin in cardiac muscle. Journal of Physiology 587:3081–3087 301. Wei L, Gallant EM, Dulhunty AF, Beard NA (2009) Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. International Journal of Biochemistry and Cell Biology 41:2214–2224 302. Ziviani E, Lippi G, Bano D, Munarriz E, Guiducci S, Zoli M, Young KW, Nicotera P (2011) Ryanodine receptor-2 upregulation and nicotine-mediated plasticity. EMBO Journal 30:194–204 303. Olesen C, Picard M, Lund Winther AM, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042 304. Park SW, Zhou Y, Lee J, Lee J, Ozcan U (2010) Sarco(endo)plasmic reticulum Ca2+- ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeosta- sis in . Proceedings of the National Academy of Sciences of the United States of America 107:19320–19325 305. Oceandy D, Buch MH, Cartwright EJ, Neyses L (2006) The emergence of plasma membrane calcium pump as a novel therapeutic target for heart disease. Mini Reviews in Medicinal Chemistry 6:583–588 306. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiological Reviews 81:21-50 307. Abramowitz J, Aydemir-Koksoy A, Helgason T, Jemelka S, Odebunmi T, Seidel CL, Allen JC (2000) Expression of plasma membrane calcium ATPases in phenotypically distinct canine vascular smooth muscle cells. Journal of Molecular and Cellular Cardi- ology 32:777–789 308. Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN, Husain M (2003) Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circulation Research 93:614–621 309. Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. Journal of Biological Chemistry 279:25234–25240 310. Henderson SA, Goldhaber JI, So JM, Han T, Motter C, Ngo A, Chantawansri C, Ritter MR, Friedlander M, Nicoll DA, Frank JS, Jordan MC, Roos KP, Ross RS, Philipson KD (2004) Functional adult myocardium in the absence of Na+–Ca2+ exchange. Cir- culation Research 95:604–611 311. Ottolia M, Philipson KD, John S (2004) Conformational changes of the Ca2+ regula- tory site of the Na+–Ca2+ exchanger detected by FRET. Biophysical Journal 87:899– 906 312. Altimimi HF, Schnetkamp PP (2007) Na+/Ca++–K+ exchangers (NCKX): functional properties and physiological roles. Channels 1:62–69 834 References

313. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fish- man D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proceedings of the Na- tional Academy of Sciences of the United States of America 107:436–441 314. Lipskaia L, Lompré AM (2004) Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biology of the Cell 96:55–68 315. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflügers Archiv (European Journal of Physiology) 456:769–785 316. Afroze T, Sadi AM, Momen MA, Gu S, Heximer S, Husain M (2007) c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 27:1305–1311 317. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiological Reviews 82:735– 767 318. Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441 319. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM (2009) The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–897 320. Bingle CD, LeClair EE, Havard S, Bingle L, Gillingham P, Craven CJ (2004) Phyloge- netic and evolutionary analysis of the PLUNC gene family. Protein Science 13:422–430 321. Wang S, Publicover S, Gu Y (2009) An oxygen-sensitive mechanism in regulation of epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America 106:2957–2962 322. Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and func- tional expression of epithelial sodium channels. Proceedings of the National Academy of Sciences of the United States of America 103:5817–5822 323. Soundararajan R, Melters D, Shih IC, Wang J, Pearce D (2009) Epithelial sodium chan- nel regulated by differential composition of a signaling complex. Proceedings of the National Academy of Sciences of the United States of America 106:7804–7809 324. Garcia-Caballero A, Rasmussen JE, Gaillard E, Watson MJ, Olsen JC, Donaldson SH, Stutts MJ, Tarran R (2009) SPLUNC1 regulates airway surface liquid volume by pro- tecting ENaC from proteolytic cleavage. Proceedings of the National Academy of Sci- ences of the United States of America 106::11412–11417 325. Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, Lynch CM, Faraci FM, Howard MA 3rd, Welsh MJ, Wemmie JA (2009) The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139:1012–1021 326. Darmellah A, Rücker-Martin C, Feuvray D (2009) ERM proteins mediate the effects of Na+/H+ exchanger (NHE1) activation in cardiac myocytes. Cardiovascular Research 81:294–300 References 835

327. Li X, Karki P, Lei L, Wang H, Fliegel L (2009) Na+/H+ exchanger isoform 1 facilitates cardiomyocyte embryonic differentiation. American Journal of Physiology – Heart and Circulatory Physiology 296:H159–H170 328. Boedtkjer E, Aalkjaer C (2009) Insulin inhibits Na+/H+ exchange in vascular smooth muscle and endothelial cells in situ: involvement of H2O2 and tyrosine phospha- tase SHP-2. American Journal of Physiology – Heart and Circulatory Physiology 296:H247–H255 329. Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflügers Archiv – European Journal of Physiology 47:549-65 330. Lee LJ, Zachos NC, Donowitz M (2011) NHE3. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 331. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacological Reviews 57:397–409 332. Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456:202–208 333. Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biology 4:207 334. Herzog RI, Liu C, Waxman SG, Cummins TR (2003) Calmodulin binds to the C termi- nus of sodium channels NaV1.4 and NaV1.6 and differentially modulates their func- tional properties. Journal of Neuroscience 23:8261–8270 335. Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, Chatyan H, Rui- jter JM, Bezzina CR, van Ginneken AC, Veldkamp MW (2010) Tubulin polymeriza- tion modifies cardiac sodium channel expression and gating. Cardiovascular Research 85:691–700 336. Lorincz A, Nusser Z (2010) Molecular identity of dendritic voltage-gated sodium chan- nels. Science 328:906–909 337. Meguro K, Iida H, Takano H, Morita T, Sata M, Nagai R, Nakajima (2009) T Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells. American Journal of Physiology – Heart and Circulatory Physiology 296:H211– H219 338. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F (2011) Loss-of-function mutations in sodium channel NaV 1.7 cause anosmia. Nature 472:186–190 339. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TLM, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium–potassium pump. Nature 450:1043–1049 340. Ratheal IM, Virgin GK, Yu H, Roux B, Gatto C, Artigas P (2010) Selectivity of exter- nally facing ion-binding sites in the Na/K pump to alkali metals and organic cations. Proceedings of the National Academy of Sciences of the United States of America 107:18718–18723 341. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nature Reviews – Molecular Cell Biology 12:60–70 836 References

342. Song H, Lee MY, Kinsey SP, Weber DJ, Blaustein MP (2006) An N-terminal se- quence targets and tethers Na+ pump α2 subunits to specialized plasma membrane microdomains. Journal of Biological Chemistry 281:12929-12940 343. James PF, Grupp IL, Grupp G, Woo AL, Askew GR, Croyle ML, Walsh RA, Lingrel JB (1999) Identification of a specific role for the Na,K-ATPase α2 isoform as a regulator of calcium in the heart. Molecular Cell 3:555–563 344. Takeuchi A, Reyes N, Artigas P, Gadsby DC (2008) The ion pathway through the opened Na+,K+-ATPase pump. Nature 456:413–416 345. Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ (2010) Na+-K+- ATPase and Ca 2+ clearance proteins in smooth muscle: a functional unit. American Journal of Physiology – Heart and Circulatory Physiology 299:H548–H556 346. Scheiner-Bobis G (2011) The Na+,K+-ATPase: more than just a sodium pump. Cardi- ovascular Research 89:6–8 347. Radzyukevich TL, Lingrel JB, Heiny JA (2009) The cardiac glycoside binding site on the Na,K-ATPase-α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America 106:2565–2570 348. Dostanic-Larson I, Van Huysse JW, Lorenz JN, Lingrel JB (2005) The highly con- served cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Proceedings of the National Academy of Sciences of the United States of America 102:15845–15850 349. Zheng J, Koh X, Hua F, Li G, Larrick JW, Bian JS (2011) Cardioprotection induced by Na+,/K+-ATPase activation involves extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt pathway. Cardiovascular Research 89:51–59 350. Cordero-Morales JF, Cuello LG, Perozo E (2006) Voltage-dependent gating at the KcsA selectivity filter. Nature Structural and Molecular Biology 13:319–322 351. Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HSV, Akasaka T, Yasuda S, Metzger JM, Giles W, Posakony JW, Bodmer R (2007) KCNQ mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proceedings of the National Academy of Sciences of the United States of America 104:3943–3948 352. Chakrapani S, Cordero-Morales JF, Jogini V, Pan AC, Cortes DM, Roux B, Perozo E (2011) On the structural basis of modal gating behavior in K+ channels. Nature – Structural and Molecular Biology 18:67–74 353. Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic + strong inward-rectifier K channel Kir2.2 at 3.1 resolution. Science 326:1668–1674 354. Vikstrom KL, Vaidyanathan R, Levinsohn S, O’Connell RP, Qian Y, Crye M, Mills JH, Anumonwo JM (2009) SAP97 regulates Kir2.3 channels by multiple mechanisms. American Journal of Physiology – Heart and Circulatory Physiology 297:H1387– H1397 355. Rosenhouse-Dantsker A, Sui JL, Zhao Q, Rusinova R, Rodríguez-Menchaca AA, Zhang Z, Logothetis DE (2008) A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2. Nature Chemical Biology 4:624–631 356. Luján R, Maylie J, Adelman JP (2009) New sites of action for GIRK and SK channels. Nature Reviews – Neuroscience 10:475–480 References 837

357. Lüscher C, Slesinger PA (2010) Emerging roles for -gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature Reviews – Neuroscience 11:301–315 358. Yue P, Lin DH, Pan CY, Leng Q, Giebisch G, Lifton RP, Wang WH (2009) Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. Proceedings of the National Academy of Sciences of the United States of America 106:15061–15066 359. Alekseev AE, Reyes S, Yamada S, Hodgson-Zingman DM, Sattiraju S, Zhu Z, Sierra A, Gerbin M, Coetzee WA, Goldhamer DJ, Terzic A, Zingman LV (2010) Sarcolemmal ATP-sensitive K+ channels control energy expenditure determining body weight. Cell Metabolism 11:58–69

360. Nichols CG (2006) KAT P channels as molecular sensors of cellular metabolism. Nature 440:470–476

361. Hund TJ, Mohler PJ (2011) Differential roles for SUR subunits in KAT P channel mem- brane targeting and regulation. American Journal of Physiology – Heart and Circulatory Physiology 300:H33–H35 362. Kline CF, Kurata HT, Hund TJ, Cunha SR, Koval OM, Wright PJ, Christensen M, Anderson ME, Nichols CG, Mohler PJ (2009) Dual role of KAT P channel C-terminal motif in membrane targeting and metabolic regulation. Proceedings of the National Academy of Sciences of the United States of America 106:16669–16674 363. Enkvetchakul D, Loussouarn G, Makhina E, Shyng SL, Nichols CG (2000) The kinetic and physical basis of KAT P channel gating: toward a unified molecular understanding. Biophysical Journal 78:2334–2348 364. Enkvetchakul D, Loussouarn G, Makhina E, Nichols CG (2001) ATP interaction with the open state of the KAT P channel. Biophysical Journal 80:719–728 365. Garg V, Jiao J, Hu K (2009) Regulation of ATP-sensitive K+ channels by caveolin- enriched microdomains in cardiac myocytes. Cardiovascular Research 82:51–58

366. Bao L, Hadjiolova K, Coetzee WA, Rindler MJ (2011) Endosomal KAT P channels as a reservoir after myocardial ischemia: a role for SUR2 subunits. American Journal of Physiology – Heart and Circulatory Physiology 300:H262–H270

367. Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of KAT P channels by ex- ogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Molecular Pharmacology 68:1757–1764

368. Yang W, Yang G, Jia X, Wu L, Wang R (2005) Activation of KAT P channels by H2S in rat insulin-secreting cells and the underlying mechanisms. Journal of Physiology 569:519–531 369. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C (2009) Hydrogen sulfide is an en- dogenous stimulator of . Proceedings of the National Academy of Sci- ences of the United States of America 106:21972–21977 370. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robert- son GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potas- sium channels. Pharmacological Reviews 57:473–508 838 References

371. Salinas M, Duprat F, Heurteaux C, Hugnot JP, Lazdunski M (1997) New modula- tory α subunits for mammalian Shab K+ channels. Journal of Biological Chemistry 272:24371–24379 372. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neu- ronal Ca2+ signalling. Nature Reviews – Neuroscience 8:182–193 373. Amberg GC, Koh SD, Imaizumi Y, Ohya S, Sanders KM (2003) A-type potassium cur- rents in smooth muscle. American Journal of Physiology – Cell Physiology 284:C583– C595

374. Gubitosi-Klug RA, Mancuso DJ, Gross RW (2005) The human KV 1.1 channel is palmi- toylated, modulating voltage sensing: identification of a palmitoylation consensus se- quence. Proceedings of the National Academy of Sciences of the United States of America 102:5964–5968 375. Jindal HK, Folco EJ, Liu GX, Koren G (2008) Posttranslational modification of voltage-dependent potassium channel KV 1.5: COOH-terminal palmitoylation modu- lates its biological properties. American Journal of Physiology – Heart and Circulatory Physiology 294:H2012-H2021 376. Takimoto K, Yang EK, Conforti L (2002) Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of KV 4.3 channels. Journal of Biological Chemistry 277:26904–26911 377. Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466:272–275 378. Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K+ channels. Nature 466:203–208 379. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional con- version between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270 380. Loussouarn G, Park KH, Bellocq C, Baró I, Charpentier F, Escande D (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO Journal 22:5412–5421 381. Ramu Y, Xu Y, Lu Z (2006) Enzymatic activation of voltage-gated potassium channels. Nature 442:696–699 382. Xu Y, Ramu Y, Lu Z (2008) Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451:826–829 383. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–779 384. Xu X, Kanda VA, Choi E, Panaghie G, Roepke TK, Gaeta SA, Christini DJ, Lerner DJ, Abbott GW (2009) MinK-dependent internalization of the IKs potassium channel. Cardiovascular Research 82:430–438 385. Decher N, Streit AK, Rapedius M, Netter MF, Marzian S, Ehling P, Schlichthörl G, Craan T, Renigunta V, Köhler A, Dodel RC, Navarro-Polanco RA, Preisig-Müller R, Klebe G, Budde T, Baukrowitz T, Daut J (2010) RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of KV potassium channels. EMBO Journal 29:2101–2113 References 839

386. Williams MR, Markey JC, Doczi MA, Morielli AD (2007) An essential role for cor- tactin in the modulation of the potassium channel Kv1.2. Proceedings of the National Academy of Sciences of the United States of America 104:17412–17417 387. Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, Iñiguez- Lluhí JA, Martens JR (2007) SUMO modification regulates inactivation of the voltage- gated potassium channel Kv1.5. Proceedings of the National Academy of Sciences of the United States of America 104:1805–1810 388. Balse E, El-Haou S, Dillanian G, Dauphin A, Eldstrom J, Fedida D, Coulombe A, Hatem SN (2009) Cholesterol modulates the recruitment of KV 1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proceedings of the National Academy of Sciences of the United States of America 106:14681–14686 389. Miguel-Velado E, Pérez-Carretero FD, Colinas O, Cidad P, Heras M, López-López JR, Pérez-García MT (2010) Cell cycle-dependent expression of KV 3.4 channels modu- lates proliferation of human uterine artery smooth muscle cells. Cardiovascular Re- search 86:383–391 390. He W, Jia Y, Takimoto K (2009) Interaction between transcription factors Iroquois proteins 4 and 5 controls cardiac potassium channel Kv4.2 gene transcription. Cardio- vascular Research 81:64–71 391. Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by CaV 3-KV 4 channel signaling complexes. Nature – Neuroscience 13:333–337 392. Keskanokwong T, Lim HJ, Zhang P, Cheng J, Xu L, Lai D, Wang Y (2011) Dynamic KV 4.3-CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. European Heart Journal 32:305–315 393. Chen J, Sroubek J, Krishnan Y, Li Y, Bian JS, McDonald TV (2009) PKA phosphor- ylation of HERG protein regulates the rate of channel synthesis. American Journal of Physiology – Heart and Circulatory Physiology 296:H1244–H1254 394. Lin EC, Holzem KM, Anson BD, Moungey BM, Balijepalli SY, Tester DJ, Ackerman MJ, Delisle BP, Balijepalli RC, January CT (2010) Properties of WT and mutant hERG K+ channels expressed in neonatal mouse cardiomyocytes. American Journal of Phys- iology – Heart and Circulatory Physiology 298:H1842–H1849 395. Rainbow RD, Norman RI, Everitt DE, Brignell JL, Davies NW, Standen NB (2009) Endothelin-I and angiotensin-II inhibit arterial voltage-gated K+ channels through dif- ferent protein kinase C isoenzymes. Cardiovascular Research 83:493–500 396. Feher A, Rutkai I, Beleznai T, Ungvari Z, Csiszar A, Edes I, Bagi Z (2010) Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: impli- cations in diet-induced obesity. Cardiovascular Research 87:732–739 397. Pantazis A, Gudzenko V, Savalli N, Sigg D, Olcese R (2010) Operation of the volt- age sensor of a human voltage- and Ca2+-activated K+ channel. Proceedings of the National Academy of Sciences of the United States of America 107:4459–4464 398. Yuan P, Leonetti MD, Pico AR, Hsiung Y, Mackinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 Åresolution. Science 329:182–186 399. Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large- conductance Ca2+-gated K+ channel. Nature 466:393–397 840 References

400. Tian L, Jeffries O, McClafferty H, Molyvdas A, Rowe IC, Saleem F, Chen L, Greaves J, Chamberlain LH, Knaus HG, Ruth P, Shipston MJ (2008) Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proceedings of the National Academy of Sciences of the United States of America 105:21006–21011 401. Zhou XB, Wulfsen I, Utku E, Sausbier U, Sausbier M, Wieland T, Ruth P, Korth M (2010) Dual role of protein kinase C on BK channel regulation. Proceedings of the National Academy of Sciences of the United States of America 107:8005–8010 402. Alioua A, Li M, Wu Y, Stefani E, Toro L (2011) Unconventional myristoylation of large-conductance Ca2+-activated K+ channel (Slo1) via serine/threonine residues reg- ulates channel surface expression. Proceedings of the National Academy of Sciences of the United States of America 108:10744–10749 403. Hou S, Xu R, Heinemann SH, Hoshi T (2008) Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain. Nature Struc- tural and Molecular Biology 15:403–410 404. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium chan- nel. Science 306:2093–2097 405. Leffler CW, Parfenova H, Jaggar JH (2011) Carbon monoxide as an endogenous vas- cular modulator. American Journal of Physiology – Heart and Circulatory Physiology 301:H1–H11 406. Wilkinson WJ, Kemp PJ (2011) Carbon monoxide: an emerging regulator of ion chan- nels. Journal of Physiology (under press) 407. Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BKCa channel to form a signal complex in vascular smooth muscle cells. Circulation Research 104:670–678 408. Ivanov A, Gerzanich V, Ivanova S, Denhaese R, Tsymbalyuk O, Simard JM (2006) Adenylate cyclase 5 and KCa1.1 channel are required for EGFR up-regulation of PCNA in native contractile rat basilar artery smooth muscle. Journal of Physiology 570:73–84 409. Cheong A, Bingham AJ, Li J, Kumar B, Sukumar P, Munsch C, Buckley NJ, Neylon CB, Porter KE, Beech DJ, Wood IC (2005) Downregulated REST transcription fac- tor is a switch enabling critical potassium channel expression and cell proliferation. Molecular Cell 20:45–52 410. Li M, Tanaka Y, Alioua A, Wu Y, Lu R, Kundu P, Sanchez-Pastor E, Marijic J, Stefani E, Toro L (2010) Thromboxane A2 receptor and MaxiK-channel intimate interaction supports channel trans-inhibition independent of G-protein activation. Proceedings of the National Academy of Sciences of the United States of America 107:19096–19101 411. Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochimica et Biophysica Acta 30:653 412. Tharp DL, Bowles DK (2009) The intermediate-conductance Ca2+-activated K+ chan- nel (KCa3.1) in vascular disease. Cardiovascular and Hematological Agents in Medic- inal Chemistry 7:1–11 413. Li W, Aldrich RW (2009) Activation of the SK potassium channel-calmodulin com- plex by nanomolar concentrations of terbium. Proceedings of the National Academy of Sciences of the United States of America 106:1075–1080 References 841

414. Lu L, Timofeyev V, Li N, Rafizadeh S, Singapuri A, Harris TR, Chiamvimonvat N (2009) α-Actinin-2 cytoskeletal protein is required for the functional membrane local- ization of a Ca2+-activated K+ channel (SK2 channel). Proceedings of the National Academy of Sciences of the United States of America 106:18402–18407 415. Faber ES, Delaney AJ, Power JM, Sedlak PL, Crane JW, Sah P (2008) Modulation of SK channel trafficking by βadrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. Journal of Neuroscience 28:10803–10813

416. Yang B, Desai R, Kaczmarek LK (2007) Slack and Slick KNa channels regulate the accuracy of timing of auditory . Journal of Neuroscience 27:2617–2627

417. Gao SB, Wu Y, Lv CX, ZH Guo ZH, Li CH, Ding JP (2008) Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons. Acta Pharmacologica Sinica 29:899–905 418. Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L (2006) Opposite regulation of Slick and Slack K+ channels by neuromodulators. Journal of Neuroscience 26:5059–5068 419. Brown MR, Kronengold J, Gazula VR, Chen Y,Strumbos JG, Sigworth FJ, Navaratnam D, Kaczmarek LK (2010) Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nature – Neuroscience 13:819–821 420. Galindo BE, de la Vega-Beltrán JL, Labarca P, Vacquier VD, Darszon A (2007) Sp- tetraKCNG: a novel cyclic nucleotide gated K+ channel. Biochemical and Biophysical Research Communications 354:668–675 421. Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nature Reviews – Neuroscience 8:251–261 422. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO Journal 16:5464–5471 423. Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA (2010) One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proceedings of the National Academy of Sciences of the United States of America 107:10743–10748 424. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet-Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgi- eff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J (2010) Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107:2325–2330 425. Warth R, Barrière H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Bendahhou S, Lesage F, Poujeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mech- anism for stabilizing bicarbonate transport. Proceedings of the National Academy of Sciences of the United States of America 101:8215–8220 426. Sandoz G, Thümmler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdun- ski M, Lesage F (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels. EMBO Journal 25:5864– 5872 427. Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL (2007) Altered acetylcholine, and cutaneous 842 References

pressure-induced in mice lacking the TREK1 potassium channel: the en- dothelial link. EMBO Reports 8:354–359 428. Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641 429. Lísal JI, Maduke M (2008) The ClC-0 chloride channel is a “broken” Cl−/H+ an- tiporter. Nature – Structural and Molecular Biology 15:805–810 430. Estévez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl− channel β-subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature 414:558–561 431. Scholl U, Hebeisen S, Janssen AG, Müller-Newen G, Alekov A, Fahlke C (2006) Bart- tin modulates trafficking and function of ClC-K channels. Proceedings of the National Academy of Sciences of the United States of America 103:11411–11416 432. Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR (2003) The PDZ- binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fi- brosis transmembrane conductance regulator-interacting PDZ proteins. Journal of Bio- logical Chemistry 278:6440–6449 433. Günther W, Lüchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chlo- ride channel mutated in Dent’s disease, colocalizes with the proton pump in endocy- totically active kidney cells. Proceedings of the National Academy of Sciences of the United States of America 95:8075–8080 434. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride–proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401 435. Eggermont J, Buyse G, Voets T, Tytgat J, De Smedt H, Droogmans G, Nilius B (1997) Alternative splicing of ClC-6 (a member of the CIC chloride-channel family) tran- scripts generates three truncated isoforms one of which, ClC-6c, is kidney-specific. Biochemical Journal 325:269–276 436. Meadows NA, Sharma SM, Faulkner GJ, Ostrowski MC, Hume DA, Cassady AI (2007) The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia . Journal of Biological Chemistry 282:1891–1904 437. Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ (2010) Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl− accumulation. Science 328:1401–1403 438. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJV (2008) TMEM16A, a associated with calcium-dependent chloride channel activity. Science 322:590–594 439. Marmorstein LY, McLaughlin PJ, Stanton JB, Yan L, Crabb JW, Marmorstein AD (2002) Bestrophin interacts physically and functionally with protein phosphatase 2A. Journal of Biological Chemistry 277:30591–30597 440. Matchkov VV, Larsen P, Bouzinova EV, Rojek A, Briggs Boedtkjer DM, Golubinskaya V, Pedersen FS, Aalkjaer C, Nilsson H (2008) Bestrophin-3 (vitelliform macular dys- trophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells. Circulation Research 103:864–872 441. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure-function analysis of the bestrophin family of anion channels. Journal of Bio- logical Chemistry 278:41114–41125 References 843

442. Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion chan- nel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Research 18:558–565 443. Dutta AK, Korchev YE, Shevchuk AI, Hayashi S, Okada Y, Sabirov RZ (2008) Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch tech- nique. Biophysical Journal 94:1646–1655 444. Toychiev AH, Sabirov RZ, Takahashi N, Ando-Akatsuka Y, Liu H, Shintani T, Noda M, Okada Y (2009) Activation of maxi-anion channel by protein tyrosine dephospho- rylation. American Journal of Physiology – Cell Physiology 297:C990–C1000 445. He Y, Ramsay AJ, Hunt ML, Whitbread AK, Myers SA, Hooper JD (2008) N- glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement. Impact of N-glycosylation on cel- lular processing of Tweety homologue 2 (TTYH2). Biochemical Journal 412:45–55 446. He Y, Hryciw DH, Carroll ML, Myers SA, Whitbread AK, Kumar S, Poronnik P, Hooper JD (2008) The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels. Journal of Bio- logical Chemistry 283:24000–24010 447. Raucci FJ, Wijesinghe DS, Chalfant CE, Baumgarten CM (2010) Exogenous and en- dogenous ceramides elicit volume-sensitive chloride current in ventricular myocytes. Cardiovascular Research 86:55–62 448. Okada SF, O’Neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER, Boucher RC (2004) Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells. Journal of Gen- eral Physiology 124:513–526 449. Lee SH, Park JH, Jung HH, Lee SH, Oh JW, Lee HM, Jun HS, Cho WJ, Lee JY (2005) Expression and distribution of ion transport mRNAs in human nasal mucosa and nasal polyps. Acta Oto-Laryngologica 125:745–752 450. Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU (1998) Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl− channels. Genomics 54:200–214 451. Gruber AD, Schreur KD, Ji HL, Fuller CM, Pauli BU (1999) Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. American Journal of Physiology – Cell Physiology 276:C1261–C1270 452. Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU (2001) The breast cancer β4integrin and endothelial human CLCA2 mediate lung metastasis. Journal of Biological Chem- istry 276:25438–25446 453. Connon CJ, Kawasaki S, Yamasaki K, Quantock AJ, Kinoshita S (2005) The quantifi- cation of hCLCA2 and colocalisation with β4 in stratified human epithelia. Acta Histochemica 106:421–425 454. Gruber AD, Pauli BU (1999) Molecular cloning and biochemical characterization of a truncated, secreted member of the human family of Ca2+-activated Cl− channels. Biochimica et Biophysica Acta 1444:418–423 455. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on ex- pression and function of the TMEM16A calcium-activated chloride channel. Proceed- ings of the National Academy of Sciences of the United States of America 106:21413– 21418 844 References

456. Singh H, Cousin MA, Ashley RH (2007) Functional reconstitution of mammalian “chloride intracellular channels” CLIC1, CLIC4 and CLIC5 reveals differential reg- ulation by cytoskeletal actin. FEBS Journal 274:6306–6316 457. Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF (2004) CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. International Journal of Biochem- istry and Cell Biology 36:1599–1612 458. Qian Z, Okuhara D, Abe MK, Rosner MR (1999) Molecular cloning and characteri- zation of a mitogen-activated protein kinase-associated intracellular chloride channel. Journal of Biological Chemistry 274:1621–1627 459. Shukla A, Malik M, Cataisson C, Ho Y, Friesen T, Suh KS, Yuspa SH (2009) TGFβ signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nature Cell Biology 11:777–784 460. Suginta W, Karoulias N, Aitken A, Ashley RH (2001) Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochemical Journal 359:55–64 461. Shanks RA, Larocca MC, Berryman M, Edwards JC, Urushidani T, Navarre J, Gold- enring JR (2002) AKAP350 at the Golgi apparatus. II. Association of AKAP350 with a novel chloride intracellular channel (CLIC) family member. Journal of Biological Chemistry 277:40973–40980 462. Berryman MA, Goldenring JR (2003) CLIC4 is enriched at cell-cell junctions and colo- calizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motility and the Cytoskeleton 56:159–172 463. Berryman M, Bruno J, Price J, Edwards JC (2004) CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. Journal of Biological Chemistry 279:34794–34801 464. Griffon N, Jeanneteau F, Prieur F, Diaz J, Sokoloff P (2003) CLIC6, a member of the intracellular chloride channel family, interacts with dopamine D(2)-like receptors. Brain Research – Molecular Brain Research 117:47–57 465. Larkin D, Murphy D, Reilly DF, Cahill M, Sattler E, Harriott P, Cahill DJ, Moran N (2004) ICln, a novel integrin αIIbβ3-associated protein, functionally regulates platelet activation. Journal of Biological Chemistry 279:27286–27293 466. Zhang WK, Wang D, Duan Y, Loy MMT, Chan HC, Huang P (2010) Mechanosensitive gating of CFTR. Nature – Cell Biology 12:507–512 467. Decoursey TE (2003) Voltage-gated proton channels and other proton transfer path- ways. Physiological Reviews 83:475–579 468. Koch HP, Kurokawa T, Okochi Y, Sasaki M, Okamura Y, Larsson HP (2008) Multi- meric nature of voltage-gated proton channels. Proceedings of the National Academy of Sciences of the United States of America 105:9111–9116 469. Ramsey IS, Mokrab Y, Carvacho I, Sands ZA, Sansom MS, Clapham DE (2010) An + aqueous H permeation pathway in the voltage-gated proton channel HV 1. Nature – Structural and Molecular Biology 17:869–875 470. Morgan D, Capasso M, Musset B, Cherny VV, Ríos E, Dyer MJ, DeCoursey TE (2009) Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proceedings of the National Academy of Sciences of the United States of America 106:18022–18027 References 845 Chap. 4. Membrane Compound Carriers

471. Thevelein JM, Voordeckers K (2009) Functioning and evolutionary significance of nu- trient transceptors. Molecular Biology and Evolution 26:2407–2414 472. Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacological Reviews 62:1–96 473. Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Archiv (Euro- pean Journal of Physiology) 447:469–479 474. Palacín M, Kanai Y (2004) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflügers Archiv (European Journal of Physiology) 447:490–494 475. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflügers Archiv (European Journal of Physiology) 447:532–542 476. Daniel H, Kottra G (2004) The proton oligopeptide family SLC15 in physiology and pharmacology. Pflügers Archiv (European Journal of Physiology) 447:610-618 477. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflügers Archiv (European Journal of Physiology) 447:629–635 478. Eiden LE, Schäfer MK, Weihe E, Schütz B (2004) The vesicular amine transporter fam- ily (SLC18): amine/proton antiporters required for vesicular accumulation and regula- ted exocytotic secretion of monoamines and acetylcholine. Pflügers Archiv (European Journal of Physiology) 447:636–640 479. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion ex- changers. Pflügers Archiv (European Journal of Physiology) 447:710–721 480. Gasnier B (2004) The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflügers Archiv (European Journal of Physiology) 447:756– 759 481. Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflügers Archiv (European Journal of Physiology) 447:776–779 482. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflügers Archiv (European Journal of Physiol- ogy) 447784–795 483. Edinger AL, Thompson CB (2002) Antigen-presenting cells control proliferation by regulating amino acid availability. Proceedings of the National Academy of Sciences of the United States of America 99:1107–1109 484. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a nucleobase–cation-symport-1 family transporter. Sci- ence 322:709–713 485. Dawson PA, Rao A (2007) Ntcp. UCSD-Nature Molecule Pages, UCSD-Nature Sig- naling Gateway (www.signaling-gateway.org) 846 References

486. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. American Journal of Physiology – Cell Physiology 264:C761–C782 487. Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW (1998) Char- acterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochemical Journal 333:167–174 488. Halestrap AP (2009) Monocarboxylate transporter 1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 489. Becker HM, Bröer S, Deitmer JW (2004) Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes. Biophysical Journal 86:235–247 490. Robinson NJ, Winge DR (2010) Copper metallochaperones. Annual Review of Bio- chemistry 79:7.1–7.26 491. Kaplan JH, Lutsenko S (2009) Copper transport in mammalian cells: special care for a metal with special needs. Journal of Biological Chemistry 284:25461–25465 492. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta 1763:747–758 493. Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ (2010) Cardiac cop- per deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metabolism 11:353–363 494. Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P (2010) Affinity gradients drive copper to cellular destinations. Nature 465:645–648 495. Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, Hyde BB, Shirihai OS, Ward DM, Kaplan J, Paw BH (2009) Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochon- dria. Proceedings of the National Academy of Sciences of the United States of America 106:16263–16268 496. Zhou H, Clapham DE (2009) Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proceedings of the National Academy of Sciences of the United States of America 106:15750–15755 497. Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper SL, Ellory JC, Chou CY (2004) Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. Journal of Bio- logical Chemistry 279:40017–40025 498. Gamba G (2009) The thiazide-sensitive Na+–Cl− cotransporter: molecular biology, functional properties, and regulation by WNKs. American Journal of Physiology – Renal Physiology 297:F838–F848 499. Russell JM (2000) Sodium–potassium–chloride cotransport. Physiological Reviews 80:211–276 500. Haas M (1994). The Na-K-Cl . American Journal of Physiology – Cell Physiology 267:C869-C885 501. Hediger MA, Kanai Y, You G, Nussberger S (1995) Mammalian ion-coupled solute transporters. Journal of Physiology 482:7S–17S References 847

502. Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America 93:3547–3552 503. Carneiro AM, Blakely RD (2009) SERT. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) 504. Sitte HH, Freissmuth M (2009) Gat1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 505. Kanai Y, Nussberger S, Romero MF, Boron WF, Hebert SC, Hediger MA (1995) Elec- trogenic properties of the epithelial and neuronal high affinity . Journal of Biological Chemistry 270:16561–16568 506. Watabe M, Aoyama K, Nakaki T (2007) Regulation of glutathione synthesis via in- teraction between glutamate transport-associated protein 3-18 (GTRAP3-18) and exci- tatory amino acid carrier-1 (EAAC1) at plasma membrane. Molecular Pharmacology 72:1103–1110 507. Chen H, Bai J, Ye J, Liu Z, Chen R, Mao W, Li A, Zhou J (2007) JWA as a functional molecule to regulate cancer cells migration via MAPK cascades and F-actin cytoskel- eton. Cell Signaling 19:1315–1327 508. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. Journal of Physiology 577:221–234 509. Weiss MD, Derazi S, Kilberg MS, Anderson KJ (2001) Ontogeny and localization of the neutral amino acid transporter ASCT1 in rat brain. Developmental Brain Research 130:183–190 510. Yamamoto T, Nishizaki I, Nukada T, Kamegaya E, Furuya S, Hirabayashi Y, Ikeda K, Hata H, Kobayashi H, Sora I, Yamamoto H (2004) Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of L-serine in rat neurons in primary culture. Neuroscience Research 49:101–111 511. Zerangue N, Kavanaugh MP (1996) ASCT-1 is a neutral amino acid exchanger with chloride channel activity. Journal of Biological Chemistry 271:27991–27994 512. Bröer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F, Bröer S (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. Journal of Neurochemistry 73:2184–2194 513. MacLean MR, Herve P, Eddahibi S, Adnot S (2000) 5-hydroxytryptamine and the pul- monary circulation: receptors, transporters and relevance to pulmonary arterial hyper- tension. British Journal of Pharmacology 131:161–168 514. Erickson JD, Varoqui H (2000) Molecular analysis of vesicular amine transporter func- tion and targeting to secretory organelles. FASEB Journal 14:2450–2458 515. Deniaud A, Le Bras M, Lecellier G, Brenner C, Kroemer G (2005) Ant1. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 516. Le Bras M, Deniaud A, Lecellier G, Kroemer G, Brenner C (2005) Ant2. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 517. Pastor-Anglada M, Errasti-Murugarren E, Aymerich I, Casado FJ (2007) Concentrative nucleoside transporters (CNTs) in epithelia: from absorption to cell signaling. Journal of Physiology and Biochemistry 63:97–110 848 References

518. Young JD, Yao SY, Sun L, Cass CE, Baldwin SA (2008) Human equilibrative nu- cleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 38:995–1021 519. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative family, SLC29. Pflügers Archiv (European Journal of Physiol- ogy) 447:735–743 520. Rose JB, Naydenova Z, Bang A, Eguchi M, Sweeney G, Choi DS, Hammond JR, Coe IR (2010) Equilibrative nucleoside transporter 1 plays an essential role in cardioprotec- tion. American Journal of Physiology – Heart and Circulatory Physiology 298:H771– H777 521. Gournas C, Papageorgiou I, Diallinas G (2008) The nucleobase–ascorbate transporter (NAT) family: genomics, evolution, structure–function relationships and physiological role. Molecular BioSystems 4:404–416 522. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochemical Journal 348:481–495 523. Maestro A, Terdoslavich M, Vanzo A, Kuku A, Tramer F, Nicolin V, Micali F, Decorti G, Passamonti S (2010) Expression of bilitranslocase in the vascular endothelium and its function as a flavonoid transporter. Cardiovascular Research 85:175–183 524. Mazurek MP, Prasad PD, Gopal E, Fraser SP, Bolt L, Rizaner N, Palmer CP, Foster CS, Palmieri F, Ganapathy V, Stühmer W, Djamgoz MB, Mycielska ME (2010) Molecu- lar origin of plasma membrane citrate transporter in human prostate epithelial cells. EMBO reports 11:431–437 525. Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC (2003) Aquaporin expression in developing human teeth and selected orofacial tissues. Calcified Tissue International 72:222–227 526. Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiological Reviews 82:205–244 527. Masyuk AI, LaRusso NF (2006) Aquaporins in the hepatobiliary system. Hepatology 43:S75–S81 528. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen perox- ide uptake to regulate downstream intracellular signaling. Proceedings of the National Academy of Sciences of the United States of America 107:15681–15686 529. Li Y, Konings IB, Zhao J, Price LS, de Heer E, Deen PM (2008) Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. American Journal of Physiology – Renal Physiology 295:F525–F533

530. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivi- ties of AQP1, AQP4, AQP5, AmtB, and RhAG. Proceedings of the National Academy of Sciences of the United States of America 106:5406–5411 531. Sidhaye VK, Schweitzer KS, Caterina MJ, Shimoda L, King LS (2008) Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proceedings of the Na- tional Academy of Sciences of the United States of America 105:3345–3350 532. Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F (2007) Calcineurin- NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. American Journal of Physiology – Cell Physiology 292:C1606– C1616 References 849

533. Moeller HB, Praetorius J, Rützler MB, Fenton RA (2010) Phosphorylation of aquaporin-2 regulates its endocytosis and protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America 107:424–429 534. Hibuse T, Maeda N, Nakatsuji H, Tochino Y, Fujita K, Kihara S, Funahashi T, Shimo- mura I (2009) The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovascular Research 83:34–41 535. Kawedia JD, Nieman ML, Boivin GP, Melvin JE, Kikuchi KI, Hand AR, Lorenz JN, Menon AG (2007) Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex. Proceedings of the Na- tional Academy of Sciences of the United States of America 104:3621–3626 536. Watson RT, Kanzaki M, Pessin J (2004) Regulated membrane trafficking of the insulin- responsive 4 in adipocytes. Endocrine Reviews 25:177–204 537. Stöckli J, James DE (2009) GLUT4. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 538. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:337–338 539. Lalioti V, Muruais G, Dinarina A, van Damme J, Vandekerckhove J, Sandoval IV (2009) The atypical kinase Cdk5 is activated by insulin, regulates the association be- tween GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences of the United States of America 106:4249–4253 540. Schurmann A, Joost HG (2006) GLUT8. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) 541. Schurmann A, Augustin R, Joost HG (2006) GLUT9. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 542. Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proceedings of the National Academy of Sciences of the United States of America 106:15501–15506 543. Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW (2001) Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of 20q12-13.1. Molecular Genetics and Metabo- lism 74:186–199 544. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against : mechanistic insight into arterial tortuosity syndrome. Human Molecular Genetics 19:3721–3733 545. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Na- ture Reviews – Molecular Cell Biology 10:218–227 546. Klein I, Sarkadi B, Varadi A (1999) An inventory of the human ABC proteins. Biochim- ica et Biophysica Acta 1461:237–262 547. Vazquez de Aldana CR, Marton MJ, Hinnebusch AG (1995) GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells. EMBO Journal 14:3184–3199 850 References

548. Oldham ML, Chen J (2011) Crystal structure of the maltose transporter in a pretranslo- cation intermediate state. Science 332:1202–1205 549. Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216 550. Borycz J, Borycz JA, Kubów A, Lloyd V, Meinertzhagen IA (2008) Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. Journal of Experimental Biology 211:3454–3466 551. Ricardo S, Lehmann R (2009) An ABC transporter controls export of a Drosophila germ cell attractant. Science 323:943–946 552. Bréchot JM, Hurbain I, Fajac A, Daty N, Bernaudin JF (1998) Different pattern of MRP localization in ciliated and basal cells from human bronchial epithelium. Journal of Histochemistry and Cytochemistry 46:513–517 553. Kobayashi N, Kobayashi N, Yamaguchi A, Nishi T (2009) Characterization of the ATP- dependent sphingosine 1-phosphate transporter in rat erythrocytes. Journal of Biologi- cal Chemistry 284:21192–21200 554. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sph- ingolipid transporter Spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527 555. Brown MS, Ye J, Goldstein JL (2010) HDL MiR-ed down by SREBP introns. Science 328:1495–1496 556. Tall AR, Costet P, Wang N (2002) Regulation and mechanisms of choles- terol efflux. Journal of Clinical Investigation 110:899–904 557. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569 558. Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–1573 559. Kaminski WE, Piehler A, Püllmann K, Porsch-Ozcürümez M, Duong C, Bared GM, Büchler C, Schmitz G (2001) Complete coding sequence, promoter region, and ge- nomic structure of the human ABCA2 gene and evidence for sterol-dependent reg- ulation in . Biochemical and Biophysical Research Communications 281:249–258 560. Matsumura Y, Ban N, Inagaki N (2009) Abca3. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) 561. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). Journal of Biological Chemistry 279:53972–53979 562. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, Mar- tinez LO, Tall AR (2003) ATP-binding cassette transporter A7 (ABCA7) binds apolip- oprotein A-I and mediates cellular phospholipid but not cholesterol efflux. Journal of Biological Chemistry 278:42906–42912 563. Piehler A, Kaminski WE, Wenzel JJ, Langmann T, Schmitz G (2002) Molecular struc- ture of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem- ical and Biophysical Research Communications 295:408-416 References 851

564. Wenzel JJ, Kaminski WE, Piehler A, Heimerl S, Langmann T, Schmitz G (2003) ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochemical and Biophysical Research Communications 306:1089–1098 565. Jiang YJ, Lu B, Kim P, Paragh G, Schmitz G, Elias PM, Feingold KR (2008) PPAR and LXR activators regulate ABCA12 expression in human keratinocytes. Journal of Investigative Dermatology 128:104–109 566. Oancea G, O’Mara ML, Bennett WF, Tieleman DP, Abele R, Tampé R (2009) Struc- tural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proceedings of the National Academy of Sciences of the United States of America 106:5551–5556 567. Rigor RR, Hawkins BT, Miller DS (2010) Activation of PKC isoform β I at the blood- brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain. Journal of Cerebral Blood Flow and Metabolism 30:1373–1383 568. Kunzelmann K, Schreiber R (1999) CFTR, a regulator of channels. Journal of Mem- brane Biology 168:1–8 569. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as cAMP-dependent regulator of sodium channels. Science 269: 847– 850 570. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an au- tocrine mechanism involving ATP. Cell 81:1063–1073 571. Player MR, Torrence PF (1998) The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacology and Therapeutics 78:55–113 572. Tyzack JK, Wang X, Belsham GJ, Proud CG (2000) ABC50 interacts with eukary- otic initiation factor 2 and associates with the ribosome in an ATP-dependent manner. Journal of Biological Chemistry 275:34131–34139 573. Schmitz G, Langmann T, Heimerl S (2001) Role of ABCG1 and other ABCG family members in lipid metabolism. Journal of Lipid Research 42:1513–1520 574. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) ATP-Binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328:1689–1693 575. Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH (2003) ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. Journal of Biological Chemistry 278:48275–48282

Chap. 5. Receptors of Cellular Trafficking

576. May P, Herz J, Bock HH (2005) Molecular mechanisms of lipoprotein receptor sig- nalling. Cellular and Molecular Life Sciences 62:2325–2338 577. Strickland DK, Kounnas MZ (1997) Mechanisms of cellular uptake of thrombin- antithrombin II complexes. Role of the low-density lipoprotein receptor-related protein as a serpin- complex receptor. Trends in Cardiovascular Medicine 7:9–16 852 References

578. Sakaguchi H, Takeya M, Suzuki H, Hakamata H, Kodama T, Horiuchi S, Gordon S, van der Laan LJ, Kraal G, Ishibashi S, Kitamura N, Takahashi K (1998) Role of macrophage scavenger receptors in diet-induced in mice. Laboratory Investigation 78:423–434 579. Mehta KD, Radominska-Pandya A, Kapoor GS, Dave B, Atkins BA (2002) Critical role of diacylglycerol- and phospholipid-regulated protein kinase C in induction of low-density lipoprotein receptor transcription in response to depletion of cholesterol. Molecular and Cellular Biology 22:3783–3793 580. Maurer ME, Cooper JA (2006) The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. Journal of Cell Science 119:4235–4246 581. Bräuer AU, Nitsch R (2008) Plasticity-related genes (PRGs/LRPs): a brain-specific class of lysophospholipid-modifying proteins. Biochimica et Biophysica Acta – Molec- ular and Cell Biology of Lipids 1781:595-600 582. Huang SS, Ling TY, Tseng WF, Huang YH, Tang FM, Leal SM, Huang JS (2003) Cellular growth inhibition by IGFBP-3 and TGF-β1 requires LRP-1. FASEB Journal 17:2068–2081 583. Leucht C, Simoneau S, Rey C, Vana K, Rieger R, Lasmézas CI, Weiss S (2003) The 37 kDa/67 kDa laminin receptor is required for PrPSc propagation in scrapie-infected neuronal cells. EMBO Reports 4:290–295 584. Taylor DR, Hooper NM (2007) The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochemical Journal 402:17–23 585. Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, Forlow SB, Stark MA, Smith DF, Clarke S, Srinivasan S, Hedrick CC, Praticò D, Witztum JL, Nadler JL, Funk CD, Ley K (2004) Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 110:2024–2031 586. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-Lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4:e7250 587. Orlando RA, Farquhar MG (1994) Functional domains of the receptor-associated pro- tein (RAP). Proceedings of the National Academy of Sciences of the United States of America 91:3161–3165 588. Tanaga K, Bujo H, Zhu Y, Kanaki T, Hirayama S, Takahashi K, Inoue M, Mikami K, Schneider WJ, Saito Y (2004) LRP1B attenuates the migration of smooth muscle cells by reducing membrane localization of urokinase and PDGF receptors. Arteriosclerosis, Thrombosis, and Vascular Biology 24:1422–1428 589. Li Y, Knisely JM, Lu W, McCormick LM, Wang J, Henkin J, Schwartz AL, Bu G (2002) Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. Journal of Biolog- ical Chemistry 277:42366–42371 590. Stefansson S, Chappell DA, Argraves KM, Strickland DK, Argraves WS (1995) Gly- coprotein 330/low density lipoprotein receptor-related protein-2 mediates endocytosis of low density lipoproteins via interaction with apolipoprotein B100. Journal of Bio- logical Chemistry 270:19417–19421 591. Fisher C. New Perspectives in Shh Signalling? NCBI – Bookshelf – Madame Curie Bioscience Database – Development (www.ncbi.nlm.nih.gov/bookshelf). Landes Bio- science and Springer Science+Business Media References 853

592. Fisher CE, Howie SE (2006) The role of megalin (LRP-2/Gp330) during development. Developmental Biology 296:279–297 593. Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK, Ray R, Gliemann J, Willnow TE, Chris- tensen EI (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hor- mone 25(OH) vitamin D3. Proceedings of the National Academy of Sciences of the United States of America 98:13895–13900 594. Gekle M, Knaus P, Nielsen R, Mildenberger S, Freudinger R, Wohlfarth V, Sauvant C, Christensen EI (2003) Transforming growth factor-beta1 reduces megalin- and cubilin- mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells. Journal of Physiology 552:471–481 595. Li J, Ji C, Zheng H, Fei X, Zheng M, Dai J, Gu S, Xie Y, Mao Y (2005) Molecu- lar cloning and characterization of a novel human gene containing 4 ankyrin repeat domains. Cellular and Molecular Biology Letters 10:185–193 596. Ishii H, Kim DH, Fujita T, Endo Y, Saeki S, Yamamoto TT (1998) cDNA cloning of a new low-density lipoprotein receptor-related protein and mapping of its gene (LRP3) to chromosome bands 19q12-q13. Genomics 51:132-135 597. Tian QB, Suzuki T, Yamauchi T, Sakagami H, Yoshimura Y, Miyazawa S, Nakayama K, Saitoh F, Zhang JP, Lu Y, Kondo H, Endo S (2006) Interaction of LDL receptor- related protein 4 (LRP4 [?]) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein ki- nase II. European Journal of Neuroscience 23:2864–2876 598. Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dick- kopf 1 and Sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4:e7930 599. Ohazama A, Johnson EB, Ota MS, Choi HY, Porntaveetus T, Oommen S, Itoh N, Eto K, Gritli-Linde A, Herz J, Sharpe PT (2008) Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 3:e4092 600. Ibelgaufts H (2010) and Cells Online Pathfinder Encyclopaedia (www.copewithcytokines.de/cope.cgi) 601. Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. Journal of Biological Chemistry 282:32956–32964 602. Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K, Ishii I, Miida T, Schneider WJ, Saito Y (2001) LR11, a mosaic LDL receptor family member, medi- ates the uptake of ApoE-rich lipoproteins in vitro. Arteriosclerosis, Thrombosis, and Vascular Biology 21:1501–1506 603. Lintzel J, Franke I, Riedel IB, Schaller HC, Hampe W (2002) Characterization of the VPS10 domain of SorLA/LR11 as binding site for the neuropeptide HA. Biological Chemistry 383:1727–1733 604. Boels K, Glassmeier G, Herrmann D, Riedel IB, Hampe W, Kojima I, Schwarz JR, Schaller HC (2001) The neuropeptide head activator induces activation and translo- cation of the growth-factor-regulated Ca2+-permeable channel GRC. Journal of Cell Science 114:3599–3606 605. Kojima I, Nagasawa M. TRPV2: A calcium-permeable cation channel regulated by insulin-like growth factors. NCBI Bookshelf – Frontiers in Neuroscience – TRP 854 References

Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades (www.ncbi.nlm.nih.gov/bookshelf) 606. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regula- tion of calcium-permeable TRPV2 channel by insulin in pancreatic β-cells. Diabetes 58:174–184 607. Brodeur J, Larkin H, Boucher R, Thériault C, Chayer St-Louis S, Gagnon H, Lavoie C (2009) Calnuc binds to LRP9 and affects its endosomal sorting. Traffic 10:1098–1114 608. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nature – Genetics 36:664 (Information Hyperlinked over Proteins www.ihop-net.org/) 609. Marks N, Berg MJ (2008) Neurosecretases provide strategies to treat sporadic and fa- milial Alzheimer disorders. Neurochemistry International 52:184–215 610. Vincent JB, Herbrick JA, Gurling HMD, Bolton PF, Roberts W, Scherer SW (2000) Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. American Journal of Human Genetics 67:510–514 611. Battle MA, Maher VM, McCormick JJ (2003) ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins re- lated to signal transduction pathways. Biochemistry 42:7270–7282 612. Gray JP, Davis JW, Gopinathan L, Leas TL, Nugent CA, Vanden Heuvel JP (2006) The ribosomal protein rpL11 associates with and inhibits the transcriptional activity of peroxisome proliferator-activated receptor-α. Toxicological Sciences 89:535–546 613. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology 26:1702–1711 614. Limmon GV, Arredouani M, McCann KL, Corn Minor RA, Kobzik L, Imani F (2008) Scavenger receptor class-A is a novel for double-stranded RNA. FASEB Journal 22:159–167 615. Fong LG, Le D (1999) The processing of ligands by the class A scavenger receptor is dependent on signal information located in the cytoplasmic domain. Journal of Biolog- ical Chemistry 274:36808–36816 616. Friedman G, Ben-Yehuda A, Dabach Y, Hollander G, Babaey S, Ben-Naim M, Stein O, Stein Y (2000) Macrophage cholesterol metabolism, apolipoprotein E, and scavenger receptor AI/II mRNA in atherosclerosis-susceptible and -resistant mice. Arteriosclero- sis, Thrombosis, and Vascular Biology 20:2459–2464 617. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y (2001) Adipocyte-derived plasma protein, , suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103:1057–1063 618. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimo- mura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52:1655–1663 619. Kanno S, Furuyama A, Hirano S (2007) A murine scavenger receptor MARCO recog- nizes polystyrene nanoparticles. Toxicological Sciences 97:398–406 620. Han HJ, Tokino T, Nakamura Y (1998) CSR, a scavenger receptor-like protein with a protective role against cellular damage caused by UV irradiation and oxidative stress. Human Molecular Genetics 7:1039–1046 References 855

621. Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H, Sakai Y, Fukuoh A, Sakamoto T, Itabe H, Suzutani T, Ogasawara M, Yoshida I, Wakamiya N (2001) The membrane- type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. Journal of Biological Chemistry 276:44222–44228 622. Connelly MA, Williams DL (2004) Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Current Opinion in Lipidology 15:287–295 623. Silver DL (2002) A carboxyl-terminal PDZ-interacting domain of scavenger receptor B, type I is essential for cell surface expression in liver. Journal of Biological Chemistry 277:34042–34047 624. Eckhardt ER, Cai L, Shetty S, Zhao Z, Szanto A, Webb NR, Van der Westhuyzen DR (2006) High density lipoprotein endocytosis by scavenger receptor SR-BII is clathrin- dependent and requires a carboxyl-terminal dileucine motif. Journal of Biological Chemistry 281:4348–4353 625. Mulcahy JV, Riddell DR, Owen JS (2004) Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux. Biochemical Journal 377:741–747 626. Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y (2002) A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. Journal of Cell Science 115:4117–4131 627. Zhang X, Fitzsimmons RL, Cleland LG, Ey PL, Zannettino AC, Farmer EA, Sincock P, Mayrhofer G (2003) CD36/fatty acid in rats: distribution, isolation from hepatocytes, and comparison with the scavenger receptor SR-B1. Laboratory Investi- gation 83: 317–332 628. Silverstein RL, Asch AS, Nachman RL (1989) Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. Jour- nal of Clinical Investigation 84:546–552 629. Oquendo P, Hundt E, Lawler J, Seed B (1989) CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 58:95–101 630. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. Journal of Biological Chem- istry 268:11811–11816 631. Calvo D, Gómez-Coronado D, Suárez Y, Lasunción MA, Vega MA (1998) Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. Journal of Lipid Research 39:777–788 632. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93:229–240 633. Amoruso A, Bardelli C, Fresu LG, Palma A, Vidali M, Ferrero V, Ribichini F, Vas- sanelli C, Brunelleschi S (2009) Enhanced peroxisome proliferator-activated receptor- γ expression in monocyte/macrophages from coronary artery disease patients and possible gender differences. Journal of Pharmacology and Experimental Therapeutics 331:531–538 634. Xue JH, Yuan Z, Wu Y, Liu Y, Zhao Y, Zhang WP, Tian YL, Liu WM, Liu Y, Kishimoto C (2010) High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance. Cardiovascular Re- search 86:141–150 856 References

635. Tchoukalova Y, Koutsari C, Jensen M (2007) Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 50:151–157 636. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77 637. Murphy JE, Vohra RS, Dunn S, Holloway ZG, Monaco AP, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2008) Oxidised LDL internalisation by the LOX-1 scav- enger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin- 2. Journal of Cell Science 121:2136–2147

Chap. 6. Receptors

638. Gong H, Shen B, Flevaris P, Chow C, Lam SCT, Voyno-Yasenetskaya TA, Kozasa T, Du X (2010) G Protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science 327:340–343 639. Bethani I, Skånland SS, Dikic I, Acker-Palmer A (2010) Spatial organization of trans- membrane receptor signalling. EMBO Journal 29:2677–2688 640. Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schütz B, Kotlikoff M, Ibanez- Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proceedings of the National Academy of Sciences of the United States of America 108:9478–9483 641. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325:1131–1134 642. Cain WS, Jalowayski AA, Kleinman M, Lee NS, Lee BR, Ahn BH, Magruder K, Schmidt R, Hillen BK, Warren CB, Culver BD (2004) Sensory and associated reac- tions to mineral dusts: sodium borate, calcium oxide, and calcium sulfate. Journal of Occupational and Environmental Hygiene 1:222–236 643. Waldmann M, Thompson GW, Kember GC, Ardell JL, Armour JA (2006) Stochastic behavior of atrial and ventricular intrinsic cardiac neurons. Journal of Applied Physi- ology 101:413–419 644. Armour JA (2008) Potential clinical relevance of the ’little brain’ on the mammalian heart. Experimental Physiology 93:165–176 645. Schultz HD (2001) Cardiac vagal chemosensory afferents. Function in pathophysiolog- ical states. Annals of the New York Academy of Sciences 940:59–73 646. Digby GJ, Sethi PR, Lambert NA (2008) Differential dissociation of G protein het- erotrimers. Journal of Physiology 586:3325–3335 647. Lu B, Su Y, Das S, Wang H, Wang Y, Liu J, Ren D (2009) neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457:741–744 648. Bezbradica JS, Medzhitov R (2009) Integration of cytokine and heterologous receptor signaling pathways. Nature – Immunology 10:333–339 649. Ivashkiv LB (2009) Cross-regulation of signaling by ITAM-associated receptors. Na- ture Immunology 10:340–347 References 857

650. Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology 10:348–355 651. Tremblay AM, Giguère V (2007) The NR3B subgroup: an ovERRview. Nuclear Re- ceptor Signaling 5:e009XS 652. Olefsky JM (2001) – Minireview series. Journal of Biological Chem- istry 276:36863–36864 653. Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. Journal of Biological Chemistry 276:36865–36868 654. Bin LH, Nielson LD, Liu X, Mason RJ, Shu HB (2003) Identification of uteroglobin- related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand-receptor pair. Journal of Immunology 171:924–930 655. Feng Q, Yi P, Wong J, O’Malley BW (2006) Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Molecular and Cellular Biology 26:7846–7857 656. Yoshida H, Liu J, Samuel S, Cheng W, Rosen D, Naora H (2005) Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Molecular and Cellular Endocrinol- ogy 245:77–85 657. Long W, Yi P, Amazit L, LaMarca HL, Ashcroft F, Kumar R, Mancini MA, Tsai SY, Tsai MJ, O’Malley BW (2010) SRC-3Δ4 mediates the interaction of EGFR with FAK to promote cell migration. Molecular Cell 37:321 658. Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ (2002) Tran- scription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296:755–758 659. Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (2002) Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP dif- ferential role in transcriptional regulation. Journal of Biological Chemistry 277:20011– 20019 660. Calderon MR, Laperrière D, Mader S, JH White (2010) LCoR. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 661. Bagattin A, Hugendubler L, Mueller E (2010) Transcriptional coactivator PGC-1α pro- motes peroxisomal remodeling and biogenesis. Proceedings of the National Academy of Sciences of the United States of America 107:20376–20381 662. Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR (2005) Activation of nuclear recep- tor coactivator PGC-1α by arginine methylation. Genes and Development 19:1466– 1473 663. Strahl BD, Briggs SD, Brame CJ, Caldwell JA, Koh SS, Ma H, Cook RG, Shabanowitz J, Hunt DF, Stallcup MR, Allis CD (2001) Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Current Biology 11:996-1000 664. Barrero MJ, Malik S (2006) Two functional modes of a nuclear receptor-recruited argi- nine methyltransferase in transcriptional activation. Molecular Cell 24:233–243 665. Lei NZ, Zhang XY, Chen HZ, Wang Y, Zhan YY, Zheng ZH, Shen YM, Wu Q (2009) A feedback regulatory loop between methyltransferase PRMT1 and orphan receptor TR3. Nucleic Acids Research 37:832–848 858 References

666. Herrmann F, Fackelmayer FO (2009) Nucleo-cytoplasmic shuttling of protein arginine methyltransferase 1 (PRMT1) requires enzymatic activity. Genes to Cells 14:309–317 667. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, Zhu YJ (2002) Identification of pro- tein arginine methyltransferase 2 as a coactivator for receptor α. Journal of Biological Chemistry 277:28624–28630 668. Jung DJ, Na SY, Na DS, Lee JW (2002) Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors. Journal of Biological Chemistry 277:1229–1234. 669. Kolodkin AN, Bruggeman FJ, Plant N, Moné MJ, Bakker BM, Campbell MJ, van Leeuwen JPTM, Carlberg C, Snoep JL, Westerhoff HV (2010) Design principles of nuclear receptor signaling: how complex networking improves signal transduction. Molecular Systems Biology 6:446 670. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gen- der differences. Science 308:1583–1587 671. Zhang Y, Zhang H, Liang J, Yu W, Shang Y (2007) SIP, a novel ankyrin repeat contain- ing protein, sequesters steroid receptor coactivators in the cytoplasm. EMBO Journal 26:2645–2657 672. Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of and signaling. Journal of Biological Chemistry 276:36869–36872 673. Wong WP, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S, Katzenellenbogen JA, Katzenellenbogen BS, Korach KS, Mauvais-Jarvis F (2010) Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin syn- thesis. Proceedings of the National Academy of Sciences of the United States of Amer- ica 107:13057–13062 674. Carascossa S, Dudek P, Cenni B, Briand PA, Picard D (2010) CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor α by cAMP. Genes and Development 24:708–719 675. Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Andriantsitohaina R (2010) Estrogen receptor α as a key target of red wine polyphenols action on the endothelium. PLoS One 5(1):e8554 676. Egan KM, Lawson JA, Fries S, Koller B, Rader DJ, Smyth EM, FitzGerald GA (2004) COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306:1954–1957 677. Billon-Galés A, Fontaine C, Filipe C, Douin-Echinard V, Fouque MJ, Flouriot G, Gourdy P, Lenfant F, Laurell H, Krust A, Chambon P, Arnal JF (2009) The transactivat- ing function 1 of estrogen receptor α is dispensable for the vasculoprotective actions of 17β-estradiol. Proceedings of the National Academy of Sciences of the United States of America 106:2053–2058 678. Li HJ, Haque Z, Lu Q, Li L, Karas R, Mendelsohn M (2007) Steroid receptor coactiva- tor 3 is a coactivator for myocardin, the regulator of smooth muscle transcription and differentiation. Proceedings of the National Academy of Sciences of the United States of America 104:4065–4070 679. Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K (2009) PPARα blocks α- mediated transactivation but cooperates with the activated glucocorticoid receptor α References 859

for transrepression on NF-κB. Proceedings of the National Academy of Sciences of the United States of America 106:7397–7402 680. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci- ence Signaling 3:ra8 681. Lu TT, Repa JJ, Mangelsdorf DJ (2001) Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. Journal of Biological Chemistry 276:37735–37738 682. Fang C, Dean J, Smith JW (2007) A novel variant of ileal bile acid binding protein is up-regulated through nuclear factor-κB activation in colorectal adenocarcinoma. Can- cer Research 67:9039–9046 683. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 325:100–104 684. Marquart TJ, Allen RM, Ory DS, Baldán A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proceedings of the National Academy of Sciences of the United States of America 107:12228-12232 685. Rosen ED, Spiegelman BM (2001) PPARγ: a nuclear regulator of metabolism, differ- entiation, and cell growth. Journal of Biological Chemistry 276:37731–37734 686. Zhou J, Wang KC, Wu W, Subramaniam S, Shyy JY, Chiu JJ, Li JY, Chien S (2011) MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregula- tory loop to modulate flow-induced endothelial inflammation. Proceedings of the Na- tional Academy of Sciences of the United States of America 108:10355–10360 687. Wen X, Li Y, Liu Y (2010) Opposite action of peroxisome proliferator-activated receptor-γ in regulating renal inflammation: functional switch by its ligand. Journal of Biological Chemistry 285:29981–29988 688. Wang D, Wang H, Guo Y, Ning W, Katkuri S, Wahli W, Desvergne B, Dey SK, DuBois RN (2006) Crosstalk between peroxisome proliferator-activated receptorδand VEGF stimulates cancer progression. Proceedings of the National Academy of Sciences of the United States of America 103:19069–19074 689. Ali F, Ali NS, Bauer A, Boyle JJ, Hamdulay SS, Haskard DO, Randi AM, Mason JC (2010) PPARδ and PGC1α act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress. Cardiovascular Research 85:701–710 690. Bujold K, Rhainds D, Jossart C, Febbraio M, Marleau S, Ong H (2009) CD36-mediated cholesterol efflux is associated with PPARγ activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovascular Research 83:457–464 691. Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K (2010) The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. EMBO Journal 29:3395–3407 692. Germain P, Gaudon C, Pogenberg V, Sanglier S, Van Dorsselaer A, Royer CA, Lazar MA, Bourguet W, Gronemeyer H (2009) Differential action on coregulator interac- tion defines inverse retinoid agonists and neutral antagonists. Chemistry and Biology 16:479–489 693. le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR, Balaguer P, Grone- meyer H, Royer CA, Germain P, Bourguet W (2010) A unique secondary-structure switch controls constitutive gene repression by . Nature Structural and Molecular Biology 17:801–807 860 References

694. Naltner A, Ghaffari M, Whitsett JA, Yan C (2000) Retinoic acid stimulation of the human surfactant protein B promoter is thyroid transcription factor 1 site-dependent. Journal of Biological Chemistry 275:56–62 695. Journiac N, Jolly S, Jarvis C, Gautheron V, Rogard M, Trembleau A, Blondeau JP, Mariani J, Vernet-der Garabedian B (2009) The nuclear receptor RORα exerts a bi- directional regulation of IL-6 in resting and reactive astrocytes. Proceedings of the National Academy of Sciences of the United States of America 106:21365–21370 696. Phelan CA, Gampe RT Jr, Lambert MH, Parks DJ, Montana V, Bynum J, Broderick TM, Hu X, Williams SP, Nolte RT, Lazar MA (2010) Structure of Rev-erbα bound to N-CoR reveals a unique mechanism of nuclear receptor–co-repressor interaction. Nature – Structural and Molecular Biology 17:808–814 697. Yin L, Joshi S, Wu N, Tong X, Lazar MA (2010) E3 Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb α. Proceedings of the National Academy of Sciences of the United States of America 107:11614– 11619 698. Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, Schoonjans K, Brunner T (2006) The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. Journal of Experimental Medicine 203:2057–2062 699. Klett EL, Patel SB (2004) Will the real cholesterol transporter please stand up? Science 303:1149–1150 700. Altmann SW, Davis HR, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204 701. Vrins CL, Van der Velde AE, Van den Oever K, Levels JH, Huet S, Oude Elferink RP, Kuipers F, Groen AK (2009) PPARδ Activation leads to increased transintestinal cholesterol efflux. Journal of Lipid Research 50:2046–2054 702. van der Velde AE, Vrins CL, van den Oever K, Kunne C, Oude Elferink RP, Kuipers F, Groen AK (2007) Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 133:967–975 703. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252 704. Potter LR, Hunter T (2001) Guanylyl cyclase-linked receptors: structure and regulation. Journal of Biological Chemistry 276:6057–6060 705. Koller KJ, Goeddel DV (1992) Molecular biology of the natriuretic and their receptors. Circulation 86:1081–1088 706. Portaluppi F, Bagni B, degli Uberti E, Montanari L, Cavallini R, Trasforini G, Margutti A, Ferlini M, Zanella M, Parti M (1990) Circadian rhythms of atrial natriuretic peptide, renin, aldosterone, cortisol, blood pressure and heart rate in normal and hypertensive subjects. Journal of Hypertension 8:85–95 707. Rose RA, Giles WR (2008) Natriuretic peptide C receptor signalling in the heart and vasculature. Journal of Physiology 586:353–366 708. Bryan PM, Potter LR (2002) The atrial natriuretic peptide receptor (NPR-A/GC-A) is dephosphorylated by distinct microcystin-sensitive and magnesium-dependent protein phosphatases. Journal of Biological Chemistry 277:16041–16047 References 861

709. Abbey-Hosch SE, Cody AN, Potter LR (2004) Sphingosine 1-phosphate inhibits C- type natriuretic peptide activation of guanylyl cyclase B (GC-B/NPR-B). Hypertension 43:1103–1109 710. Henesy MB, Rich TC (2009) Calcineurin mediates natriuretic peptide receptor-A de- sensitization in MA-10 cells. FASEB Journal 23:888.2 711. Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the forma- tion of guanosine 3,5-monophosphate from guanosine trihosphate. Journal of Biolog- ical Chemistry 244:6363–6370 712. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Van den Hoek TL (2003) ROS and NO trigger early preconditioning: relationship to mitochondrial KATP chan- nel. American Journal of Physiology – Heart and Circulatory Physiology 284:H299– H308 713. Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interac- tion mediates the activation of soluble . Proceedings of the National Academy of Sciences of the United States of America 106:21602–21607 714. Neo BH, Kandhi S, Wolin MS (2010) Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relax- ation to hydrogen peroxide. American Journal of Physiology – Heart and Circulatory Physiology 299:H1235–H1241 715. Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010) Bicarbonate- sensing soluble is an essential sensor for acid/base homeostasis. Proceedings of the National Academy of Sciences of the United States of America 107:442–447 716. van Kesteren CA, Danser AH, Derkx FH, Dekkers DH, Lamers JM, Saxena PR, Schalekamp MA (1997) Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. Hypertension 30:1389–1396 717. Admiraal PJ, van Kesteren CA, Danser AH, Derkx FH, Sluiter W, Schalekamp MA (1999) Uptake and proteolytic activation of prorenin by cultured human endothelial cells. Journal of Hypertension 17:621–629 718. Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. Journal of Biological Chemistry 271:16294–16299 719. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. Journal of Clinical Investigation 109:1417–1427 720. Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD (1996) Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor- 1 antigen. Kidney International 50:1897–1903 721. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circulation Research 99:1355–1366 722. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53:1077–1082 862 References

723. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C (2010) Requirement of prorenin receptor and vacuolar H+- ATPase-mediated acidification for Wnt signaling. Science 327:459–463 724. Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovascular and Hematological Agents in Medicinal Chemistry 4:17–32 725. Morrissey JJ, Klahr S (1997) Agmatine activation of nitric oxide synthase in endothelial cells. Proceedings of the Association of American Physicians 109:51–57 726. Joshi MS, Ferguson TB, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR (2007) Receptor-mediated activation of nitric oxide synthesis by arginine in endothe- lial cells. Proceedings of the National Academy of Sciences of the United States of America 104:9982–9987 727. Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovascular and Hematological Agents in Medicinal Chemistry 4:17–32 728. Jiang SX, Zheng RY, Zeng JQ, Li XL, Han Z, Hou ST (2010) Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I2 receptor antagonists. European Journal of Pharmacology 629:12–19 729. Sidenius N, Blasi F (2009) Urokinase-type plasminogen activator receptor. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling- gateway.org) 730. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nature Reviews – Molecular Cell Biology 11:23–36 731. Kwon M, MacLeod TJ, Zhang Y, Waisman DM (2005) S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Frontiers in Bioscience 10:300–325 732. MacLeod TJ, Kwon M, Filipenko NR, Waisman DM (2003) Phospholipid-associated annexin A2-S100A10 heterotetramer and its subunits: characterization of the interac- tion with tissue plasminogen activator, plasminogen, and plasmin. Journal of Biological Chemistry 278:25577–25584 733. Miles LA, Dahlberg CM, Levin EG, Plow EF (1989) Gangliosides interact directly with plasminogen and urokinase and may mediate binding of these fibrinolytic components to cells. Biochemistry 28:9337–9343 734. Herren T, Burke TA, Das R, Plow EF (2006) Identification of histone H2B as a regula- ted plasminogen receptor. Biochemistry 45:9463–9474 735. Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, Markart P, Preissner KT (2009) Enolase-1 promotes plasminogen-mediated recruitment of mono- cytes to the acutely inflamed lung. Blood 113:5588–5598 736. Alexander SPH, Mathie A, Peters JA (2007) Guide to receptors and channels. British Journal of Pharmacology 150:S1–S168 737. Goldstein BJ, Scalia RG, Ma XL (2008) Protective vascular and myocardial effects of adiponectin. Nature – Clinical Practice – Cardiovascular Medicine 6:27–35 738. Audigier Y (2006) Apelin receptor. UCSD-Nature Molecule Pages, UCSD-Nature Sig- naling Gateway (www.signaling-gateway.org) 739. Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circulation Research 91:434– 440 References 863

740. Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M (2005) Central and pe- ripheral cardiovascular actions of apelin in conscious rats. Regulatory Peptides 125:55– 59 741. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochemical and Biophysical Research Communications 251:471–476 742. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CCT (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia– reperfusion injury. Basic Research in Cardiology 102:518–528 743. Sörhede Winzell M, Magnusson C, Ahrén B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regulatory Peptides 131:12–17 744. Goralski KB, Sinal CJ (2009) Elucidation of chemerin and chemokine-like receptor-1 function in adipocytes by adenoviral-mediated shRNA knockdown of gene expression. Methods in Enzymology 460:289–312 745. Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, Iida K, Okimura Y, Kaji H, Kitazawa S, Kasuga M, Chihara K (2008) Chemerin enhances in- sulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Letters 582:573–578 746. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, Butcher EC (2005) Chemerin activation by serine of the coagulation, fibrinolytic, and inflam- matory cascades. Journal of Biological Chemistry 280:34661–34666 747. Guillabert A, Wittamer V, Bondue B, Godot V, Imbault V, Parmentier M, Communi D (2008) Role of neutrophil proteinase 3 and mast cell chymase in chemerin proteolytic regulation. Journal of Leukocyte Biology 84:1530–1538 748. Zabel BA, Nakae S, Zúñiga L, Kim JY, Ohyama T, Alt C, Pan J, Suto H, Soler D, Allen SJ, Handel TM, Song CH, Galli SJ, Butcher EC (2008) Mast cell-expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. Journal of Experimental Medicine 205:2207–2220 749. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, Walder K, Segal D (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687–4694 750. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brézillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. Journal of Experimental Medicine 198:977–985 751. You J, Yu Y, Jiang L, Li W, Yu X, Gonzalez L, Yang G, Ke Z, Li W, Li C, Liu Y (2010) Signaling through Tyr985 of receptor as an age/diet-dependent switch in the regulation of energy balance. Molecular and Cellular Biology 30:1650–1659 752. Myers MG (2004) signaling and the regulation of mammalian physiol- ogy. Recent Progress in Hormone Research 59:287–304 753. Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. Journal of Bio- logical Chemistry 275:40649–40657 864 References

754. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature – Medicine 12:917–924 755. Ishida-Takahashi R, Rosario F, Gong Y, Kopp K, Stancheva Z, Chen X, Feener EP, Myers MG (2006) Phosphorylation of Jak2 on Ser(523) inhibits Jak2-dependent leptin receptor signaling. Molecular and Cellular Biology 26:4063–4073 756. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Ameri- can Journal of Physiology – Endocrinology and Metabolism 290:E1253–E1261 757. Fain JN, Sacks HS, Buehrer B, Bahouth SW, Garrett E, Wolf RY, Carter RA, Tichansky DS, Madan AK (2008) Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventi- tial and visceral abdominal depots. International Journal of Obesity (London) 32:810– 815 758. Lee JK, Pierce M (2009) X-Lectins: a new family with homology to the Xenopus laevis oocyte lectin XL35. In Vasta GR, Ahmed H (eds) Animal Lectins. A Functional View. CRC Press, Boca Raton, FL, USA 759. Daquinag AC, Zhang Y, Amaya-Manzanares F,Daquinag Simmons PJ, Kolonin MG (2011) An isoform of decorin is a receptor on the surface of adipose progenitor cells. Cell Stem Cell 8 (in press) 760. Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemore- ception: chance or design? EMBO Reports 11:173–179 761. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) - like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

Chap. 7. G-Protein-Coupled Receptors

762. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322– 327 763. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525 764. Einstein R, Jordan H, Zhou W, Brenner M, Moses EG, Liggett SB (2008) Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth mus- cle diversifies the complement of receptors. Proceedings of the National Academy of Sciences of the United States of America 105:5230–5235 765. Berridge MJ (2009) Module 2: Cell Signalling Pathways. Cell Signalling Biology. Bio- chemical Journal’s Signal Knowledge Environment Portland Press Ltd., London, UK (www.biochemj.org/csb/004/csb002.pdf) 766. Tesmer JJG (2010) The quest to understand signaling. Nature Structural and Molecular Biology 17:650–652 767. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type spe- cific functions. Physiological Reviews 85:1159–1204 References 865

768. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling net- works: emerging paradigms. Trends in Pharmacological Sciences 22:368–376 769. Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, Kabarowski JH, Witte ON, Xu Y (2001) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. Journal of Biological Chemistry 276:41325– 41335 770. Kim KS, Ren J, Jiang Y, Ebrahem Q, Tipps R, Cristina K, Xiao YJ, Qiao J, Taylor KL, Lum H, Anand-Apte B, Xu Y (2005) GPR4 plays a critical role in endothelial cell function and mediates the effects of sphingosylphosphorylcholine. FASEB Journal 19:819–821 771. Chang GW, Stacey M, Kwakkenbos MJ, Hamann J, Gordon S, Lin HH (2003) Proteo- lytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Letters 547:145–150 772. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–989 773. Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proceedings of the National Academy of Sciences of the United States of America 108:5759–5764 774. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677 775. O Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM (2002) Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2:473–483 776. Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A (2005) Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Molecular and Cellular Biology 25:3563–3574 777. Yona S, Lin HH, Dri P, Davies JQ, Hayhoe RP, Lewis SM, Heinsbroek SE, Brown KA, Perretti M, Hamann J, Treacher DF, Gordon S, Stacey M (2008) Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB Journal 22:741– 751 778. Weimbs T (2006) Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair? Cell Cycle 5:2425–2429 779. Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP (2002) Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by het- erotrimeric G proteins. Journal of Biological Chemistry 277:19566–19572 780. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168 781. Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Ger- mino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain 866 References

and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proceedings of the National Academy of Sciences of the United States of America 99:16981–16986 782. Lin HH, Stacey M, Yona S, Chang GW (2010) GPS Proteolytic Cleavage of Adhesion- GPCRs. In Yona S, Stacey M (Eds.) Adhesion-GPCRs: Structure to Function, Landes Bioscience, Austin, TX, and Springer, New York 783. Rikitake Y, Hirata K, Yamashita T, Iwai K, Kobayashi S, Itoh H, Ozaki M, Ejiri J, Sh- iomi M, Inoue N, Kawashima S, Yokoyama M (2002) Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atheroscle- rotic plaques. Arteriosclerosis, Thrombosis, and Vascular Biology 22:2049–2053 784. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y (2001) Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293:702–705 785. Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A, Yamori T, Fukayama M, Aburatani H, Shimizu T, Ishii S (2010) The G protein-coupled receptor T-cell death- associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellu- lar pH sensor. Proceedings of the National Academy of Sciences of the United States of America 107:17309–17314 786. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003). The G-protein- coupled receptors in the form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 63:1256–1272 787. Kroeze WK, Sheffler DJ, Roth BL (2003) G-protein-coupled receptors at a glance. Journal of Cell Science 116:4867–4869 788. Nordström KJV, Lagerström MC, Wallér LMJ, Fredriksson R, Schiöth HB (2009) The GPCRs descended from the family of adhesion GPCRs. Molecular Biology and Evolution 26:71–84 789. Bjarnadóttir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schiöth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein- coupled receptors in human and mouse. Genomics 88:263–273 790. G-protein-coupled receptor data base of EC BIOTECH FP4 program. http://www.gpcr.org 791. Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H (2006) Movement of “gating charge” is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106–109 792. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein- coupled receptors. Nature Reviews – Molecular Cell Biology 9:60–71 793. Lipsky R, Potts EM, Tarzami ST, Puckerin AA, Stocks J, Schecter AD, Sobie EA, Akar FG, Diversé-Pierluissi MA (2008) β-Adrenergic receptor activation induces internal- ization of cardiac CaV 1.2 channel complexes through a β-arrestin-1-mediated pathway. Journal of Biological Chemistry 283:17221–17226 794. Chen MC, Wu SV, Reeve JR, Rozengurt E (2006) Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. American Journal of Physiology – Cell Physiology 291:C726–C739 795. Okada M, Zhu G, Yoshida S, Iwasa H, Kaneko S (2002) [Mechanisms of interaction be- tween adenosine receptor subtypes on hippocampal serotonin release]. Nihon Shinkei Seishin Yakurigaku Zasshi (Japanese Journal of Psychopharmacology 22:61–69 References 867

796. Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L (1988) The G protein-gated atrial K+ channel is stimulated by three distinct Gi alpha-subunits. Nature 336:680–682 797. Bertaso F, Lill Y, Airas JM, Espeut J, Blahos J, Bockaert J, Fagni L, Betz H, El-Far O (2006) MacMARCKS interacts with the metabotropic glutamate receptor type 7 and modulates G protein-mediated constitutive inhibition of calcium channels. Journal of Neurochemistry 99:288–298 798. Delmas P, Brown DA, Dayrell M, Abogadie FC, Caulfield MP, Buckley NJ (1998) On the role of endogenous G-protein βγ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. Journal of Physiology 506:319–329 799. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syn- drome proteins are required for the localization of G protein-coupled receptors to pri- mary cilia. Proceedings of the National Academy of Sciences of the United States of America 105:4242–4246 800. Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ (2010) β-Arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proceedings of the National Academy of Sciences of the United States of America 107:628–632 801. Damian M, Martin A, Mesnier D, Pin JP, Banères JL (2006) Asymmetric conforma- tional changes in a GPCR dimer controlled by G-proteins. EMBO Journal 25:5693– 5702 802. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nature Methods 5:561–567 803. Brock C, Oueslati N, Soler S, Boudier L, Rondard P, Pin JP (2007) Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. Journal of Bi- ological Chemistry 282:33000–33008 804. Rivero-Müller A, Chou YY, Ji I, Lajic S, Hanyaloglu AC, Jonas K, Rahman N, Ji TH, Huhtaniemi I (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proceedings of the National Academy of Sciences of the United States of America 107:2319–2324 805. Maguire JJ, Davenport AP (2005) Regulation of vascular reactivity by established and emerging GPCRs. Trends in Pharmacological Sciences 26:448–454 806. Cheng X (1987) Chinese Acupuncture and Moxibustion. Foreign Language Press, Bei- jing 807. Yi SH (2009) Thermal properties of direct and indirect moxibustion. Journal of Acupuncture and Meridian Studies 2:273–279 808. Ulett GA, Han S, Han JS (1998) Electroacupuncture: mechanisms and clinical appli- cation. Biological Psychiatry 44:129–138 809. Zhang D, Ding G, Shen X, Yao W, Zhang Z, Zhang Y, Lin J, Gu Q (2008) Role of mast cells in acupuncture effect: a pilot study. Journal of Science and Healing 4:170–177 810. Sun Y, Huang J, Xiang Y, Bastepe M, Jüppner H, Kobilka BK, Zhang JJ, Huang XY (2007) Dosage-dependent switch from G protein-coupled to G protein-independent sig- naling by a GPCR. EMBO Journal 26:53–64 868 References

811. Quitterer U, Lohse MJ (1999) Crosstalk between Gαi-andGαq-coupled receptors is mediated by Gβγ exchange. Proceedings of the National Academy of Sciences of the United States of America 96:10626–10631 812. Bhattacharya M, Babwah AV, Ferguson SSG (2004) Small GTP-binding protein- coupled receptors. Biochemical Society Transactions 32:1040–1044 813. Sah VP, Seasholtz TM, Sagi SA, Brown JH (2000) The role of Rho in G protein- coupled receptor signal transduction. Annual Review of Pharmacology and Toxicology 40:459–489 814. Crespo P, Xu N, Simonds WF, Gutkind S (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 369:418–420. 815. Escano CS, Keever LB, Gutweiler AA, Andresen BT (2008) Angiotensin II activates extracellular signal-regulated kinase independently of receptor tyrosine kinases in renal smooth muscle cells: implications for blood pressure regulation. Journal of Pharmacol- ogy and Experimental Therapeutics 324:34-42 816. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Lut- trell LM (2000) The β2-adrenergic receptor mediates extracellular signal-regulated ki- nase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. Journal of Biological Chemistry 275:9572–9580 817. Murga C, Fukuhara S, Gutkind JS (2000) A novel role for phosphatidylinositol 3- kinase β in signaling from G protein-coupled receptors to Akt. Journal of Biological Chemistry 275:12069–12073 818. Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation in cancer cells. Biochemical Society Transactions 31:1203–1208 819. Lambert NA, Johnston CA, Cappell SD, Kuravi S, Kimple AJ, Willard FS, Siderovski DP (2010) Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proceedings of the National Academy of Sciences of the United States of America 107:7066–7071 820. Penela P, Rivas V, Salcedo A, Mayor F (2010) G protein-coupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America 107:1118–1123 821. Vinós J, Jalink K, Hardy RW, Britt SG, Zuker CS (1997) A G protein-coupled receptor phosphatase required for rhodopsin function. Science 277:687–690 822. Pitcher JA, Payne ES, Csortos C, DePaoli-Roach AA, Lefkowitz RJ (1995) The G- protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proceedings of the National Academy of Sciences of the United States of America 92:8343–8347 823. Tran TM, Friedman J, Baameur F, Knoll BJ, Moore RH, Clark RB (2007) Charac- terization of β2-adrenergic receptor dephosphorylation: Comparison with the rate of resensitization. Molecular Pharmacology 71:47–60 824. Gehret AU, Hinkle PM (2010) Importance of regions outside the cytoplasmic tail of G-protein-coupled receptors for phosphorylation and dephosphorylation. Biochemical Journal 428:235-245 825. Wu JH, Peppel K, Nelson CD, Lin FT, Kohout TA, Miller WE, Exum ST, Freedman NJ (2003) The adaptor protein β-arrestin-2 enhances endocytosis of the low density lipoprotein receptor. Journal of Biological Chemistry 278:44238–44245 References 869

826. Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick JP, Wang XF, Lefkowitz RJ, Blobe GC (2003) β-Arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301:1394–1397 827. Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA (2010) β-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Science Signaling 3:ra46 828. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) β-Arrestin-dependent signaling and trafficking of 7- transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proceedings of the National Academy of Sciences of the United States of America 106:6650–6655 829. Nelson MT, Perry SJ, Regier DS, Prescott SM, Topham MK, Lefkowitz RJ (2007) Tar- geting of diacylglycerol degradation to M1 muscarinic receptors by β-arrestins. Sci- ence 315:663–666 830. Luttrell LM, Lefkowitz RJ (2002) The role of β-arrestins in the termination and trans- duction of G-protein-coupled receptor signals. Journal of Cell Science 115:455–465 831. Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, Premont RT, Coffman TM, Rockman HA, Lefkowitz RJ (2006) β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America 103:16284–16289 832. Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ (2004) Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306:2257–2260 833. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003) Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A- stimulated endocytosis of Frizzled 4. Science 301:1391–1394 834. Sun J, Lin X (2008) β-Arrestin 2 is required for lysophosphatidic acid-induced NF-κB activation. Proceedings of the National Academy of Sciences of the United States of America 105:17085–17090 835. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting pro- teins. Nature Reviews – Molecular Cell Biology 10:819-830 836. Amisten S, Braun OO, Bengtsson A, Erlinge D (2008) Gene expression profiling for the identification of G-protein-coupled receptors in human platelets. Thrombosis Research 122:47-57 837. Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, Saito H, Ra C, Okayama Y (2010) Activation of human mast cells through the platelet-activating fac- tor receptor. Journal of Allergy and Clinical Immunology 125:1137–1145 838. Cohen-Armon M, Sokolovsky M (1991) Depolarization-induced changes in the mus- carinic receptor in rat brain and heart are mediated by pertussis-toxin-sensitive G- proteins. Journal of Biological Chemistry 266:2595–2605 839. Ben-Chaim Y, Tour O, Dascal N, Parnas I, Parnas H (2003) The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. Journal of Biological Chemistry 278:22482–22491 840. Lee CW, Han J, Bamburg JR, Han L, Lynn R, Zheng JQ (2009) Regulation of acetyl- choline receptor clustering by ADF/cofilin-directed vesicular trafficking. Nature – Neu- roscience 12:848–856 870 References

841. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Bird- sall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proceedings of the National Academy of Sciences of the United States of America 107:2693–2698 842. Eglen RM, Reddy H, Watson N, Challiss RA (1994) Muscarinic acetylcholine receptor subtypes in smooth muscle. Trends in Pharmacological Sciences 15:114–119 843. Murthy KS, Makhlouf GM (1997) Differential coupling of muscarinic m2 and m3 re- ceptors to adenylyl cyclases V/VI in smooth muscle. Concurrent M2-mediated inhibi- tion via Gαi3 and m3-mediated stimulation via Gβγq. Journal of Biological Chemistry 272:21317–21324 844. Ruiz de Azua I, Scarselli M, Rosemond E, Gautam D, Jou W, Gavrilova O, Ebert PJ, Levitt P, Wess J (2010) RGS4 is a negative regulator of insulin release from pancreatic β-cells in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 107:7999-8004 845. Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J, Hamdan FF, Werry T, Rosethorne EM, Charlton SJ, Munson SE, Cragg HA, Smart AD, Tobin AB (2010) M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin- dependent activation of . Proceedings of the National Academy of Sciences of the United States of America 107:21181–21186 846. Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, Bottrill A, Mistry S, Wess J, Rosethorne EM, Charlton SJ, Tobin AB (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin- dependent manner. Proceedings of the National Academy of Sciences of the United States of America 107:9440–9445 847. Jeon J, Dencker D, Wörtwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schütz G, Sager TN, Mørk A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. Journal of Neuroscience 30:2396–2405 848. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. Journal of Medicinal Chemistry 52:3445–3448 849. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death and Differentiation 17:1071–1082 850. Gebremedhin D, Weinberger B, Lourim D, Harder DR (2010) Adenosine can mediate its actions through generation of reactive oxygen species. Journal of Cerebral Blood Flow and Metabolism 30:1777–1790 851. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 53:527–552 852. Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L (2003) Pharmacology and ther- apeutic applications of A1 adenosine receptor ligands. Current Topics in Medicinal Chemistry 3:369–385 853. Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor References 871

binding in the human brain: a positron emission tomography study. Journal of Neuro- science 27:2410–2415 854. Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of aden- osine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235

855. Scislo TJ, Ichinose TK, O’Leary DS (2008) Stimulation of NTS A1 adenosine recep- tors differentially resets baroreflex control of regional sympathetic outputs. American Journal of Physiology – Heart and Circulatory Physiology 294:H172–H182 856. Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, Franklin WA, Bridges JP, Schaack JB, Colgan SP, White CW (2009) Adenosine A2A receptor is a unique an- giogenic target of HIF-2α in pulmonary endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 106:10684–10689 857. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

858. Ichinose TK, O’Leary DS, Scislo TJ (2009) Activation of NTS A2a adenosine recep- tors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activ- ity. American Journal of Physiology – Heart and Circulatory Physiology 296:H1058– H1068 859. Paisansathan C, Xu H, Vetri F, Hernandez M, Pelligrino DA (2010) Interactions be- tween adenosine and K+ channel-related pathways in the coupling of somatosensory activation and pial arteriolar dilation. American Journal of Physiology – Heart and Cir- culatory Physiology 299:H2009–H2017 860. Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev VO, Engelhardt S, Berlot CH, Lohse MJ, Bünemann M (2006) GS Activation is time-limiting in initiating receptor- mediated signaling. Journal of Biological Chemistry 281:33345–33351

861. Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005) Role of A1 adenosine receptors in regulation of vascular tone. American Journal of Physiology – Heart and Circulatory Physiology 288:H1411–H1416

862. Nayeem MA, Mustafa SJ (2002) Protein kinase C isoforms and A1 adenosine receptors in porcine coronary smooth muscle cells. Vascular Pharmacology 39:47–54 863. Kusano Y, Echeverry G, Miekisiak G, Kulik TB, Aronhime SN, Chen JF, Winn HR (2010) Role of adenosine A2 receptors in regulation of cerebral blood flow during induced hypotension. Journal of Cerebral Blood Flow and Metabolism 30:808–815

864. Fenton RA, Shea LG, Doddi C, Dobson JG (2010) Myocardial adenosine A1-receptor- mediated adenoprotection involves , PKC-varepsilon, and p38 MAPK, but not HSP27. American Journal of Physiology – Heart and Circulatory Physiology 298:H1671–H1678 865. Lankford AR, Yang JN, Rose’Meyer R, French BA, Matherne GP, Fredholm BB, Yang Z (2006) Effect of modulating cardiac A1 adenosine receptor expression on protection with ischemic preconditioning. American Journal of Physiology – Heart and Circula- tory Physiology 290:H1469–H1473 866. Kirchhof P, Fabritz L, Fortmuller L, Matherne GP, Lankford A, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P (2003) Altered sinus nodal and atrioventric- ular nodal function in freely moving mice overexpressing the A1 adenosine receptor. American Journal of Physiology – Heart and Circulatory Physiology 285:H145–H153 872 References

867. Funakoshi H, Chan TO, Good JC, Libonati JR, Piuhola J, Chen X, MacDonnell SM, Lee LL, Herrmann DE, Zhang J, Martini J, Palmer TM, Sanbe A, Robbins J, Houser SR, Koch WJ, Feldman AM (2006) Regulated overexpression of the A1-adenosine receptor in mice results in adverse but reversible changes in cardiac morphology and function. Circulation 114:2240–2250

868. Dobson JG, Shea LG, Fenton RA (2008) Adenosine A2A and β-adrenergic calcium transient and contractile responses in rat ventricular myocytes. American Journal of Physiology – Heart and Circulatory Physiology 295: H2364–2372 869. Chandrasekera PC, McIntosh VJ, Cao FX, Lasley RD (2010) Differential effects of adenosine A2a and A2b receptors on cardiac contractility. American Journal of Physi- ology – Heart and Circulatory Physiology 299:H2082–H2089 870. Yang Z, Linden J, Berr SS, Kron IL, Beller GA, French BA (2008) Timing of adenosine 2A receptor stimulation relative to reperfusion has differential effects on infarct size and cardiac function as assessed in mice by MRI. American Journal of Physiology – Heart and Circulatory Physiology 295:H2328–H2335 871. Yang D, Koupenova M, McCrann DJ, Kopeikina KJ, Kagan HM, Schreiber BM, Ravid K (2008) The A2b adenosine receptor protects against vascular injury. Proceedings of the National Academy of Sciences of the United States of America 105:792–796 872. Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudb- jartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. Journal of Cardiovascular Pharmacology 40:841– 853 873. Martinez-Pinna J, Tolhurst G, Gurung IS, Vandenberg JI, Mahaut-Smith MP (2004) Sensitivity limits for voltage control of P2Y receptor-evoked Ca2+ mobilization in the rat megakaryocyte. Journal of Physiology 555:61–70 874. Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM (2000) Ad- vances in signalling by extracellular nucleotides. The role and transduction mecha- nisms of P2Y receptors. Cellular Signalling 12:351–360 875. Nishida M, Ogushi M, Suda R, Toyotaka M, Saiki S, Kitajima N, Nakaya M, Kim KM, Ide T, Sato Y, Inoue K, Kurose H (2011) Heterologous down-regulation of angioten- sin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-κB. Proceedings of the National Academy of Sciences of the United States of America 108:6662–6667 876. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide recep- tors: from molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews 58:281–341 877. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F (2008) Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Science Signaling 1:ra6 878. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Science Signaling 3:ra45 879. Burnstock G (2006) Vessel tone and remodeling. Nature – Medicine 12:16–17 References 873

880. Morris GE, Nelson CP, Everitt D, Brighton PJ, Standen NB, Challiss RA, Willets JM (2011) G protein-coupled receptor kinase 2 and arrestin2 regulate arterial smooth mus- cle P2Y-purinoceptor signalling. Cardiovascular Research 89:193–203 881. Harrington LS, Mitchell JA (2004) Novel role for P2X receptor activation in endothelium-dependent vasodilation. British Journal of Pharmacology 143:611–617 882. Ray FR, Huang W, Slater M, Barden JA (2002) Purinergic receptor distribution in en- dothelial cells in blood vessels: a basis for selection of coronary artery grafts. Athero- sclerosis 162:55–61 883. Farias M, Gorman MW, Savage MV, Feigl EO (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. American Journal of Physiology – Heart and Circulatory Physiology 288:H1586–H1590 884. Gorman MW, Rooke GA, Savage MV, Jayasekara MP, Jacobson KA, Feigl EO (2010) Adenine nucleotide control of coronary blood flow during exercise. American Journal of Physiology – Heart and Circulatory Physiology 299:H1981–H1989 885. Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proceedings of the National Academy of Sciences of the United States of America 95:8070–8074 886. Cornelissen I, Palmer D, David T, Wilsbacher L, Concengco C, Conley P, Pandey A, Coughlin SR (2010) Roles and interactions among -activated receptors and P2ry12 in hemostasis and thrombosis. Proceedings of the National Academy of Sci- ences of the United States of America 107:18605–18610 887. Shutt RH, Shen JB, Pappano AJ, Liang BT (2009) Stimulation of P2X purinergic re- ceptors increases calcium spark frequency, but does not normalize calcium transient synchronization, in mouse cardiomyocytes from the calsequestrin model of cardiomy- opathy (CSQ). Biophysical Journal 96:516a 888. Burnstock G (2006) Purinergic signalling British Journal of Pharmacology 147:S172– S187 889. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853 890. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflam- mation and immunity. Nature Reviews – Immunology 6:772–783 891. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R, Tabata M, Ogata H, Kubota N, Takamoto I, Hayashi YK, Yamauchi N, Waki H, Fukayama M, Nishino I, Tokuyama K, Ueki K, Oike Y, Ishii S, Hirose K, Shimizu T, Touhara K, Kadowaki T (2010) Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464:1313– 1319 892. Sterin-Borda L, Furlan C, Orman B, Borda E (2007) Differential regulation on hu- man skin fibroblast by α1 adrenergic receptor subtypes. Biochemical Pharmacology 74:1401–1412 893. Gibson SK, Gilman AG (2006) Giα and Gβ subunits both define selectivity of G pro- tein activation by α2-adrenergic receptors. Proceedings of the National Academy of Sciences of the United States of America 103:212–217 894. Eason MG, Liggett SB (1995) Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the α2A-adrenergic receptor. Evidence for 874 References

distinct structural determinants that confer Gs versus Gi coupling. Journal of Biological Chemistry 270:24753–24760 895. Baek KJ, Das T, Gray C, Antar S, Murugesan G, Im MJ (1993) Evidence that the Gh protein is a signal mediator from α1-adrenoceptor to a phospholipase C. I. Identifica- tion of α1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. Journal of Biological Chemistry 268:27390–27397 896. Hoffman BB, Hu ZW (2000) α1-Adrenoceptors (α1-AR) and vascular smooth muscle cell growth. Prostate Supplement 9:29–33 897. Andersen GØ, Qvigstad E, Schiander I, Aass H, Osnes JB, Skomedal T (2002) α1- AR-induced positive inotropic response in heart is dependent on myosin light chain phosphorylation. American Journal of Physiology – Heart and Circulatory Physiology 283:H1471–H1480 898. Gonzalez-Cabrera PJ, Shi T, Yun J, McCune DF, Rorabaugh BR, Perez DM (2004) Dif- ferential regulation of the cell cycle by α1-adrenergic receptor subtypes. Endocrinol- ogy 145:5157–5167 899. Hague C, Uberti MA, Chen Z, Hall RA, Minneman KP (2004) Cell surface expression of α1D-adrenergic receptors is controlled by heterodimerization with α1B-adrenergic receptors. Journal of Biological Chemistry 279:15541–15549 900. Diviani D, Lattion AL, Abuin L, Staub O, Cotecchia S (2003) The adaptor complex 2 directly interacts with the α1b-adrenergic receptor and plays a role in receptor endocy- tosis. Journal of Biological Chemistry 278:19331–19340 901. Goyal R, Mittal A, Chu N, Zhang L, Longo LD (2010) α1-Adrenergic receptor subtype function in fetal and adult cerebral arteries. American Journal of Physiology – Heart and Circulatory Physiology 298:H1797–H1806 902. Bylund DB (2009) Adrenergic receptor α2a; adrenergic receptor α2b; adrener- gic receptor α2c. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 903. Hansson O, Li DQ, Nagaraj V, Reinbothe TM, Tuncel J, Eliasson L, Groop L, Rorsman P, Salehi A, Lyssenko V, Luthman H, Renström E (2010) Overexpression of α2A- adrenergic receptors contributes to type 2 diabetes. Science 327:217–220 904. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles struc- tural and biochemical observations. Proceedings of the National Academy of Sciences of the United States of America 106:4689–4694 905. Ponicke K, Groner F, Heinroth-Hoffmann I, Brodde OE (2006) Agonist-specific acti- vation of the β2-adrenoceptor/Gs-protein and β2-adrenoceptor/Gi-protein pathway in adult rat ventricular cardiomyocytes. British Journal of Pharmacology 147:714–719 906. Seifert R, Wenzel-Seifert K, Arthur JM, Jose PO, Kobilka BK (2002) Efficient aden- ylyl cyclase activation by a β2-adrenoceptor-Giα2 fusion protein. Biochemical and Biophysical Research Communications 298:824–828 907. Richter W, Day P, Agrawal R, Bruss MD, Granier S, Wang YL, Rasmussen SGF, Horner K, Wang P, Lei T, Patterson AJ, Kobilka B, Conti M (2008) Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO Journal 27:384–393 908. Fishman PH (2005) Adrenergic receptor β1. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) References 875

909. He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X, Castleberry AM, Hall RA (2006) Proteomic analysis of β1-adrenergic receptor interactions with PDZ scaffold proteins. Journal of Biological Chemistry 281:2820–2827 910. Gardner LA, Naren AP, Bahouth SW (2007) Assembly of an SAP97-AKAP79-cAMP- dependent protein kinase scaffold at the type 1 PSD-95/DLG/ZO1 motif of the human β1-adrenergic receptor generates a receptosome involved in receptor recycling and net- working. Journal of Biological Chemistry 282:5085–5099 911. Tang Y, Hu LA, Miller WE, Ringstad N, Hall RA, Pitcher JA, DeCamilli P, Lefkowitz RJ (1999) Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America 96:12559–12564 912. Kobilka B (2009) Adrenergic receptor β2. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) 913. Wang WC, Juan AH, Panebra A, Liggett SB (2011) MicroRNA let-7 establishes ex- pression of β2-adrenergic receptors and dynamically down-regulates agonist-promoted down-regulation. Proceedings of the National Academy of Sciences of the United States of America 108:6246–6251 914. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265 915. Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387 916. Wang WC, Mihlbachler KA, Brunnett AC, Liggett SB (2009) Targeted transgenesis re- veals discrete attenuator functions of GRK and PKA in airway β2-adrenergic receptor physiologic signaling. Proceedings of the National Academy of Sciences of the United States of America 106:15007–15012 917. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657 918. Reiner S, Ambrosio M, Hoffmann C, Lohse MJ (2010) Differential signaling of the endogenous agonists at the β2-adrenergic receptor. Journal of Biological Chemistry 285:36188–36198 919. Tchivileva IE, Tan KS, Gambarian M, Nackley AG, Medvedev AV, Romanov S, Flood PM, Maixner W, Makarov SS, Diatchenko L (2009) Signaling pathways mediating β3-adrenergic receptor-induced production of interleukin-6 in adipocytes. Molecular Immunology 46:2256–2266 920. Fève B, Elhadri K, Quignard-Boulangé A, Pairault J (2004) Transcriptional down- regulation by insulin of the β3-adrenergic receptor expression in 3T3-F442A adipocytes: a mechanism for repressing the cAMP signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 91:5677–5681 921. Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, Jurevicius J, Fischmeister R (2008) β3-Adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. Journal of Clinical Investigation 118:3219–3227 876 References

922. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H (2004) Subtype- specific β-adrenoceptor signaling pathways in the heart and their potential clinical im- plications. Trends in Pharmacological Sciences 25:358–365 923. Zheng M, Zhu W, Han Q, Xiao RP (2005) β-adrenergic receptor subtype signaling. Pharmacology and Therapeutics 108:257–268 924. Woodcock EA (2007) Roles of α1A- and α1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clinical and Experimental Pharmacology and Physiology 34:884–888 925. Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous α1- and β-adrenergic receptors in mouse cardiomyocytes. Circulation Re- search 86:1047–1053 926. Zhou P, Zhao YT, Guo YB, Xu SM, Bai SH, Lakatta EG, Cheng H, Hao XM, Wang SQ (2009) β-Adrenergic signaling accelerates and synchronizes cardiac ryanodine recep- tor response to a single L-type Ca2+ channel. Proceedings of the National Academy of Sciences of the United States of America 106:18028–18033 927. Debrus S, Rahbani L, Marttila M, Delorme B, Paradis P, Nemer M (2005) The zinc finger-only protein Zfp260 is a novel cardiac regulator and a nuclear effector of α1- adrenergic signaling. Molecular and Cellular Biology 25:8669-8682 928. Naselsky DP, Ashton D, Ruffolo RR Jr, Hieble JP (2001) Rabbit α2-adrenoceptors: both platelets and adipocytes have α2A-pharmacology. Journal of Pharmacology and Experimental Therapeutics 298:219–225 929. Valet P, Saulnier-Blache JS (1999) Rôle métabolique et trophique des catécholamines sur le développement du tissu adipeux blanc [Metabolic and trophic role of catechol- amines in the development of white adipose tissue]. Annales d’Endocrinologie (Paris) 60:167–174 930. Stich V, de Glisezinski I, Crampes F, Suljkovicova H, Galitzky J, Riviere D, Hejnova J, Lafontan M, Berlan M (1999) Activation of antilipolytic α2-adrenergic receptors by epinephrine during exercise in human adipose tissue. American Journal of Physiology 277:R1076–R1083 931. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in hu- man adipose tissue through the estrogen receptor α. Implications for the female fat distribution. Journal of Clinical Endocrinology and Metabolism 89:1869–1878 932. Nakamura J (2008) Protein kinase Cβ I interacts with the β1-adrenergic signaling path- way to attenuate lipolysis in rat adipocytes. Biochimica et Biophysica Acta 1781:277– 281 933. Kumar N, Robidoux J, Daniel KW, Guzman G, Floering LM, Collins S (2007) Re- quirement of vimentin filament assembly for β3-adrenergic receptor activation of ERK MAP kinase and lipolysis. Journal of Biological Chemistry 282:9244–9250 934. Winder WW (1988) Role of cyclic AMP in regulation of hepatic glucose production during exercise. Medicine and Science in Sports and Exercise 20:551–559 935. Han C, Bowen WC, Michalopoulos GK, Wu T (2008) α-1 adrenergic receptor trans- activates signal transducer and activator of transcription-3 (Stat3) through activation of Src and epidermal growth factor receptor (EGFR) in hepatocytes. Journal of Cellular Physiology 216:486–497 References 877

936. Kost DP, DeFrances MC, Lee CR, Michalopoulos GK (1992) Patterns of α-1- adrenergic receptor expression in regenerating and neoplastic hepatic tissue. Patho- biology 60:303–308 937. Huerta-Bahena J, Villalobos-Molina R, García-Saínz JA (1983) Roles of α1- and β- adrenergic receptors in adrenergic responsiveness of liver cells formed after partial hepatectomy. Biochimica et Biophysica Acta 763:112–119 938. Houslay MD, Baillie GS (2003) The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochemical Society Transactions 31:1186–1190 939. Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984) The role of angiotensin II receptors in vascular regulation. Journal of Cardiovascular Pharmacology 6:S575–S586 940. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, ex- pression, and regulation. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 285:R277–R297 941. Ushio-Fukai M, Alexander RW, Akers M, Lyons PR, Lassègue B, Griendling KK (1999) Angiotensin II receptor coupling to phospholipase D is mediated by the βγ sub- units of heterotrimeric G proteins in vascular smooth muscle cells. Molecular Pharma- cology 55:142–149 942. Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365 943. Hansen JL, Servant G, Baranski TJ, Fujita T, Iiri T, Sheikh SP (2000) Functional recon- stitution of the angiotensin II type 2 receptor and G(i) activation. Circulation Research 87:753–759 944. Shah A, Gul R, Yuan K, Gao S, Oh YB, Kim UH, Kim SH (2010) Angiotensin-(1-7) stimulates high atrial pacing-induced ANP secretion via Mas/PI3-kinase/Akt axis and Na+/H+ exchanger. American Journal of Physiology – Heart and Circulatory Physiol- ogy 298:H1365–H1374 945. Gallagher PE, Ferrario CM, Tallant EA (2008) Regulation of ACE2 in cardiac my- ocytes and fibroblasts. American Journal of Physiology – Heart and Circulatory Physi- ology 295:H2373-H2379 946. Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, Diz DI (2010) Angiotensin-(1-12) requires angiotensin converting enzyme and AT1 receptors for car- diovascular actions within the solitary tract nucleus. American Journal of Physiology – Heart and Circulatory Physiology 299:H763–H771 947. Ramchandran R, Takezako T, Saad Y, Stull L, Fink B, Yamada H, Dikalov S, Harrison DG, Moravec C, Karnik SS (2006) Angiotensinergic stimulation of vascular endothe- lium in mice causes hypotension, bradycardia, and attenuated angiotensin response. Proceedings of the National Academy of Sciences of the United States of America 103:19087–19092 948. McEwen ST, Balus SF, Durand MJ, Lombard JH (2009) Angiotensin II maintains cere- bral vascular relaxation via EGF receptor transactivation and ERK1/2. American Jour- nal of Physiology – Heart and Circulatory Physiology 297:H1296–H1303 949. Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin-angiotensin system in car- diac hypertrophy. American Journal of Cardiology 83:53H–57H 878 References

950. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature – Cell Biology 6:499-506 951. Yasuda N, Miura SI, Akazawa H, Tanaka T, Qin Y, Kiya Y, Imaizumi S, Fujino M, Ito K, Zou Y, Fukuhara S, Kunimoto S, Fukuzaki K, Sato T, Ge J, Mochizuki N, Nakaya H, Saku K, Komuro I (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Reports 9:179–186 952. Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T (2002) TGF-β 1 mediates the hypertrophic cardiomyocyte growth in- duced by angiotensin II. Journal of Clinical Investigation 109:787–796 953. Billet S, Bardin S, Verp S, Baudrie V, Michaud A, Conchon S, Muffat-Joly M, Escoubet B, Souil E, Hamard G, Bernstein KE, Gasc JM, Elghozi JL, Corvol P, Clauser E (2007) Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fibrosis in mice. Journal of Clinical Investigation 117:1914–1925 954. Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Taka- gahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H (2005) Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. Journal of Biological Chemistry 280:18434–18441 955. McAllister-Lucas LM, Ruland J, Siu K, Jin X, Gu S, Kim DSL, Kuffa P, Kohrt D, Mak TW, Nuñez G, Lucas PC (2007) CARMA3/Bcl10/MALT1-dependent NF-kappaB acti- vation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proceedings of the National Academy of Sciences of the United States of America 104:139–144 956. O’Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136:355–360 957. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochimica et Biophysica Acta 1538:162–171 958. Croitoru-Lamoury J, Guillemin GJ, Boussin FD, Mognetti B, Gigout LI, Chéret A, Vaslin B, Le Grand R, Brew BJ, Dormont D (2003) Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNFα and IFNγ in CXCR4 and CCR5 modulation. Glia 41:354–370 959. De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C (2004) Apelin, a potent diuretic neu- ropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proceedings of the National Academy of Sciences of the United States of America 101:10464–10469 960. Meister B, Cortés R, Villar MJ, Schalling M, Hökfelt T (1990) Peptides and transmitter in hypothalamic magnocellular neurons after administration of hyperosmotic stimuli: comparison between messenger RNA and peptide/protein levels. Cell and Tis- sue Research 260:279–297 References 879

961. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regulatory Peptides 99:87–92 962. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regula- tory Peptides 118: 119–125 963. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604 964. Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, Finsterbach TP, Leeper NJ, Ernst KV, Chen MM, Ho YD, Chun HJ, Bernstein D, Ashley EA, Quert- ermous T (2009) Endogenous regulation of cardiovascular function by apelin-APJ. American Journal of Physiology – Heart and Circulatory Physiology 297:H1904– H1913 965. Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO Journal 27:522–534 966. Masri B, Morin N, Pedebernade L, Knibiehler B, Audigier Y (2006) The apelin re- ceptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. Journal of Biological Chemistry 281:18317–18326 967. Morand-Contant M, Anand-Srivastava MB, Couture R (2010) Kinin B1 receptor upreg- ulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. American Journal of Physiology – Heart and Circulatory Physiology 299:H1625–H1632 968. Kakoki M, Sullivan KA, Backus C, Hayes JM, Oh SS, Hua K, Gasim AM, Tomita H, Grant R, Nossov SB, Kim HS, Jennette JC, Feldman EL, Smithies O (2010) Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice. Proceedings of the National Academy of Sciences of the United States of America 107:10190–10195 969. Huang C, Hepler JR, Gilman AG, Mumby SM (1997) Attenuation of Gi- and Gq- mediated signaling by expression of RGS4 or GAIP in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 94:6159–163 970. Duchene J, Schanstra JP, Pecher C, Pizard A, Susini C, Esteve JP, Bascands JL, Giro- lami JP (2002) A novel protein-protein interaction between a G protein-coupled re- ceptor and the phosphatase SHP-2 is involved in bradykinin-induced inhibition of cell proliferation. Journal of Biological Chemistry 277:40375-40383 971. Ke Y, Sheehan KA, Egom EE, Lei M, Solaro RJ (2010) Novel bradykinin signaling in adult rat cardiac myocytes through activation of p21 activated kinase. American Journal of Physiology – Heart and Circulatory Physiology 298:H1283–H1289 972. Hilgers RHP, Bergaya S, Schiffers PMH, Meneton P, Boulanger CM, Henrion D, Lévy BI, De Mey JGR (2003) Uterine artery structural and functional changes during preg- nancy in tissue kallikrein-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 23:1826–1832 973. Veelken R, Glabasnia A, Stetter A, Hilgers KF, Mann JF, Schmieder RE (1996) Epi- cardial bradykinin B2 receptors elicit a sympathoexcitatory reflex in rats. Hypertension 28:615–621 880 References

974. Duka A, Kintsurashvili E, Duka I, Ona D, Hopkins TA, Bader M, Gavras I, Gavras H (2008) Angiotensin-converting enzyme inhibition after experimental myocardial in- farct: role of the kinin B1 and B2 receptors. Hypertension 51:1352–1357 975. Messadi-Laribi E, Griol-Charhbili V, Gaies E, Vincent MP, Heudes D, Meneton P, Alhenc-Gelas F, Richer C (2008) Cardioprotection and kallikrein-kinin system in acute myocardial ischaemia in mice. Clinical and Experimental Pharmacology and Physiol- ogy 35:489–493 976. Israel A, Diaz E (2000) Diuretic and natriuretic action of administered intracerebroventricularly in conscious rats. Regulatory Peptides 89:13–18 977. Ogoshi M, Nobata S, Takei Y (2008) Potent osmoregulatory actions of homologous adrenomedullins administered peripherally and centrally in eels. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 295:R2075–R2083 978. Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calci- tonin/ gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. Journal of Biological Chemistry 279:7264–7274 979. Takei Y, Hashimoto H, Inoue K, Osaki T, Yoshizawa-Kumagaye K, Tsunemi M, Watan- abe TX, Ogoshi M, Minamino N, Ueta Y (2008) Central and peripheral cardiovascular actions of adrenomedullin 5, a novel member of the calcitonin gene-related peptide family, in mammals. Journal of Endocrinology 197:391–400 980. Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barré M, Hendy GN (2001) Extracel- lular calcium-sensing receptor is expressed in rat hepatocytes. Coupling to intracellular calcium mobilization and stimulation of bile flow. Journal of Biological Chemistry 276:4070–4079 981. Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA (2010) Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and secretion. Proceedings of the National Academy of Sciences of the United States of America 107:17791–17796 982. Sun J, Murphy E (2010) Calcium-sensing receptor: a sensor and mediator of ischemic preconditioning in the heart. American Journal of Physiology – Heart and Circulatory Physiology 299:H1309–H1317 983. Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, Jakobsson PJ, Marnett LJ (2002) Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. Journal of Biological Chemistry 277:44877–44885 984. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, ZhangMY,StrassleBW,LuP,MarkL,PieslaMJ,DengK,KouranovaEV,RingRH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. Journal of Neuroscience 30:2017–2024 985. Han KH, Lim S, Ryu J, Lee CW, Kim Y, Kang JH, Kang SS, Ahn YK, Park CS, Kim JJ (2009) CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovascular Research 84:378–386 986. Hill MN, McEwen BS (2009) Endocannabinoids: the silent partner of glucocorticoids in the synapse. Proceedings of the National Academy of Sciences of the United States of America 106:4579–4580 References 881

987. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S, Harvey-White J, Mackie K, Offertáler L, Wang L, Kunos G (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. Journal of Clinical Investigation 115:1298–1305 988. Pereira JP, An J, Xu Y, Huang Y, Cyster JG (2009) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature – Immunology 10:403–411 989. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proceedings of the National Academy of Sciences of the United States of America 106:9649–9654 990. Tchernychev B, Ren Y, Sachdev P, Janz JM, Haggis L, O’Shea A, McBride E, Looby R, Deng Q, McMurry T, Kazmi MA, Sakmar TP, Hunt S 3rd, Carlson KE (2010) Dis- covery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America 107:22255–22259 991. Miller CJ (2010) type B receptor. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 992. Sartor DM, Verberne AJM (2010) Gastric leptin: a novel role in cardiovascular regula- tion. American Journal of Physiology – Heart and Circulatory Physiology 298:H406– H414 993. Nakamura T, Sapru HN (2009) Cardiovascular responses to microinjections of uro- cortins into the NTS: role of inotropic glutamate receptors. American Journal of Phys- iology – Heart and Circulatory Physiology 296:H2022–H2029 994. Huising MO, van der Meulen T, Vaughan JM, Matsumoto M, Donaldson CJ, Park H, Billestrup N, Vale WW (2010) CRFR1 is expressed on pancreatic β cells, promotes β cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proceedings of the National Academy of Sciences of the United States of America 107:912–917 995. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiological Reviews 78:189–225 996. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nature – Chemical Biology 5:688–695 997. Penna C, Rastaldo R, Mancardi D, Cappello S, Pagliaro P, Westerhof N, Losano G (2006) Effect of endothelins on the cardiovascular system. Journal of Cardiovascular Medicine 7:645–652 998. Bisotto S, Fixman ED (2001) Src-family tyrosine kinases, phosphoinositide 3-kinase and Gab1 regulate extracellular signal-regulated kinase 1 activation induced by the type A endothelin-1 G-protein-coupled receptor. Biochemical Journal 360:77–85 999. Hilal-Dandan R, Brunton LL (2011) Endothelin type B receptor. UCSD-Nature Mole- cule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1000. Wendel-Wellner M, Noll T, König P, Schmeck J, Koch T, Kummer W (2002) Cellular localization of the subtypes ET A and ET B in the rat heart and their differential expression in coronary arteries, veins, and capillaries. Histochemistry and Cell Biology 118:361–369 882 References

1001. Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Paulsson P, Ingemansson R, Ed- vinsson L, Malmsjö M (2008) Endothelin receptor-mediated vasodilatation: effects of organ culture. European Journal of Pharmacology 579:233–240 1002. Louden CS, Nambi P, Pullen MA, Thomas RA, Tierney LA, Solleveld HA, Schwartz LW (2000) Endothelin receptor subtype distribution predisposes coronary arteries to damage. American Journal of Pathology 157:123–134 1003. Morris GE, Nelson CP, Standen NB, Challiss RA, Willets JM (2010) Endothelin sig- nalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovascular Research 85:424–433 1004. Tsukahara H, Ende H, Magazine HI, Bahou WF, Goligorsky MS (1994) Molecular and functional characterization of the non-isopeptide-selective ETB receptor in endothe- lial cells. Receptor coupling to nitric oxide synthase. Journal of Biological Chemistry 269:21778–21785 1005. Salani D, Taraboletti G, Rosanò L, Di Castro V, Borsotti P, Giavazzi R, Bagnato A (2000) Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. American Journal of Pathology 157:1703–1711 1006. Bagnall AJ, Kelland NF, Gulliver-Sloan F, Davenport AP, Gray GA, Yanagisawa M, Webb DJ, Kotelevtsev YV (2006) Deletion of endothelial cell endothelin B receptors does not affect blood pressure or sensitivity to salt. Hypertension 48:286–293 1007. Wedgwood S, Black SM (2005) Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. Ameri- can Journal of Physiology – Lung Cellular and Molecular Physiology 288:L480-L487 1008. Leite-Moreira AF, Brás-Silva C (2004) Inotropic effects of ETB receptor stimulation and their modulation by endocardial endothelium, NO, and prostaglandins. American Journal of Physiology – Heart and Circulatory Physiology 287:H1194–H1199 1009. Perreault T, Coceani F (2003) Endothelin in the perinatal circulation. Canadian Journal of Physiology and Pharmacology 81:644–653 1010. Kawamura T, Ono K, Morimoto T, Akao M, Iwai-Kanai E, Wada H, Sowa N, Kita T, Hasegawa K (2004) Endothelin-1-dependent nuclear factor of activated T signaling associates with transcriptional coactivator p300 in the activation of the leukemia-2 promoter in cardiac myocytes. Circulation Research 94:1492–1499 1011. Yamaguchi O, Kaneshiro T, Saitoh S, Ishibashi T, Maruyama Y, Takeishi Y (2009) Regulation of coronary vascular tone via redox modulation in the α1-adrenergic- angiotensin-endothelin axis of the myocardium. American Journal of Physiology – Heart and Circulatory Physiology 296:H226–H232 1012. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, Katsaros D, O’Brien-Jenkins A, Gimotty PA, Coukos G (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Medicine 14:28–36 1013. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763 1014. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005) Palmitoylation-dependent estrogen receptor α membrane localization: regu- lation by 17β-estradiol. Molecular Biology of the Cell 16:231–237 References 883

1015. Deschamps AM, Murphy E (2009) Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. American Journal of Physiology – Heart and Circulatory Physiology 297:H1806–H1813 1016. Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER in- hibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. American Journal of Physiology – Heart and Circulatory Physiology 298:H16–H23 1017. Hill MJ, Drasar BS (1975) The normal colonic bacterial flora. Gut 16:318–323 1018. Mai V, Morris JG (2004) Colonic bacterial flora: changing understandings in the molec- ular age. Journal of Nutrition 134:459–464 1019. Ichimura A, Hirasawa A, Hara T, Tsujimoto G (2009) Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins and Other Lipid Medi- ators 89:82–88 1020. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hi- rasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America 108:8030–8035 1021. Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K, Seddik R, Tiao JY, Rajalu M, Trojanova J, Rohde V, Gassmann M, Schulte U, Fakler B, Bettler B (2010) Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235 1022. Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knöpfel T (2009) Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sen- sitization. Proceedings of the National Academy of Sciences of the United States of America 106:11388–11393 1023. Filosa JA, Bonev AD, Straub SV, Meredit AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature Neuroscience 9:1397–1403 1024. Buech TR, Gudermann T (2010) Follicle stimulating . UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1025. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physio- logical Reviews 88:1183–1241 1026. Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacological Reviews 49:253–278 1027. Damaj BB, Becerra CB, Esber HJ, Wen Y, Maghazachi AA (2007) Functional expres- sion of H4 histamine receptor in human natural killer cells, monocytes, and dendritic cells. Journal of Immunology 179:7907–7915 1028. Takeshita K, Bacon KB, Gantner F (2004) Critical role of L-selectin and histamine H4 receptor in zymosan-induced neutrophil recruitment from the bone marrow: com- parison with carrageenan. Journal of Pharmacology and Experimental Therapeutics 310:272–280 1029. Lu C, Diehl SA, Noubade R, Ledoux J, Nelson MT, Spach K, Zachary JF, Blankenhorn EP, Teuscher C (2010) Endothelial histamine H1 receptor signaling reduces blood-brain barrier permeability and susceptibility to autoimmune encephalomyelitis. Proceedings 884 References

of the National Academy of Sciences of the United States of America 107:18967– 18972 1030. Ye RD (2009) FPR2/ALX. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1031. Papayianni A, Serhan CN, Brady HR (1996) Lipoxins A4 and B4 inhibit leukotriene- stimulated interactions of human neutrophils and endothelial cells. Journal of Im- munology 156:2264–22672 1032. Brink C, Dahlén SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T (2003) International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacological Reviews 55:195–227 1033. Qiu H, Johansson AS, Sjöström M, Wan M, Schröder O, Palmblad J, Haeggström JZ (2006) Differential induction of BLT receptor expression on human endothelial cells by lipopolysacharide, cytokines, and leukotriene B4. Proceedings of the National Academy of Sciences of the United States of America 103:6913–6918 1034. Finkensieper A, Kieser S, Bekhite MM, Richter M, Mueller JP, Graebner R, Figulla HR, Sauer H, Wartenberg M (2010) The 5-lipoxygenase pathway regulates vasculoge- nesis in differentiating mouse embryonic stem cells. Cardiovascular Research 86:37–44 1035. Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor rev- elations. Science 294:1875–1878 1036. Yanagida K, Ishii S (2011) Non-Edg family LPA receptors: the cutting edge of LPA research. Journal of Biochemistry 150:223–232 1037. Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. Journal of Biological Chemistry 278:25600–25606 1038. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (2009) Identification and characterization of a novel lysophospha- tidic acid receptor, p2y5/LPA6. Journal of Biological Chemistry 284:17731–17741 1039. Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. Journal of Biological Chemistry 279:45626–45633 1040. Shuyu E, Lai YJ, Tsukahara R, Chen CS, Fujiwara Y, Yue J, Yu JH, Guo H, Kihara A, Tigyi G, Lin FT (2009) Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect. Journal of Biological Chemistry 284:14558–14571

1041. Khandoga AL, Pandey D, Welsch U, Brandl R, Siess W (2011) GPR92/LPA5 lysophos- phatidate receptor mediates megakaryocytic cell shape change induced by human atherosclerotic plaques. Cardiovascular Research 90:157–164 1042. Lundequist A, Boyce JA (2011) LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1β release. PLoS One 6:e18192 1043. Schulze C, Smales C, Rubin LL, Staddon JM (1997) Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. Journal of Neurochem- istry 68:991–1000 References 885

1044. Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nature Reviews – Cancer 3:582–591 1045. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632 1046. Chan LF, Webb TR, Chung TT, Meimaridou E, Cooray SN, Guasti L, Chapple JP, Egertová M, Elphick MR, Cheetham ME, Metherell LA, Clark AJ (2009) MRAP and MRAP2 are bidirectional regulators of the family. Proceedings of the National Academy of Sciences of the United States of America 106:6146–6151 1047. Sebag JA, Hinkle PM (2010) Regulation of G-protein-coupled receptor signaling: spe- cific dominant-negative effects of melanocortin 2 receptor accessory protein 2. Science Signaling 3:ra28 1048. Decherf S, Seugnet I, Kouidhi S, Lopez-Juarez A, Clerget-Froidevaux MS, Demeneix BA (2010) Thyroid hormone exerts negative feedback on hypothalamic type 4 mela- nocortin receptor expression. Proceedings of the National Academy of Sciences of the United States of America 107:4471–4476 1049. Mitchell JD, Maguire JJ, Davenport AP (2009) Emerging pharmacology and physiol- ogy of and the structurally related peptide . British Journal of Pharmacology 158:87–103 1050. Chen ZY, Feng GG, Nishiwaki K, Shimada Y, Fujiwara Y, Komatsu T, Ishikawa N (2007) Possible roles of Y3-receptor subtype in rat aortic endothelial cell proliferation under hypoxia, and its specific signal transduction. American Journal of Physiology – Heart and Circulatory Physiology 293:H959–H967 1051. Hamdy O, Nishiwaki K, Yajima M, Murakami HO, Maekawa H, Moy RT, Shimada Y, Hotta Y, Ishikawa N (2000) Presence and quantification of neuropeptide Y in pul- monary edema fluids in rats. Experimental Lung Research 26:137–147 1052. Knigge U, Kjaer A, Jørgensen H, Garbarg M, Ross C, Rouleau A, Warberg J (1994) Role of hypothalamic histaminergic neurons in mediation of ACTH and beta-endorphin responses to LPS endotoxin in vivo. Neuroendocrinology 60:243–251 1053. Yin X, Zhu YH, Xu SF (1997) Expression of preproopiomelanocortin mRNA and pre- prodynorphin mRNA in brain of spontaneously hypertensive rats. Zhongguo Yao Li Xue Bao – Acta Pharmacologica Sinica 18:391–394 1054. Day R, Lazure C, Basak A, Boudreault A, Limperis P, Dong W, Lindberg I (1998) Pro- dynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. Journal of Biological Chemistry 273:829–836 1055. Tallent M, Dichter MA, Bell GI, Reisine T (1994) The cloned κopioid receptor couples to an N-type calcium current in undifferentiated PC-12 cells. Neuroscience 63:1033– 1040 1056. Henry DJ, Grandy DK, Lester HA, Davidson N, Chavkin C (1995) κ-Opioid recep- tors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Molecular Pharmacology 47:551–557 1057. Fichna J, Janecka A, Costentin J, Do Rego JC (2007) The endomorphin system and its evolving neurophysiological role. Pharmacological Reviews 59:88–123 1058. Mizoguchi H, Narita M, Wu H, Narita M, Suzuki T, Nagase H, Tseng LF (2000) Differ- ential involvement of mu1-opioid receptors in endomorphin- and β-endorphin-induced G-protein activation in the mouse pons/medulla. Neuroscience 100:835–839 886 References

1059. Malinowska B, Godlewski G, Schlicker E (2002) Function of nociceptin and opioid OP4 receptors in the regulation of the cardiovascular system. Journal of Physiology and Pharmacology 53:301–324 1060. Qiu Y, Loh HH, Law PY (2009) δ. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1061. Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X (2010) TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nature – Cell Biology 12:224–234 1062. Urayama K, Guilini C, Messaddeq N, Hu K, Steenman M, Kurose H, Ert G, Nebigil CG (2007) The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis. FASEB Journal 21:2980–2993 1063. Boulberdaa M, Urayama K, Nebigil CG (2011) Prokineticin receptor 1 (PKR1) sig- nalling in cardiovascular and kidney functions. Cardiovascular Research 92:191–198 1064. Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, Nebigil CG (2010) Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis and fenestration. American Journal of Physiology – Heart and Circulatory Physiology 298(3):H844–H852 1065. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, proper- ties, and functions. Physiological Reviews 79:1193–1226 1066. Wang D, Patel VV, Ricciotti E, Zhou R, Levin MD, Gao E, Yu Z, Ferrari VA, Lu MM, Xu J, Zhang H, Hui Y, Cheng Y, Petrenko N, Yu Y, Fitzgerald GA (2009) Cardiomy- ocyte cyclooxygenase-2 influences cardiac rhythm and function. Proceedings of the National Academy of Sciences of the United States of America 106:7548–7552 1067. Murata T, Lin MI, Aritake K, Matsumoto S, Narumiya S, Ozaki H, Urade Y, Hori M, Sessa WC (2008) Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America 105:20009–20014 1068. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nature Medicine 12, 225–229 1069. Wang M, Zukas AM, Hui Y, Ricciotti E, Puré E, FitzGerald GA (2006) Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogene- sis. Proceedings of the National Academy of Sciences of the United States of America 103:14507–14512 1070. Delannoy E, Courtois A, Freund-Michel V, Leblais V, Marthan R, Muller B (2010) Hypoxia-induced hyperreactivity of pulmonary arteries: role of cyclooxygenase-2, iso- prostanes, and thromboxane receptors. Cardiovascular Research 85:582–592 1071. Riise J, Nguyen CHT, Qvigstad E, Sandnes DL, Osnes JB, Skomedal T, Levy FO, Krobert KA (2008) Prostanoid F receptors elicit an inotropic effect in rat left ventricle by enhancing myosin light chain phosphorylation. Cardiovascular Research 80:407– 415 1072. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacological Reviews 53:245–282 1073. Angiolillo DJ, Capodanno D, Goto S (2010) Platelet thrombin receptor antagonism and atherothrombosis. European Heart Journal 31:17–28 References 887

1074. Ballerio R, Brambilla M, Colnago D, Parolari A, Agrifoglio M, Camera M, Tremoli E, Mussoni L (2007) Distinct roles for PAR1- and PAR2-mediated vasomotor modulation in human arterial and venous conduits. Journal of Thrombosis and Haemostasis 5:174– 180 1075. McGuire JJ, Dai J, Andrade-Gordon P, Triggle CR, Hollenberg MD (2002) Proteinase- activated receptor-2 (PAR2): vascular effects of a PAR2-derived activating peptide via a receptor different than PAR2. Journal of Pharmacology and Experimental Therapeutics 303:985–392 1076. Russo A, Soh UJ, Paing MM, Arora P, Trejo J (2009) Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proceedings of the Na- tional Academy of Sciences of the United States of America 106:6393–6397 1077. Vergnolle N (1999) Proteinase-activated receptor-2-activating peptides induce leuko- cyte rolling, adhesion, and extravasation in vivo. Journal of Immunology 163:5064– 5069 1078. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, Ruf W (2006) Disulfide isomerization switches tissue factor from coagulation to cell signaling. Pro- ceedings of the National Academy of Sciences of the United States of America 103:13932–13937 1079. Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W (2008) PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452:654–658 1080. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ (2006) International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for family peptides. Pharmacological Reviews 58:7–31 1081. Manzke T (2005) Expression and function of serotonin receptor isoforms in the respi- ratory system. PhD Thesis, Göttingen 1082. Dutschmann M, Waki H, Manzke T, Simms AE, Pickering AE, Richter DW, Paton JF (2009) The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances. Philosophical Transactions of the Royal Society – Lon- don – B Biological Sciences 364:2611–2623 1083. Dong S, Roth B (2010) 5-Hydroxytryptamine receptor 1B. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1084. Becamel C (2008) 5-Hydroxytryptamine receptor 2C. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1085. Skoura A, Hla T (2009) Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovascular Research 82:221–228 1086. Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K (2009) Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nature – Chemical Biology 5:428–434 1087. Means CK, Brown JH (2009) Sphingosine-1-phosphate receptor signalling in the heart. Cardiovascular Research 82:193–200 1088. Zhang G, Xu S, Qian Y, He P (2010) Sphingosine-1-phosphate prevents perme- ability increases via activation of endothelial sphingosine-1-phosphate receptor 1 in rat venules. American Journal of Physiology – Heart and Circulatory Physiology 299:H1494–H1504 888 References

1089. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha’afi RI, Hla T (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99:301–312 1090. Paik JH, Chae SS , Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate- induced endothelial cell migration requires the expression of EDG-1 and EDG-3 re- ceptors and Rho-dependent activation of αvβ3-andβ1-containing . Journal of Biological Chemistry 276:11830–11837 1091. Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales- Ruiz M, Sessa WC, Alessi DR, Hla T (2001) Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Molecular Cell 8:693–704 1092. Morales-Ruiz M, Lee MJ, Zöllner S, Gratton JP, Scotland R, Shiojima I, Walsh K, Hla T, Sessa WC (2001) Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. Journal of Biological Chemistry 276:19672–19677 1093. Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Molecular and Cellular Biology 20:9247–9261 1094. Rosen H, Goetz EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nature Reviews – Immunology 5:560–570 1095. Mapp CE, Miotto D, Braccioni F, Saetta M, Turato G, Maestrelli P, Krause JE, Karpit- skiy V, Boyd N, Geppetti P, Fabbri LM (2000) The distribution of neurokinin-1 and neurokinin-2 receptors in human central airways. American Journal of Respiratory and Critical Care Medicine 161:207–215 1096. Cheng JT, Hsieh-Chen SC (1988) Octopamine relaxes rabbit jejunal smooth muscle by selective activation of dopamine D1 receptors. Naunyn Schmiedebergs Archives of Pharmacology 338:373–378 1097. Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A, Bro- gioni S, Ronca-Testoni S, Cerbai E, Grandy DK, Scanlan TS, Zucchi R (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB Journal 21:1597–1608 1098. Maguire JJ, Kuc RE, Davenport AP (2000) Orphan-receptor ligand human urotensin II: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. British Journal of Pharmacology 131:441–446 1099. Stirrat A, Gallagher M, Douglas SA, Ohlstein EH, Berry C, Kirk A, Richardson M, MacLean MR (2001) Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. American Journal of Physiology – Heart and Circulatory Physiology 280:H925–H928 1100. Gamer M, Zurowski B, Büchel C (2010) Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proceedings of the Na- tional Academy of Sciences of the United States of America 107:9400–9405 1101. Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America 107:3882–3887 References 889

1102. Tobin VA, Hashimoto H, Wacker DW, Takayanagi Y, Langnaese K, Caquineau C, Noack J, Landgraf R, Onaka T, Leng G, Meddle SL, Engelmann M, Ludwig M (2010) An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature 464:413–417 1103. Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 135:2662–2680 1104. Sreedharan SP, Huang JX, Cheung MC, Goetzl EJ (1995) Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proceedings of the National Academy of Sciences of the United States of Amer- ica 92:2939–2943 1105. Groneberg DA, Hartmann P, Dinh QT, Fischer A (2001) Expression and distribution of vasoactive intestinal polypeptide receptor VPAC2 mRNA in human airways. Labora- tory Investigation 81:749–755 1106. Reubi JC, Läderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA (2000) Vasoac- tive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Research 60:3105–3112

Chap. 8. Receptor Protein Kinases

1107. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseu- dokinases. Trends in Cell Biology 16:443–452 1108. Amit I, Wides R, Yarden Y (2007) Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Molecular Sys- tems Biology 3:151 1109. Lochhead PA, Sibbet G, Morrice N, Cleghon V (2005) Activation-loop autophosphory- lation is mediated by a novel transitional intermediate form of DYRKs. Cell 121:925– 936 1110. Yoon SJ, NakayamavKI, Hikita T, Handa K, Hakomori SI (2006) Epidermal growth factor is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proceedings of the National Academy of Sciences of the United States of America 103:18987–18991 1111. Corey SJ, Anderson SM (1999) Src-related protein tyrosine kinases in hematopoiesis. Blood 93:1–14 1112. Cabrita MA, Jäggi F, Widjaja SP, Christofori G (2006) A functional interaction between sprouty proteins and caveolin-1. Journal of Biological Chemistry 281:29201–29212 1113. Tefft D, Lee M, Smith S, Crowe DL, Bellusci S, Warburton D (2002) mSprouty2 in- hibits FGF10-activated MAP kinase by differentially binding to upstream target pro- teins. American Journal of Physiology – Lung Cellular and Molecular Physiology 283:L700–L706 1114. Vivanco I, Rohle D, Versele M, Iwanami A, Kuga D, Oldrini B, Tanaka K, Dang J, Kubek S, Palaskas N, Hsueh T, Evans M, Mulholland D, Wolle D, Rajasekaran S, Rajasekaran A, Liau LM, Cloughesy TF, Dikic I, Brennan C, Wu H, Mischel PS, Perera T, Mellinghoff IK (2010) The phosphatase and tensin homolog regulates epidermal 890 References

growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proceedings of the National Academy of Sciences of the United States of America 107:6459–6464 1115. Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP, Levi R (2010) Neuregulin- 1β1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomy- ocytes. Cardiovascular Research 88:443–452 1116. Jones N, Dumont DJ (1999) Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Current Biology 9:1057–1060 1117. Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF re- ceptor by lipids. Proceedings of the National Academy of Sciences of the United States of America 108:9044–9048 1118. Oved S, Mosesson Y, Zwang Y, Santonico E, Shtiegman K, Marmor MD, Kochupu- rakkal BS, Katz M, Lavi S, Cesareni G, Yarden Y (2006) Conjugation to Nedd8 insti- gates ubiquitylation and down-regulation of activated receptor tyrosine kinases. Journal of Biological Chemistry 281:21640–21651 1119. Frey MR, Dise RS, Edelblum KL, Polk DB (2006) p38 kinase regulates epider- mal growth factor receptor downregulation and cellular migration. EMBO Journal 25:5683–5692 1120. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision mak- ing by early and delayed loops. Nature Reviews – Molecular Cell Biology 12:104–117 1121. Offermanns S, Rosenthal W (Eds.) (2008) Encyclopedia of Molecular Pharmacology, (2nd ed.) Springer, Berlin 1122. Citri A, Yarden Y (2006) EGF–ERBB signalling: towards the systems level. Nature Reviews – Molecular Cell Biology 7:505–516 1123. Nagy P, Claus J, Jovin TM, Arndt-Jovin DJ (2010) Distribution of resting and ligand- bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. Proceedings of the National Academy of Sciences of the United States of America 107:16524–16529 1124. Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, Xu H (2007) Presenilin/γ-secretase- dependent processing of β-amyloid precursor protein regulates EGF receptor expres- sion. Proceedings of the National Academy of Sciences of the United States of America 104:10613–10618 1125. Negro A, Brar BK, Gu Y, Peterson KL, Vale W, Lee KF (2006) erbB2 is required for G protein-coupled receptor signaling in the heart. Proceedings of the National Academy of Sciences of the United States of America 103:15889–15893 1126. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, Jiang J, Howat WJ, Ali S, Carroll JS (2008) Regulation of ERBB2 by oestrogen receptor PAX2 determines response to tamoxifen. Nature 456:663–666 1127. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intra- cellular domain is competent to bind ATP and catalyze autophosphorylation. Proceed- ings of the National Academy of Sciences of the United States of America 107:7692– 7697 1128. Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, Jones FE (2004) The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by func- tioning as a STAT5A nuclear chaperone. Journal of Cell Biology 167:469–478 References 891

1129. Garcia RA, Vasudevan K, Buonanno A (2000) The neuregulin receptor ErbB-4 inter- acts with PDZ-containing proteins at neuronal synapses. Proceedings of the National Academy of Sciences of the United States of America 97:3596–3601 1130. Deribe YL, Wild P, Chandrashaker A, Curak J, Schmidt MH, Kalaidzidis Y, Miluti- novic N, Kratchmarova I, Buerkle L, Fetchko MJ, Schmidt P, Kittanakom S, Brown KR, Jurisica I, Blagoev B, Zerial M, Stagljar I, Dikic I (2009) Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Science Signaling 2:ra84 1131. Huang YL, Wu CM, Shi GY, Wu GC, Lee H, Jiang MJ, Wu HL, Yang HY (2009) Nestin serves as a prosurvival determinant that is linked to the cytoprotective effect of epidermal growth factor in rat vascular smooth muscle cells. Journal of Biochemistry 146:307–315 1132. Eden ER, White IJ, Tsapara A, Futter CE (2010) Membrane contacts between endo- somes and ER provide sites for PTP1B–epidermal growth factor receptor interaction. Nature – Cell Biology 12:267–272 1133. Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. Journal of Cell Science 123:723–735 1134. Kim HH, Sierke SL, Koland JG (1994) Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product. Journal of Biological Chemistry 269:24747–24755 1135. Wehrman TS, Raab WJ, Casipit CL, Doyonnas R, Pomerantz JH, Blau HM (2006) A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proceedings of the National Academy of Sciences of the United States of America 103:19063–19068 1136. Mund T, Pelham HR (2010) Regulation of PTEN/Akt and MAP kinase signaling path- ways by the ubiquitin ligase activators Ndfip1 and Ndfip2. Proceedings of the National Academy of Sciences of the United States of America 107:11429–11434 1137. Lorentzen A, Kinkhabwala A, Rocks O, Vartak N, Bastiaens PIH (2010) Regulation of Ras localization by acylation enables a mode of intracellular signal propagation. Science Signaling 3:ra68 1138. Komurov K, Padron D, Cheng T, Roth M, Rosenblatt KP, White MA (2010) Compre- hensive mapping of the human kinome to epidermal growth factor receptor signaling. Journal of Biological Chemistry 285:21134–21142 1139. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560 1140. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO Journal 16:7032–7044 1141. Graness A, Adomeit A, Heinze R, Wetzker R, Liebmann C (1998) A novel mitogenic signaling pathway of bradykinin in the human colon carcinoma cell line SW-480 in- volves sequential activation of a Gq/11 protein, phosphatidylinositol 3-kinase β,and protein kinase Cepsilon. Journal of Biological Chemistry 273:32016–32022 1142. Takeda H, Matozaki T, Takada T, Noguchi T, Yamao T, Tsuda M, Ochi F, Fukunaga K, Inagaki K, Kasuga M (1999) PI 3-kinase γ and protein kinase C-ζ mediate RAS- independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO Journal 18:386–395 892 References

1143. Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Mot- ley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium- dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Journal of Biological Chemistry 273:8890–8896 1144. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379:560–564 1145. Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ, Park M (1999) The Gab1 PH domain is required for localization of Gab1 at sites of cell- cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Molecular and Cellular Biology 19:1784–1799 1146. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nature Medicine 8:35–40 1147. Schmidt MH, Bicker F, Nikolic I, Meister J, Babuke T, Picuric S, Müller-Esterl W, Plate KH, Dikic I (2009) Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nature – Cell Biology 11:873–880 1148. Li Y, Lévesque LO, Anand-Srivastava MB (2010) Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. American Journal of Physiology – Heart and Circulatory Physiology 299:H1959–H1967 1149. Scapoli L, Ramos-Nino ME, Martinelli M, Mossman BT (2004) Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by as- bestos. Oncogene 23:805–813 1150. White GE, Tan TC, John AE, Whatling C, McPheat WL, Greaves DR (2010) Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth mus- cle cells via epidermal growth factor receptor signalling. Cardiovascular Research 85:825–835 1151. Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG (2010) A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Molecular Biology of the Cell 21:2338–2354 1152. Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM (1994) receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III cre- ates a receptor highly specific for acidic FGF/FGF-1. Journal of Biological Chemistry 269:11620–11627 1153. M Groth C, Lardelli M (2002) The structure and function of vertebrate fibroblast growth factor receptor 1. International Journal of Developmental Biology 46:393–400 1154. Che J, Okigaki M, Takahashi T, Katsume A, Adachi Y, Yamaguchi S, Matsunaga S, Takeda M, Matsui A, Kishita E, Ikeda K, Yamada H, Matsubara H (2011) Endothelial FGF receptor signaling accelerates atherosclerosis. American Journal of Physiology – Heart and Circulatory Physiology 300:H154–H161 References 893

1155. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Reg- ulation of alternative splicing by histone modifications. Science 327:996–1000 1156. Sugiyama N, Varjosalo M, Meller P, Lohi J, Chan KM, Zhou Z, Alitalo K, Taipale J, Keski-Oja J, Lehti K (2010) FGF receptor-4 (FGFR4) polymorphism acts as an activity switch of a membrane type 1 matrix metalloproteinase-FGFR4 complex. Proceedings of the National Academy of Sciences of the United States of America 107:15786– 15791 1157. Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, Li X, Tang J, Lindberg R, Li Y (2009) Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proceedings of the National Academy of Sciences of the United States of America 106:14379–14384 1158. Chau MD, Gao J, Yang Q, Wu Z, Gromada J (2010) Fibroblast growth factor 21 reg- ulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proceed- ings of the National Academy of Sciences of the United States of America 107:12553– 12558 1159. Wu X, Ge H, Gupte J, Weiszmann J, Shimamoto G, Stevens J, Hawkins N, Lemon B, Shen W, Xu J, Veniant MM, Li YS, Lindberg R, Chen JL, Tian H, Li Y (2007) Co- receptor requirements for fibroblast growth factor-19 signaling. Journal of Biological Chemistry 282:29069–29072 1160. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fuku- moto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774 1161. Harada M, Murakami H, Okawa A, Okimoto N, Hiraoka S, Nakahara T, Akasaka R, Shiraishi YI, Futatsugi N, Mizutani-Koseki Y, Kuroiwa A, Shirouzu M, Yokoyama S, Taiji M, Iseki S, Ornitz DM, Koseki H (2009) FGF9 monomer–dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nature – Genetics 41:289– 298 1162. Sandilands E, Akbarzadeh S, Vecchione A, McEwan DG, Frame MC, Heath (2007) Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors. EMBO Reports 8:1162–1169 1163. Gibby KA, McDonnell K, Schmidt MO, Wellstein A (2009) A distinct role for secreted fibroblast growth factor-binding proteins in development. Proceedings of the National Academy of Sciences of the United States of America 106:8585–8590 1164. Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and func- tions in development, organ regeneration and cancer. Nature Reviews – Molecular Cell Biology 11:834–848 1165. Rubin JS, Bottaro DP (2011) HGF UCSD-Nature Molecule Pages, UCSD-Nature Sig- naling Gateway (www.signaling-gateway.org) 1166. Miyazawa K, Shimomura T, Kitamura N (1996) Activation of hepatocyte growth fac- tor in the injured tissues is mediated by hepatocyte growth factor activator. Journal of Biological Chemistry 271:3615–3618 1167. Kermorgant S, Parker PJ (2008) Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. Journal of Cell Biology 182:855–863 1168. Palamidessi A, Frittoli E, Garré M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134:135–147 894 References

1169. Humbel RE (1990) Insulin-like growth factors I and II. European Journal of Biochem- istry 190:445–462 1170. Stiles AD, D’Ercole AJ (199O) The insulin-like growth factors and the lung. American Journal of Physiology – Lung Cellular and Molecular Physiology 3:93–100 1171. Depetris RS, Wu J, Hubbard SR (2009) Structural and functional studies of the Ras- associating and pleckstrin-homology domains of GRB10 and GRB14. Nature – Struc- tural and Molecular Biology 16:833–839 1172. Benyoucef S, Surinya KH, Hadaschik D, Siddle K (2007) Characterization of in- sulin/IGF hybrid receptors: contributions of the L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activa- tion. Biochemical Journal 403:603–613 1173. Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O (2010) Sumoylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Science Signaling 3:ra10 1174. Weber A, Huesken C, Bergmann E, Kiess W, Christiansen NM, Christiansen H (2003) Coexpression of insulin receptor-related receptor and insulin-like growth factor 1 re- ceptor correlates with enhanced apoptosis and dedifferentiation in human neuroblas- tomas. Clinical Cancer Research 9:5683–5692 1175. Dissen GA, Garcia-Rudaz C, Tapia V, Parada LF, Hsu SY, Ojeda SR (2006) Expression of the insulin receptor-related receptor is induced by the preovulatory surge of luteiniz- ing hormone in thecal-interstitial cells of the rat ovary. Endocrinology 147:155–165 1176. Gaudino G, Follenzi A, Naldini L, Collesi C, Santoro M, Gallo KA, Godowski PJ, Comoglio PM (1994) RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO Journal 13:3524–3532 1177. Sakamoto O, Iwama A, Amitani R, Takehara T, Yamaguchi N, Yamamoto T, Ma- suyama K, Yamanaka T, Ando M, Suda T (1997) Role of macrophage-stimulating protein and its receptor, RON tyrosine kinase, in ciliary motility. Journal of Clinical Investigation 99:701–709 1178. Li BQ, Wang MH, Kung HF, Ronsin C, Breathnach R, Leonard EJ, Kamata T (1995) Macrophage-stimulating protein activates Ras by both activation and translocation of SOS nucleotide exchange factor. Biochemical and Biophysical Research Communica- tions 216:110–118 1179. Bretscher A, Edwards KE, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nature Reviews – Molecular Cell Biology 3:586–599 1180. Lange S, Heger J, Euler G, Wartenberg M, Piper HM, Sauer H (2009) Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothe- lial cells by calcium-mediated generation of reactive oxygen species. Cardiovascular Research 81:159–168 1181. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling in control of vascular function Nature Reviews – Molecular Cell Biology 7:359–371 1182. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W, (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Science Signaling 3:ra26 1183. Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Söderberg O, Anisimov A, Kholová I, Pytowski B, Baldwin M, Ylä-Herttuala S, Alitalo K, Kreuger J, Claesson- Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO Journal 29:1377–1388 References 895

1184. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Ylä-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921 1185. Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M, He Y (2010) VEGFR-3 ligand- binding and kinase activity are required for lymphangiogenesis but not for angiogene- sis. Cell Research 20:1319–1331 1186. Broudy VC, Lin NL, Liles WC, Corey SJ, O’Laughlin B, Mou S, Linnekin D (1999) Signaling via Src family kinases is required for normal internalization of the receptor c-Kit. Blood 94:1979–1986 1187. Akin C (2011) Kit. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1188. Bourette RP, De Sepulveda P, Arnaud S, Dubreuil P, Rottapel R, Mouchiroud G (2001) Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal. Journal of Biological Chemistry 276:22133–22139 1189. Piechotta K, Garbarini N, England R, Delpire E (2003) Characterization of the inter- action of the stress kinase SPAK with the Na+–K+–2Cl− cotransporter in the nervous system: evidence for a scaffolding role of the kinase. Journal of Biological Chemistry 278:52848–52856 1190. Raghunath M, Patti R, Bannerman P, Lee CM, Baker S, Sutton LN, Phillips PC, Damodar Reddy C (2000) A novel kinase, AATYK induces and promotes neuronal dif- ferentiation in a human neuroblastoma (SH-SY5Y) cell line. Brain Research – Molec- ular Brain Research 77:151–162 1191. Honma N, Asada A, Takeshita S, Enomoto M, Yamakawa E, Tsutsumi K, Saito T, Satoh T, Itoh H, Kaziro Y, Kishimoto T, Hisanaga S (2003) Apoptosis-associated tyrosine kinase is a Cdk5 activator p35 binding protein. Biochemical and Biophysical Research Communications 310:398–404 1192. Kesavapany S, Lau KF, Ackerley S, Banner SJ, Shemilt SJ, Cooper JD, Leigh PN, Shaw CE, McLoughlin DM, Miller CC (2003) Identification of a novel, membrane- associated neuronal kinase, -dependent kinase 5/p35-regulated kinase. Journal of Neuroscience 23:4975–4983 1193. Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, Mizuno K (1996) Iden- tification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. Journal of Biological Chemistry 271:30022– 30027 1194. Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M, Hoylaerts M, Herbert J, Collen D, Dahlback B, Carmeliet P (2001) Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nature – Medicine 7:215–221. 1195. Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Gohring W, Ullrich A, Timpl R, Ho- henester E (2006) Structural basis for Gas6–Axl signalling. EMBO Journal 25:80–87 1196. Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cellular Signalling 18:1108–1116 1197. Abdulhussein R, McFadden C, Fuentes-Prior P, Vogel WF (2004) Exploring the -binding site of the DDR1 tyrosine kinase receptor. Journal of Biological Chemistry 279:31462–31470 896 References

1198. Vogel WF (2001) Collagen-receptor signaling in health and disease. European Journal of Dermatology 11:506–514 1199. Sakamoto O, Suga M, Suda T, Ando M (2001) Expression of discoidin domain receptor 1 tyrosine kinase on the human bronchial epithelium. European Respiratory Journal 17:969–974 1200. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL (2001) DDR2 re- ceptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. Journal of Clinical Investigation 108:1369–1378 1201. Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implica- tions in atherosclerosis and lymphangioleiomyomatosis. American Journal of Pathol- ogy 164:1575–1585 1202. Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Mañes S, Brückner K, Goer- gen JL, Lemke G, Yancopoulos G, Angel P, Martínez C, Klein R (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Reports 2:446–452 1203. Mihai C, Chotani M, Elton TS, Agarwal G (2009) Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. Journal of Molecular Biology 385:432–445 1204. Faraci E, Eck M, Gerstmayer B, Bosio A, Vogel WF (2003) An extracellular matrix- specific microarray allowed the identification of target genes downstream of discoidin domain receptors. Matrix Biology 22:373–381 1205. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR (2008) Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from in- tegrins and discoidin domain receptor 1. Journal of Cell Biology 80:1277–1289 1206. Tang H, Hao Q, Fitzgerald T, Sasaki T, Landon EJ, Inagami T (2002) Pyk2/CAKβ tyrosine kinase activity-mediated angiogenesis of pulmonary vascular endothelial cells. Journal of Biological Chemistry 277:5441–5447 1207. Wang CZ, Yeh YC, Tang MJ (2009) DDR1/E-cadherin complex regulates the activa- tion of DDR1 and cell spreading. American Journal of Physiology – Cell Physiology 97:C419–C429 1208. Duyster J, Bai RY, Morris SW (2001) Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20:5623–5637 1209. Lorén CE, Scully A, Grabbe C, Edeen PT, Thomas J, McKeown M, Hunter T, Palmer RH (2001) Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes to Cells 6:531–544 1210. Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, Delsol G, Mason DY (1997) Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nu- cleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89:1394–1404 1211. Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E, Cartaud J, Legay C (2006) MuSK is required for anchoring acetylcholinesterase at the neuromus- cular junction. Journal of Cell Biology 165:505–515. 1212. Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T, Jacob G, Sticht H, Allende J, Boldyreff B, Brenner HR, Hashemolhosseini S (2006) -dependent References 897

serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes and Development 20:1800–1816 1213. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L (2002) Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35:489–505 1214. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annual Review of Biochemistry 72:609–642 1215. Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA (2005) p75 neu- rotrophin receptor reduces ligand-induced ubiquitination and delays Trk receptor internalization and degradation. EMBO Reports 6:936–941 1216. Carter BD, Feng N, Paolocci N (2010) The p75 neurotrophin receptor, semaphorins, and sympathetic traffic in the heart. American Journal of Physiology – Heart and Cir- culatory Physiology 298:H1633–H1636 1217. Parkhurst CN, Zampieri N, Chao MV (2010) Nuclear localization of the p75 neu- rotrophin receptor intracellular domain. Journal of Biological Chemistry 285:5361– 5368 1218. Ng YP, Lo KY, Cheung ZH, Ip NY (2006) Signaling through the neurotrophin receptors (Chap. 2; p 11–41.) In Lajtha A (Ed.) Handbook of Neurochemistry and Molecular Neurobiology. Lim R (Volume Ed.) Neuroactive Proteins and Peptides. Springer, New York, USA 1219. Lorentz CU, Alston EN, Belcik T, Lindner JR, Giraud GD, Habecker BA (2010) Het- erogeneous ventricular sympathetic innervation, altered β-adrenergic receptor expres- sion, and rhythm instability in mice lacking the p75 neurotrophin receptor. American Journal of Physiology – Heart and Circulatory Physiology 298:H1652–H1660 1220. Shnitsar I, Borchers A (2008) PTK7 recruits dsh to regulate neural crest migration. Development 135:4015–4024 1221. Katoh M, Katoh M (2007) Comparative integromics on non-canonical WNT or pla- nar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorec- tal cancer and that of SEMA6A in undifferentiated ES cells. International Journal of Molecular Medicine 20:405–409 1222. Shin WS, Maeng YS, Jung JW, Min JK, Kwon YG, Lee ST (2008) Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. Biochemical and Biophysical Research Communications 371:793–798 1223. Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine and Growth Factor Reviews 16:441–467 1224. Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt corecep- tor required for stimulation of neurite outgrowth. Cell 119:97-108 1225. Green JL, Kuntz SG, Sternberg PW (2008) Ror receptor tyrosine kinases: orphans no more. Trends in Cell Biology 18:536–544 1226. Oishi I, Takeuchi S, Hashimoto R, Nagabukuro A, Ueda T, Liu ZJ, Hatta T, Akira S, Matsuda Y, Yamamura H, Otani H, Minami Y (1999) Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes to Cells 4:41– 56 898 References

1227. Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, Tamura S, Ueda T, Hatta T, Otani H, Terashima T, Takada S, Yamamura H, Akira S, Minami Y (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes to Cells 5:71–78 1228. Green JL, Inoue T, Sternberg PW (2008) Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134:646–656 1229. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biology 4:e11 1230. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Ya- mada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The recep- tor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells 8:645–654 1231. Sonnenberg E, Gödecke A, Walter B, Bladt F, Birchmeier C (1991) Transient and locally restricted expression of the protooncogene during mouse development. EMBO Journal 10:3693–3702 1232. Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (2001) Nega- tive regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. Journal of Cell Biology 152:325–334 1233. Biskup C, Böhmer A, Pusch R, Kelbauskas L, Gorshokov A, Majoul I, Lindenau J, Benndorf K, Böhmer FD (2004) Visualization of SHP-1-target interaction. Journal of Cell Science 117:5165–5178 1234. Charest A, Wilker EW, McLaughlin ME, Lane K, Gowda R, Coven S, McMahon K, Kovach S, Feng Y, Yaffe MB, Jacks T, Housman D (2006) ROS fusion tyro- sine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3- kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research 66:7473–7481 1235. Aasheim HC, Patzke S, Hjorthaug HS, Finne EF (2005) Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis. Biochimica et Biophysica Acta 1723:1–7 1236. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY (2010) An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nature – Structural and Molecular Biology 17:398–402 1237. Jørgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson DG, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326:1502– 1509 1238. Shintani T, Ihara M, Sakuta H, Takahashi H, Watakabe I, Noda M (2006) Eph recep- tors are negatively controlled by protein tyrosine phosphatase receptor type O. Nature Neuroscience 9:761–769 1239. Shi G, Yue G, Zhou R (2010) EphA3 functions are regulated by collaborating phos- photyrosine residues. Cell Research 20:1263–1275 1240. Irie F, Okuno M, Matsumoto K, Pasquale EB, Yamaguchi Y (2008) Heparan sulfate regulates ephrin-A3/EphA receptor signaling. Proceedings of the National Academy of Sciences of the United States of America 105:12307-12312 References 899

1241. Woods TC, Blystone CR, Yoo J, Edelman ER (2002) Activation of EphB2 and its lig- ands promotes vascular smooth muscle cell proliferation. Journal of Biological Chem- istry 277:1924–1927 1242. Tanaka M, Kamata R, Sakai R (2005) Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO Journal 24:3700–3711 1243. Bong YS, Lee HS, Carim-Todd L, Mood K, Nishanian TG, Tessarollo L, Daar IO (2007) EphrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proceedings of the National Academy of Sciences of the United States of America 104:17305–17310 1244. Hainaud P, Contrerès JO, Villemain A, Liu LX, Plouët J, Tobelem G, Dupuy E (2006) The role of the vascular endothelial growth factor–delta-like 4 ligand/Notch4– Ephrin B2 cascade in tumor vessel. Cancer Research 66:8501–8510 1245. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angio- genesis. Genes and Development 13:295–306 1246. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, AdamsS,DavyA,DeutschU,LüthiU,BarberisA,BenjaminLE,MäkinenT,Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphan- giogenesis. Nature 465:483–486 1247. Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature – Neuroscience 12:15–20 1248. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovas- cular development. Molecular Cell 4:403–414 1249. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic inter- action between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753 1250. Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, Groves JT (2010) Restric- tion of receptor movement alters cellular response: physical force sensing by EphA2. Science 327:1380–1385 1251. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Notte- baum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nature Cell Biology 10:527–537 1252. Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T, Shibuya M, Takakura N, Koh GY, Mochizuki N (2008) Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1. Nature Cell Biology 10:513–526 1253. Daly C, Pasnikowski E, Burova E, Wong V, Aldrich TH, Griffiths J, Ioffe E, Daly TJ, Fandl JP, Papadopoulos N, McDonald DM, Thurston G, Yancopoulos GD, Rudge JS (2006) Angiopoietin-2 functions as an autocrine protective factor in stressed endothe- lial cells. Proceedings of the National Academy of Sciences of the United States of America 103:15491–15496 1254. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584 900 References

1255. López-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardi- ovascular system. American Journal of Physiology – Heart and Circulatory Physiology 299:H959-H974 1256. Yamashita Y, Kojima K, Tsukahara T, Agawa H, Yamada K, Amano Y, Kurotori N, Tanaka N, Sugamura K, Takeshita T (2008) Ubiquitin-independent binding of Hrs me- diates endosomal sorting of the interleukin-2 receptor β-chain. Journal of Cell Science 121:1727–1738 1257. Raiborg C, Bache KG, Mehlum A, Stang E, Stenmark H (2001) Hrs recruits clathrin to early endosomes. EMBO Journal 20:5008–5021 1258. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, Hanai JI, Beppu H, Tsukazaki T, Wrana JL, Miyazono K, Sugamura K (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Molecular and Cellular Biology 20:9346–9355 1259. Rifkin DB (2005) Latent transforming growth factor-β (TGF-β) binding proteins: or- chestrators of TGF-β availability. Journal of Biological Chemistry 280:7409–7412 1260. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry 147:35–51 1261. Samad TA, Rebbapragada A, Bell E, Zhang Y, Sidis Y, Jeong SJ, Campagna JA, Pe- rusini S, Fabrizio DA, Schneyer AL, Lin HY, Brivanlou AH, Attisano L, Woolf CJ (2005) DRAGON, a bone morphogenetic protein co-receptor. Journal of Biological Chemistry 280:14122–14129 1262. Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The type I TGF-β receptor is covalently modified and regulated by sumoylation. Nature Cell Biology 10:654–664 1263. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landström M (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10:1199– 1207 1264. Karthikeyan M, Blobe GC (2007) TGF-β type I receptor. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1265. Lin KW, Yakymovych I, Jia M, Yakymovych M, Souchelnytskyi S (2010) Phosphoryla- tion of eEF1A1 at Ser300 by TβR-I results in inhibition of mRNA translation. Current Biology 20:1615–1625 1266. Hempel N, Blobe GC (2006) TGF-β type II receptor. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1267. Choy L, Derynck R (1998) The type II transforming growth factor (TGF)-β receptor- interacting protein TRIP-1 acts as a modulator of the TGF-β response. Journal of Bio- logical Chemistry 273:31455–31462 1268. Datta PK, Moses HL (2000) STRAP and Smad7 synergize in the inhibition of trans- forming growth factor β signaling. Molecular and Cellular Biology 20:3157–3167 1269. Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM (2002) A novel transforming growth factor-β receptor-interacting protein that is also a light chain of the motor protein dynein. Molecular Biology of the Cell 13:4484–4496 1270. Gilboa L, Nohe A, Geissendörfer T, Sebald W, Henis YI, Knaus P (2000) Bone mor- phogenetic protein receptor complexes on the surface of live cells: a new oligomer- ization mode for serine/threonine kinase receptors. Molecular Biology of the Cell 11:1023–1035 References 901

1271. Schwappacher R, Weiske J, Heining E, Ezerski V, Marom B, Henis YI, Huber O, Knaus P (2009) Novel crosstalk to BMP signalling: cGMP-dependent kinase I mod- ulates BMP receptor and SMAD activity. EMBO Journal 28:1537–1550 1272. Furtado MB, Solloway MJ, Jones VJ, Costa MW, Biben C, Wolstein O, Preis JI, Sparrow DB, Saga Y, Dunwoodie SL, Robertson EJ, Tam PP, Harvey RP (2008) BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate meso- derm and limits availability of SMAD4. Genes and Development 22:3037–3049 1273. Sheng N, Xie Z, Wang C, Bai G, Zhang K, Zhu Q, Song J, Guillemot F, Chen YG, Lin A, Jing N (2010) Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proceedings of the National Academy of Sciences of the United States of America 107:18886–18891 1274. Favaro JP, Wiley K, Blobe GC (2005) Alk1. UCSD-Nature Molecule Pages, UCSD- Nature Signaling Gateway (www.signaling-gateway.org) 1275. Derynck R, Zhang Y, Feng XH (1998) Transcriptional activators of TGF-β responses: Smads. Cell 95:737–740 1276. Sapkota G, Knockaert M, Alarcón C, Montalvo E, Brivanlou AH, Massagué J (2006) Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and trans- forming growth factor-β pathways. Journal of Biological Chemistry 281:40412–40419 1277. Vincent T, Neve EPA, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, Garcia de Herreros A, Moustakas A, Pettersson RF, Fuxe J (2009) A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGFβ mediated epithelial–mesenchymal transition. Nature – Cell Biology 11:943–950 1278. Stefancsik R (2006) Smad5 UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gateway (www.signaling-gateway.org) 1279. Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, He W, Das S, Massagué J, Bernard O (2003) Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. Journal of Cell Biology 162:1089–1098 1280. Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L (2004) Ac- tivation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO Journal 23:4792–4801

Chap. 9. Receptor Tyrosine Phosphatases

1281. Aricescu AR, Hon WC, Siebold C, Lu W, van der Merwe PA, Jones EY (2006) Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhe- sion. EMBO Journal 25:701–712 1282. Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxidants and Redox Signaling 8:1533–1548 1283. Gandhi TK, Chandran S, Peri S, Saravana R, Amanchy R, Prasad TS, Pandey A (2005) A bioinformatics analysis of protein tyrosine phosphatases in humans. DNA Research 12:79–89 1284. Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ, Kolle G, Faulkner GJ, Kodzius R, Katayama S, Wells C, Kai C, Kawai J, Carninci P, Hayashizaki Y, Grim- mond SM (2006) Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biology 7:R5 902 References

1285. Wallace MJ, Fladd C, Batt J, Rotin D (1998) The second catalytic domain of protein tyrosine phosphatase δ (PTP δ) binds to and inhibits the first catalytic domain of PTP σ. Molecular and Cellular Biology 18:2608–2616 1286. den Hertog J, Hunter T (1996) Tight association of GRB2 with receptor protein- tyrosine phosphatase α is mediated by the SH2 and C-terminal SH3 domains. EMBO Journal 15:3016–3027 1287. Tsai W, Morielli AD, Cachero TG, Peralta EG (1999) Receptor protein tyrosine phos- phatase α participates in the m1 muscarinic acetylcholine receptor-dependent regula- tion of KV 1.2 channel activity. EMBO Journal 18:109–118 1288. Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M (1999) Protein tyrosine phosphatase ζ/RPTPβ interacts with PSD-95/SAP90 family. Brain Research – Molecular Brain Research 72:47–54 1289. Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, Vestweber D (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO Journal 21:4885– 4895 1290. Adamsky K, Arnold K, Sabanay H, Peles E (2003) Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase β (RPTPβ) and tyrosine-phosphorylated proteins. Journal of Cell Science 116:1279–1289 1291. Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, Scheuer T, Catterall WA (2000) A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β. Nature – Neuroscience 3:437–444 1292. Fachinger, Deutsch U, Risau W (1999) Functional interaction of vascular endothelial- protein-tyrosine phosphatase with the Tie-2. Oncogene 18:5948–5953 1293. Li Z, Huang H, Boland P, Dominguez MG, Burfeind P, Lai KM, Lin HC, Gale NW, Daly C, Auerbach W, Valenzuela D, Yancopoulos GD, Thurston G (2009) Embryonic stem cell tumor model reveals role of vascular endothelial receptor tyrosine phospha- tase in regulating Tie2 pathway in tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 106:22399–22404 1294. Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, Nanan R, Fazekas de Saint Groth B (2006) Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107:2830–2838 1295. Irie-Sasaki J, Sasaki T, Penninger JM (2003) CD45 regulated signaling pathways. Cur- rent Topics in Medicinal Chemistry 3:783–796 1296. Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ (2001) CD45: new jobs for an old acquaintance. Nature – Immunology 2:389–396 1297. Elson A (2006) RPTPe. UCSD-Nature Molecule Pages, UCSD-Nature Signaling Gate- way (www.signaling-gateway.org) 1298. Andersen JN, Elson A, Lammers R, Rømer J, Clausen JT, Møller KB, Møller NP (2001) Comparative study of protein tyrosine phosphatase- isoforms: membrane lo- calization confers specificity in cellular signalling. Biochemical Journal 354:581–590 1299. Peretz A, Gil-Henn H, Sobko A, Shinder V, Attali B, Elson A (2000) Hypomyelination and increased activity of voltage-gated K+ channels in mice lacking protein tyrosine phosphatase . EMBO Journal 19:4036–4045 References 903

1300. Thompson LJ, Jiang J, Madamanchi N, Runge MS, Patterson C (2001) PTP-,a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. American Journal of Physiology – Heart and Circulatory Physiology 281:H396–H403 1301. Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J, Garcia de Herreros A, Dunach M, Neckers LM (2001) Geldanamycin abrogates ErbB2 association with proteasome- resistant β-catenin in melanoma cells, increases β-catenin-E-cadherin association, and decreases β-catenin-sensitive transcription. Cancer Research 61:1671–1677 1302. Bouyain S, Watkins DJ (2010) The protein tyrosine phosphatases PTPRZ and PT- PRG bind to distinct members of the contactin family of neural recognition molecules. Proceedings of the National Academy of Sciences of the United States of America 107:2443–2448 1303. Takada T, Noguchi T, Inagaki K, Hosooka T, Fukunaga K, Yamao T, Ogawa W, Matozaki T, Kasuga M (2002) Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. Journal of Biological Chemistry 277:34359–34366 1304. Sui XF, Kiser TD, Hyun SW, Angelini DJ, Del Vecchio RL, Young BA, Hasday JD, Romer LH, Passaniti A, Tonks NK, Goldblum SE (2005) Receptor protein tyrosine phosphatase micro regulates the paracellular pathway in human lung microvascular endothelia. American Journal of Pathology 166:1247–1258 1305. Avraham S, London R, Tulloch GA, Ellis M, Fu Y, Jiang S, White RA, Painter C, Steinberger AA, Avraham H (1997) Characterization and chromosomal localization of PTPRO, a novel receptor protein tyrosine phosphatase, expressed in hematopoietic stem cells. Gene 204:5–16 1306. Jung H, Kim WK, Kim do H, Cho YS, Kim SJ, Park SG, Park BC, Lim HM, Bae KH, Lee SC (2009) Involvement of PTP-RQ in differentiation during adipogenesis of hu- man mesenchymal stem cells. Biochemical and Biophysical Research Communications 383:252–257 1307. Nayak G, Goodyear RJ, Legan PK, Noda M, Richardson GP (2011) Evidence for mul- tiple, developmentally regulated isoforms of Ptprq on hair cells of the inner ear. Devel- opmental Neurobiology 71:129–141 1308. Ogata M, Oh-Hora M, Kosugi A, Hamaoka T (1999) Inactivation of mitogen-activated protein kinases by a mammalian tyrosine-specific phosphatase, PTPBR7. Biochemical and Biophysical Research Communications 25:52–56 1309. Zhao Y, Zhang X, Guda K, Lawrence E, Sun Q, Watanabe T, Iwakura Y, Asano M, Wei L, Yang Z, Zheng W, Dawson D, Willis J, Markowitz SD, Satake M, Wang Z (2010) Identification and functional characterization of paxillin as a target of protein tyrosine phosphatase receptor T. Proceedings of the National Academy of Sciences of the United States of America 107:2592–2597 1310. Badde A, Schulte D (2008) A role for receptor protein tyrosine phosphatase λin mid- brain development. Journal of Neuroscience 28:6152–6164 1311. Doumont G, Martoriati A, Marine JC (2005) PTPRV is a key mediator of p53-induced cell cycle exit. Cell Cycle 4:1703–1705 1312. Bäumer S, Keller L, Holtmann A, Funke R, August B, Gamp A, Wolburg H, Wolburg- Buchholz K, Deutsch U, Vestweber D (2006) Vascular endothelial cell-specific phos- photyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 107:4754–4762 904 References Chap. 10. Morphogen Receptors

1313. Yu SR, Burkhardt M, Nowak M, Ries J, Petrás Z, Scholpp S, Schwille P, Brand M (2009) FGF8 morphogen gradient forms by a source-sink mechanism with freely dif- fusing molecules. Nature 461:533–536 1314. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia- Ojalvo J, Elowitz MB (2010) Cis-interactions between Notch and Delta generate mu- tually exclusive signalling states. Nature 465:86–90 1315. Meng H, Zhang X, Lee SJ, Strickland DK, Lawrence DA, Wang MM (2010) Low den- sity lipoprotein receptor-related protein-1 (LRP1) regulates thrombospondin-2 (TSP2) enhancement of Notch3 signaling. Journal of Biological Chemistry 285:23047–23055 1316. Arnett KL, Hass M, McArthur DG, Ilagan MXG, Aster JC, Kopan R, Blacklow SC (2010) Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nature – Structural and Molecular Biology 17:1312–1317 1317. Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005) ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Letters 579:6796– 6802 1318. Diks SH, Sartori da Silva MA, Hillebrands JL, Bink RJ, Versteeg HH, van Rooijen C, Brouwers A, Chitnis AB, Peppelenbosch MP, Zivkovic D (2008) d-Asb11 is an essential mediator of canonical Delta–Notch signalling. Nature Cell Biology 10:1190– 1198 1319. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nature Reviews – Molecular Cell Biology 7:678–689 1320. Rajan A, Tien AT, Haueter CM, Schulze KL, Bellen HJ (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nature – Cell Biology 11:815–824 1321. Guarani V, Deflorian G, Franco CA, Krüger M, Phng LK, Bentley K, Toussaint L,Dequiedt F, Mostoslavsky R, Schmidt MHH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacet- ylase. Nature 473:234–238 1322. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RDG (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826 1323. Xin M, Small EM, van Rooij E, Qi X, Richardson JA, Srivastava D, Nakagawa O, Olson EN (2007) Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proceedings of the National Academy of Sciences of the United States of America 104:7975–7980 1324. Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S, Yamamoto M, Kensler TW (2010) Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Science Signaling 3:ra52 1325. Wacker SA, Alvarado C, von Wichert G, Knippschild U, Wiedenmann J, Clauß K, Nienhaus GU, Hameister H, Baumann B, Borggrefe T, Knöchel W, Oswald F (2011) RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO Journal 30:43–56 References 905

1326. Perumalsamy LR, Nagala M, Sarin A (2010) Notch-activated signaling cascade inter- acts with mitochondrial remodeling proteins to regulate cell survival. Proceedings of the National Academy of Sciences of the United States of America 107:6882–6887 1327. Proweller A, Wright AC, Horng D, Cheng L, Lu MM, Lepore JJ, Pear WS, Parmacek MS (2007) Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proceedings of the National Academy of Sciences of the United States of America 104:16275–16280 1328. Andreu-Agulló C, Morante-Redolat JM, Delgado AC, Fariñas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nature – Neuroscience 12:1514–1523 1329. Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nature Neuroscience 11:1247–1251 1330. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nature Reviews – Genetics 9:49–61 1331. Hofmann JJ, Iruela-Arispe ML (2007) Notch signaling in blood vessels. Who is talking to whom about what? Circulation Research 100:1556 1332. Robert-Moreno A, Guiu J, Ruiz-Herguido C, López MA, Inglés-Esteve J, Riera L, Tipping A, Enver T, Dzierzak E, Gridley T, Espinosa L, Bigas A (2008) Impaired em- bryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged. EMBO Journal 27:1886–1895 1333. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C (2004) Neuropilin-1 is required for endothelial tip cell guidance in the developing central ner- vous system. Developmental Dynamics 231:503–509 1334. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB Journal 19:1027–1029 1335. Sato Y, Watanabe T, Saito D, Takahashi T, Yoshida S, Kohyama J, Ohata E, Okano H, Takahashi Y (2008) Notch mediates the segmental specification of angioblasts in somites and their directed migration toward the dorsal aorta in avian embryos. Devel- opmental Cell 14:890–901 1336. Gridley T (2007) Notch signaling in vascular development and physiology. Develop- ment 134:2709–2718 1337. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC, Herlyn M (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogene- sis. Molecular and Cellular Biology 23:14–25 1338. Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteri- ovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proceedings of the National Academy of Sciences of the United States of America 99:8219–8224 1339. Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M, Kurabayashi M (2006) Dll4- selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Bio- chemical and Biophysical Research Communications 341:708–714 906 References

1340. Doi H, Iso T, Yamazaki M, Akiyama H, Kanai H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto EI, Arai M, Kedes L, Kurabayashi M (2005) HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box. Arteriosclerosis, Thrombosis, and Vascular Biology 25:2328– 2334 1341. Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T (2006) The forkhead tran- scription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Developmental Biology 294:458–470 1342. van der Loop FT, Gabbiani G, Kohnen G, Ramaekers FC, van Eys GJ (1997) Differ- entiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology 17:665–671 1343. Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV (1996) The SM 22 pro- moter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 122:2415–2425 1344. Doi H, Iso T, Sato H, Yamazaki M, Matsui H, Tanaka T, Manabe I, Arai M, Nagai R, Kurabayashi M (2006) Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway. Journal of Biological Chemistry 281:28555–28564 1345. Noseda M, Fu Y, Niessen K, Wong F, Chang L, McLean G, Karsan A (2006) Smooth Muscle α-actin is a direct target of Notch/CSL. Circulation Research 98:1468–1470 1346. Arboleda-Velasquez JF, Zhou Z, Shin HK, Louvi A, Kim HH, Savitz SI, Liao JK, Salomone S, Ayata C, Moskowitz MA, Artavanis-Tsakonas S (2008) Linking Notch signaling to ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America 105:4856–4861 1347. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Os- borne BA (2006) Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO Journal 25:129–138 1348. Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB (2008) Notch1 is an ef- fector of Akt and hypoxia in melanoma development. Journal of Clinical Investigation 118:3660–3670 1349. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews – Cancer 8:705–713 1350. Ingram WJ, Wicking CA, Grimmond SM, Forrest AR, Wainwright BJ (2002) Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene 21:8196–8205 1351. Callejo A, Bilioni A, Mollica E, Gorfinkiel N, Andrés G, Ibáñez C, Torroja C, Doglio L, Sierra J, Guerrero I (2011) Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium. Proceedings of the National Academy of Sciences of the United States of America 108:12591–12598 1352. Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America 105:912–917 1353. Rohatgi R, Scott MP (2007) Patching the gaps in Hedgehog signalling. Nature Cell Biology 9:1005–1009 References 907

1354. Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C (2009) Struc- tural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nature – Structural and Molecular Biology 16:698-703 1355. Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450:252–258 1356. Aikin RA, Ayers KL, Thérond PP (2008) The role of kinases in the Hedgehog sig- nalling pathway. EMBO Reports 9:330–336 1357. Milenkovic L, Scott MP, Rohatgi R (2009) Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. Journal of Cell Biology 187:365–374 1358. Milenkovic L, Scott MP (2010) Not lost in space: trafficking in the Hedgehog signaling pathway. Science Signaling 3:pe14 1359. Parker DS, White MA, Ramos AI, Cohen BA, Barolo S (2011) The cis-regulatory logic of hedgehog gradient responses: key roles for Gli binding affinity, competition, and . Science Signaling 4:ra38 1360. Jacob L, Lum L (2007) Deconstructing the Hedgehog pathway in development and disease. Science 318:66–68 1361. Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS, Quinn AG, Philpott MP, Frischauf AM, Aberger F (2004) The zinc-finger transcription factor GLI2 an- tagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23:1263–1274 1362. Kim J, Kato M, Beachy PA (2009) Gli2 trafficking links Hedgehog-dependent activa- tion of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proceedings of the National Academy of Sciences of the United States of America 106:21666–21671 1363. Wang Y, Zhou Z, Walsh CT, McMahon AP (2009) Selective translocation of intracel- lular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proceedings of the National Academy of Sciences of the United States of America 106:2623–2628 1364. Chan JA, Balasubramanian S, Witt RM, Nazemi KJ, Choi Y, Pazyra-Murphy MF, Walsh CO, Thompson M, Segal RA (2009) Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nature – Neuroscience 12:409–417 1365. Jeong J, McMahon AP (2005) Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development 132:143–154 1366. Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006) Numb is a suppressor of Hedge- hog signalling and targets Gli1 for Itch-dependent ubiquitination. Nature Cell Biology 8:1415–1423 1367. Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz RJ (2008) β-Arrestin-mediated localization of Smoothened to the primary cilium. Science 320:1777–1781 1368. Wang J, Lu J, Bond MC, Chen M, Ren XR, Lyerly HK, Barak LS, Chen W (2010) Identification of select glucocorticoids as Smoothened agonists: potential utility for regenerative medicine. Proceedings of the National Academy of Sciences of the United States of America 107:9323–9328 908 References

1369. Eaton S (2008) Multiple roles for lipids in the Hedgehog signalling pathway. Nature Reviews – Molecular Cell Biology 9:437–445 1370. Morrow D, Sweeney C, Birney YA, Guha S, Collins N, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2007) Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. American Journal of Physiology – Cell Physiology 292:C488–C496 1371. Jacob LS, Wu X, Dodge ME, Fan CW, Kulak O, Chen B, Tang W, Wang B, Amatruda JF, Lum L (2011) Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Science Signaling 4:ra4 1372. Silhankova M, Port F, Harterink M, Basler K, Korswagen HC (2010) Wnt signalling re- quires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO Journal 29:4094–4105 1373. Nusse R (2008) Wnt signaling and stem cell control. Cell Research 18:523–527 1374. Jernigan KK, Cselenyi CS, Thorne CA, Hanson AJ, Tahinci E, Hajicek N, Oldham WM, Lee LA, Hamm HE, Hepler JR, Kozasa T, Linder ME, Lee E (2010) Gβγ ac- tivates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Science Signaling 3:ra37 1375. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nature Re- views – Molecular Cell Biology 10:468–477 1376. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA (2010) Canonical and noncanonical Wnts use a com- mon mechanism to activate completely unrelated coreceptors. Genes and Development 24:2517–2530 1377. Huang SMA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620 1378. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C (2005) Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872 1379. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877 1380. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces LRP6 signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622 1381. Schwarz-Romond T, Fiedler M, Shibata N, Butler JG, Kikuchi A, Higuchi Y, Bienz M (2007) The DIX domain of Dishevelled confers Wnt signaling by dynamic polymer- ization. Nature Structural and Molecular Biology 14:484–492 1382. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E (2008) LRP6 trans- duces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of β-catenin. Proceedings of the National Academy of Sciences of the United States of America 105:8032–8037 References 909

1383. Kim NG, Xu C, Gumbiner BM (2009) Identification of targets of the Wnt pathway destruction complex in addition to β-catenin. Proceedings of the National Academy of Sciences of the United States of America 106:5165–5170 1384. Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG (2008) Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320:327–328 1385. Simons M, Gault WJ, Gotthardt D, Rohatgi R, Klein TJ, Shao Y, Lee HJ, Wu AL, Fang Y, Satlin LM, Dow JT, Chen J, Zheng J, Boutros M, Mlodzik M (2009) Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature – Cell Biology 11:286–294 1386. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A (2010) Wnt5a regulates distinct signalling pathways by binding to Frizzled 2. EMBO Journal 29:41–54 1387. Niehrs C, Acebron SP (2010) Wnt signaling: multivesicular bodies hold GSK3 captive. Cell 143:1044–1046 1388. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–1148 1389. Bartscherer K, Boutros M (2008) Regulation of Wnt protein secretion and its role in gradient formation. EMBO Reports 9:977–982 1390. Hausmann G, Banziger C, Basler K (2007) Helping Wingless take flight: how WNT proteins are secreted. Nature Reviews – Molecular Cell Biology 8:331–336 1391. Deng N, Ye Y, Wang W, Li L (2010) Dishevelled interacts with p65 and acts as a repressor of NF-03baB-mediated˘ transcription. Cell Research 20:1117–1127 1392. Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF (2011) Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proceedings of the National Academy of Sciences of the United States of America 108:17022–17027 1393. Li FQ, Mofunanya A, Harris K, Takemaru K (2008) Chibby cooperates with 14-3- 3toregulateβ-catenin subcellular distribution and signaling activity. Journal of Cell Biology 181:1141–1154 1394. Kennell JA, Gerin I, MacDougald OA, Cadigan KM (2008) The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 105:15417–15422 1395. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D (2008) Wnt3a-mediated formation of phosphati- dylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321:1350–1353 1396. Ganner A, Lienkamp S, Schäfer T, Romaker D, Wegierski T, Park TJ, Spreitzer S, Simons M, Gloy J, Kim E, Wallingford JB, Walz G (2009) Regulation of ciliary polarity by the APC/C. Proceedings of the National Academy of Sciences of the United States of America 106:17799–17804 1397. Creyghton MP, Roël G, Eichhorn PJ, Hijmans EM, Maurer I, Destrée O, Bernards R (2005) PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes and Development 19(3):376–386 1398. Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S (2010) Bal- anced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO Journal 29:2114–2125 910 References

1399. Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibi- tion: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science 121:737–746 1400. Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, Perantoni AO (2001) Secreted Frizzled-related proteins can regulate metanephric development. Mechanisms of Development 102:45–55 1401. Rodriguez J, Esteve P, Weinl C, Ruiz JM, Fermin Y, Trousse F, Dwivedy A, Holt C, Bovolenta P (2005) SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nature Reviews – Neurosciences 8:1301–1309 1402. Lee HX, Ambrosio AL, Reversade B, De Robertis EM (2006) Embryonic dorsal- ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124:147–159 1403. Logan CY, Nusse R (2004) The in development and disease. Annual Review of Cell and Developmental Biology 20:781–810 1404. Zhong X, Desilva T, Lin L, Bodine P, Bhat RA, Presman E, Pocas J, Stahl M, Kriz R (2007) Regulation of secreted Frizzled-related protein-1 by heparin. Journal of Biolog- ical Chemistry 282:20523–20533 1405. Ezan J, Leroux L, Barandon L, Dufourcq P, Jaspard B, Moreau C, Allières C, Daret D, Couffinhal T, Duplàa C (2004) FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo. Cardiovascular Re- search 63:731–738 1406. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, Akasaki Y, Shimono A, Walsh K (2010) Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329:454–457 1407. Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, Leung JM, Liu Y, Lo- mas WE, Dixon M, Hazell SA, Wagle M, Nie WS, Tomasevic N, Williams J, Zhan X, Levy MD, Funk WD, Abo A (2007) R-Spondin1 regulates Wnt signaling by inhibit- ing internalization of LRP6. Proceedings of the National Academy of Sciences of the United States of America 104:14700–14705 1408. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q (2011) R-spondins function as lig- ands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America 108:11452–11457 1409. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F (2008) Rac1 activation con- trols nuclear localization of β-catenin during canonical Wnt signaling. Cell 133:340– 353 1410. Holloway KR, Calhoun TN, Saxena M, Metoyer CF, Kandler EF, Rivera CA, Pruitt K (2010) SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 107:9216–9221 1411. Bryja V, Gradl D, Schambony A, Arenas E, Schulte G (2007) β-Arrestin is a necessary component of Wnt/β-catenin signaling in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 104:6690–6695 1412. Bryja V, Schambony A, Scaronajánek S, Dominguez I, Arenas E, Schulte G (2008) β-Arrestin and /2 define distinct branches of non-canonical WNT sig- nalling pathways. EMBO Reports 9:1244–1250 References 911

1413. Funato Y, Michiue T, Asashima M, Miki H (2006) The thioredoxin-related redox- regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through Dishev- elled. Nature Cell Biology 8:501–508 1414. Stuart RO, Bush KT, Nigam SK (2003) Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney International 64:1997–2008 1415. Shimomura Y, Agalliu D, Vonica A, Luria V, Wajid M, Baumer A, Belli S, Petukhova L, Schinzel A, Brivanlou AH, Barres BA, Christiano AM (2010) APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464:1043–1047 1416. Li Z, Nie F, Wang S, Li L (2011) Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proceedings of the National Academy of Sciences of the United States of America 108:3116–3123 1417. Martinez-Morales PL, Quiroga AC, Barbas JA, Morales AV (2010) SOX5 controls cell cycle progression in neural progenitors by interfering with the WNT-beta-catenin path- way. EMBO Reports 11:466–472 1418. Wright KJ, Tjian R (2009) Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo. Proceedings of the National Academy of Sciences of the United States of America 106:55-60 1419. Behrens J, Von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–642 1420. Mosimann C, Hausmann G, Basler K (2009) β-Catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews – Molecular Cell Biology 10:276–286 1421. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE (2007) Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 104:9685–9690 1422. Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kem- ler R, Rosenfeld MG, Chen J, Evans SM (2007) β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of car- diogenesis. Proceedings of the National Academy of Sciences of the United States of America 104:9313–9318 1423. Ai D, Fu X, Wang J, Lu MF, Chen L, Baldini A, Klein WH, Martin JF (2007) Canon- ical Wnt signaling functions in second heart field to promote right ventricular growth. Proceedings of the National Academy of Sciences of the United States of America 104:9319–9324 1424. Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M, Naito AT, Nishi JI, Ueno H, Umezawa A, Minamino T, Nagai T, Kikuchi A, Asashima M, Komuro I (2008) IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 454:345–349 1425. Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J, Davidson JM, Rottman J, Lee E, Young PP (2008) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proceedings of the National Academy of Sciences of the United States of America 105:18366-18371 1426. Panáková D, Werdich AA, Macrae CA (2010) Wnt11 patterns a myocardial electrical gradient through regulation of the L-type Ca2+ channel. Nature 466:874–878 912 References

1427. Dufourcq P, Leroux L, Ezan J, Descamps B, Lamazière JM, Costet P, Basoni C, Moreau C, Deutsch U, Couffinhal T, Duplàa C (2008) Regulation of endothelial cell cytoskele- tal reorganization by a secreted frizzled-related protein-1 and frizzled 4- and frizzled 7-dependent pathway: role in neovessel formation. American Journal of Pathology 172:37–49 1428. Dufourcq P, Descamps B, Tojais NF, Leroux L, Oses P, Daret D, Moreau C, Lamazière JM, Couffinhal T, Duplàa C (2008) Secreted frizzled-related protein-1 enhances mes- enchymal stem cell function in angiogenesis and contributes to neovessel maturation. Stem Cells 26:2991–3001 1429. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250 1430. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proceedings of the Na- tional Academy of Sciences of the United States of America 106:641–646 1431. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, Yamada C, Liu TC, Huang G, Basson CT, Kispert A, Greenspan DS, Sato TN (2009) Secreted Frizzled- related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associ- ated with myocardial infarction. Nature – Cell Biology 11:46–55 1432. Nathan E, Tzahor E (2009) sFRPs: a declaration of (Wnt) independence. Nature – Cell Biology 11:13 1433. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nature Reviews – Neuroscience 11:77–86 1434. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America 107:4194–4199 1435. Kaidi A, Williams AC, Paraskeva C (2007) Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biology 9:210–217 1436. Giles RH, Lolkema MP, Snijckers CM, Belderbos M, van der Groep P, Mans DA, van Beest M, van Noort M, Goldschmeding R, van Diest PJ, Clevers H, Voest EE (2006) Interplay between VHL/HIF1α and Wnt/β-catenin pathways during colorectal tumorigenesis. Oncogene 25:3065–3070 1437. Kaufman DS (2010) HIF hits Wnt in the stem cell niche. Nature – Cell Biology 12:926– 927 1438. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, MC Si- mon (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nature – Cell Biology 12:1007–1013 1439. Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT (2008) Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nature Cell Biology 10:1208–1216 1440. Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A (2010) Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO Journal 29:3470–3483 References 913

1441. Hadjihannas MV, Brückner M, Behrens J (2010) Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Reports 11:317–324 1442. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810 1443. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt sig- naling in a mammalian model of accelerated aging. Science 317:803–806 1444. Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD (2007) Downreg- ulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Molecular Cell 27:183–196 1445. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, Gires O (2009) Nuclear signalling by tumour-associated antigen Ep- CAM. Nature Cell Biology 11:162–171 1446. Janssen BJ, Robinson RA, Pérez-Brangulí F, Bell CH, Mitchell KJ, Siebold C, Jones EY (2010) Structural basis of semaphorin–plexin signalling. Nature 467:1118–1122 1447. Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, Toyofuku T, Uchiyama S, Goshima Y, Kumanogoh A, Takagi J (2010) Structural basis for sema- phorin signalling through the plexin receptor. Nature 467:1123–1127 1448. Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, Fujisawa H, Strittmatter SM (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99:59–69 1449. Perrot V, Vazquez-Prado J, Gutkind JS (2002) Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ- RhoGEF. Journal of Biological Chemistry 277:43115–43120 1450. Gitler AD, Lu MM, Epstein JA (2004) PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Developmental Cell 7:107–116 1451. Basile JR, Castilho RM, Williams VP, Gutkind JS (2006) Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 103:9017–9022 1452. Hung RJ, Yazdani U, Yoon J, Wu H, Yang T, Gupta N, Huang Z, van Berkel WJH, Terman JR (2010) Mical links semaphorins to F-actin disassembly. Nature 463:823– 827 1453. Morlot C, Thielens NM, Ravelli RBG, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA (2007) Structural insights into the Slit-Robo complex. Proceedings of the National Academy of Sciences of the United States of America 104:14923–14928 1454. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Gins- berg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nature Medicine 14:448–453

Chap. 11. Receptors of the Immune System

1455. Gallo EM, Ho L, Winslow MM, Staton TL, Crabtree GR (2008) Selective role of cal- cineurin in haematopoiesis and lymphopoiesis. EMBO Reports 9:1141–1148 914 References

1456. Martín P, del Hoyo GM, Anjuère F, Ruiz SR, Arias CF, Marín AR, Ardavín C (2000) Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8α− and CD8α+ dendritic cells are generated from CD4low lymphoid-committed precursors. Blood 96:2511–2519 1457. Plata-Salamán CR (1998) Cytokines and feeding. News in Physiological Sciences 13:298–304 1458. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nature Reviews – Immunology 10:89–102 1459. Stomski FC, Sun Q, Bagley CJ, Woodcock J, Goodall G, Andrews RK, Berndt MC, Lopez AF (1996) Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor α-andβ-chain heterodimerization, which is required for receptor activation but not high-affinity binding. Molecular and Cellular Biology 16:3035–3046 1460. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils func- tion as antigen-presenting cells for an allergen-induced T helper type 2 response. Na- ture – Immunology 10:713–720 1461. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hema- topoietic, and pro-inflammatory factors. Journal of Cellular Physiology 212:702–709 1462. Lai L, Goldschneider I (2001) Cutting edge: identification of a hybrid cytokine con- sisting of IL-7 and the β-chain of the hepatocyte growth factor/scatter factor. Journal of Immunology 167:3550–3554 1463. Lai L, Zeff RA, Goldschneider I (2006) A recombinant single-chain IL-7/HGFβ hybrid cytokine induces juxtacrine interactions of the IL-7 and HGF (c-Met) receptors and stimulates the proliferation of CFU-S12, CLPs, and pre-pro-B cells. Blood 107:1776– 1784 1464. Lejeune D, Demoulin JB, Renauld JC (2001) Interleukin 9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppres- ses interleukin 9 signalling. Biochemical Journal 353:109–116 1465. Wynn TA (2003) IL-13 effector functions. Annual Review of Immunology 21:425–456 1466. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America 101:1969–1974 1467. Søndergaard H, Skak K (2009) IL-21: roles in immunopathology and cancer therapy. Tissue Antigens 74:467–479 1468. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal 374:1–20 1469. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. Journal of Applied Physiology 98:1154–1162 1470. Paul SR, Bennett F, Calvetti JA, Kelleher K, Wood CR, O’Hara RM Jr, Leary AC, Sibley B, Clark SC, Williams DA, Yang YC (1990) Molecular cloning of a cDNA References 915

encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cyto- kine. Proceedings of the National Academy of Sciences of the United States of America 87:7512–7516 1471. Larousserie F, Bardel E, Pflanz S, Arnulf B, Lome-Maldonado C, Hermine O, Brégeaud L, Perennec M, Brousse N, Kastelein R, Devergne O (2005) Analysis of interleukin- 27 (EBI3/p28) expression in Epstein-Barr virus- and human T-cell leukemia virus type 1-associated lymphomas: heterogeneous expression of EBI3 subunit by tumoral cells. American Journal of Pathology 166:1217–1228 1472. Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, Mc- Clanahan TK, de Waal Malefyt R, Kastelein RA (2004) WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. Journal of Immunology 172:2225– 2231 1473. Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Pres- nell SR, Haugen HS, Maurer M, Harder B, Johnston J, Bort S, Mudri S, Kuijper JL, Bukowski T, Shea P, Dong DL, Dasovich M, Grant FJ, Lockwood L, Levin SD, LeCiel C, Waggie K, Day H, Topouzis S, Kramer J, Kuestner R, Chen Z, Foster D, Parrish- Novak J, Gross JA (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nature – Immunology 5:752–760 1474. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. Journal of Biological Chem- istry 275:31335–31339 1475. Wang M, Liang P (2005) Interleukin-24 and its receptors. Immunology 114:166–170 1476. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A, Donnelly RP, Kotenko SV (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. Journal of Immunology 172:2006–2010 1477. Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuest- ner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McK- night G, Clegg C, Foster D, Klucher KM (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature – Immunology 4:63–68 1478. Brombacher F, Kastelein RA, Alber G (2003) Novel IL-12 family members shed light on the orchestration of Th1 responses. Trends in Immunology 24:207–212 1479. Bacon CM, McVicar DW, Ortaldo JR, Rees RC, O’Shea JJ, Johnston JA (1995) Inter- leukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. Journal of Experimental Medicine 181:399-404 1480. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regula- tory T-cell function. Nature 450:566–569 1481. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nature Reviews – Immunology 9:556–567 1482. Woodcock JM, Zacharakis B, Plaetinck G, Bagley CJ, Qiyu S, Hercus TR, Tavernier J, Lopez AF (1994) Three residues in the common β chain of the human GM-CSF, IL-3 and IL-5 receptors are essential for GM-CSF and IL-5 but not IL-3 high affinity binding and interact with Glu21 of GM-CSF. EMBO Journal 13:5176–5185 916 References

1483. Cruikshank WW, Kornfeld H, Center DM (2000) Interleukin-16. Journal of Leukocyte Biology 67:757–766 1484. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: a cytokine and inducer of TNFα. Immunity 22:131–142 1485. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811 1486. Baud’huin M, Renault R, Charrier C, Riet A, Moreau A, Brion R, Gouin F, Duplomb L, Heymann D (2010) Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. Journal of Pathology 221:77-86 1487. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC (1998) The in- volvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR super- family. Journal of Biological Chemistry 273:34120–34127 1488. Philipp S, Puchert M, Adam-Klages S, Tchikov V, Winoto-Morbach S, Mathieu S, Deerberg A, Kolker L, Marchesini N, Kabelitz D, Hannun YA, Schütze S, Adam D (2010) The Polycomb group protein EED couples TNF receptor 1 to neutral sphin- gomyelinase. Proceedings of the National Academy of Sciences of the United States of America 107:1112–1117 1489. Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Klein- ridders A, Wunderlich T, Kashkar H, Utermöhlen O, Brüning JC, Schütze S, Krönke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460:1159–1163 1490. Evangelidou M, Tseveleki V, Vamvakas SS, Probert L (2010) TNFRI is a positive T-cell costimulatory molecule important for the timing of cytokine responses. Immunology and Cell Biology 88:586–595 1491. Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS (1999) A newly identified mem- ber of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. Journal of Biological Chemistry 274:13733–13736 1492. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16:479–492 1493. Schoppet M, Preissner KT, Hofbauer LC (2002) RANK ligand and osteoprote- gerin: paracrine regulators of bone metabolism and vascular function. Arteriosclerosis, Thrombosis, and Vascular Biology 22:549–553 1494. Hsu H, Solovyev I, Colombero A, Elliott R, Kelley M, Boyle WJ (1997) ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. Journal of Biological Chemistry 272:13471–13474 1495. Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nature Reviews – Immunology 6:728–740 1496. Hitomi K, Tahara-Hanaoka S, Someya S, Fujiki A, Tada H, Sugiyama T, Shibayama S, Shibuya K, Shibuya A (2010) An immunoglobulin-like receptor, Allergin-1, inhibits References 917

immunoglobulin E-mediated immediate hypersensitivity reactions. Nature – Immunol- ogy 11:601–607 1497. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular Research 81:474–481 1498. Pang SS, Berry R, Chen Z, Kjer-Nielsen L, Perugini MA, King GF, Wang C, Chew SH, La Gruta NL, Williams NK, Beddoe T, Tiganis T, Cowieson NP, Godfrey DI, Purcell AW, Wilce MC, McCluskey J, Rossjohn J (2010) The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 467:844–848 1499. Weintz G, Olsen JV, Frühauf K, Niedzielska M, Amit I, Jantsch J, Mages J, Frech C, Dölken L, Mann M, Lang R (2010) The phosphoproteome of toll-like receptor- activated macrophages. Molecular Systems Biology 6:371 1500. Zhang W, Samelson LE (2000) The role of membrane-associated adaptors in T cell receptor signalling. Seminars in Immunology 12:35–41 1501. Heuer K, Arbuzova A, Strauss H, Kofler M, Freund C (2005) The helically extended SH3 domain of the T cell adaptor protein ADAP is a novel lipid interaction domain. Journal of Molecular Biology 348:1025–1035 1502. Perchonock CE, Pajerowski AG, Nguyen C, Shapiro MJ, Shapiro VS (2007) The re- lated adaptors, adaptor in of unknown function X and Rlk/Itk-binding pro- tein, have nonredundant functions in lymphocytes. Journal of Immunology 179:1768– 1775 1503. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL (2001) MEKK2 associates with the adapter protein Lad/RIBP and reg- ulates the MEK5-BMK1/ERK5 pathway. Journal of Biological Chemistry 276:5093– 5100 1504. Park D, Park I, Lee D, Choi YB, Lee H, Yun Y (2007) The adaptor protein Lad asso- ciates with the G protein β subunit and mediates chemokine-dependent T-cell migra- tion. Blood 109:5122–5128 1505. Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Leibson PJ (2001) Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2. Journal of Immunology 166:7219–7228 1506. Kostenko EV,Olabisi OO, Sahay S, Rodriguez PL, Whitehead IP (2006) Ccpg1, a novel scaffold protein that regulates the activity of the Rho guanine nucleotide exchange factor Dbs. Molecular and Cellular Biology 26:8964–8975 1507. Wilcox A, Katsanakis KD, Bheda F, Pillay TS (2004) Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. Journal of Biological Chemistry 279:38881-38888 1508. Goitsuka R, Kanazashi H, Sasanuma H, Fujimura Y, Hidaka Y, Tatsuno A, Ra C, Hayashi K, Kitamura D (2000) A BASH/SLP-76-related adaptor protein MIST/Clnk involved in IgE receptor-mediated mast cell degranulation. International Immunology 12:573–580 1509. Houlard M, Romero-Portillo F, Germani A, Depaux A, Regnier-Ricard F, Gisselbrecht S, Varin-Blank N (2005) Characterization of VIK-1: a new Vav-interacting Kruppel- like protein. Oncogene 24:28–38 918 References

1510. Lavagna-Sévenier C, Marchetto S, Birnbaum D, Rosnet O (1998) The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. Journal of Biological Chemistry 273:14962–14967 1511. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature – Immunology 11:373–384 1512. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nature Immunology 5:975–979 1513. Barton GM, Kagan JC (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews – Immunology 9:535–542 1514. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662 1515. Koonin EV, Aravind L (2000) The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends in Biochemical Sci- ences 25:223–224 1516. Ting JPY, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science 327:286–290 1517. Kuenzel S, Till A, Winkler M, Häsler R, Lipinski S, Jung S, Grötzinger J, Fickenscher H, Schreiber S, Rosenstiel P (2010) The nucleotide-binding oligomerization domain- like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. Journal of Immunology 184:1990–2000 1518. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300 1519. Sutterwala FS, Flavell RA (2009) NLRC4/IPAF: a CARD carrying member of the NLR family. Clinical Immunology 130:2–6 1520. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nature Reviews – Immunology 9:465–479 1521. Klesney-Tait JK, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nature Immunology 7:1266–1273 1522. Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nature Reviews – Immunology 8:327–336 1523. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–1136 1524. Schwartzberg PL, Mueller KL, Qi H, Cannons JL (2009) SLAM receptors and SAP influence lymphocyte interactions, development and function. Nature Reviews – Im- munology 9: 39–46 A Notation Rules: Aliases and Symbols

Aliases that designate different types of molecules as well as those that do not carry an obvious meaning are not used in the present text. For example, P35 is an alias for annexin-A1, brain syntaxin-1A, ficolin-2, interleukin-12A, the cyclin-H assem- bly factor ménage á trois homolog-1, the regulatory subunit-1 of cyclin-dependent kinase CDK5, and uroplakin-3B, among others. It is substituted by AnxA1, Stx1a, Fcn2, IL12a, MAT1, CDK5R1, and UPK3B aliases, respectively. The P39 protein corresponds to the subunit D1 of the lysosomal V-type H+ ATPase (ATP6v0d1), Jun transcription factor, a component of the Activator protein AP1, and the regula- tory subunit-2 of cyclin-dependent kinase CDK5 (CDK5R2). Extracellular signal- regulated protein kinases ERK1 and ERK2, members of the mitogen-activated pro- tein kinase (MAPK) module (last tier), are also abbreviated P44 and P42 (also P40 and P41). However, both P42 and P44 correspond to the 26S protease regulatory AAA ATPase subunit (PSMC6). The alias P42 is also utilized for cyclin-dependent kinase CDK20, cyclin-dependent kinase-like protein CDKL1, and 43-kDa nucleo- porin NuP43. The alias P44 can also refer to interferon-induced protein IFI44 (or microtubule-associated protein MTAP44) and P44 (a.k.a. methylosome protein MeP50 and WD repeat-containing protein WDR77). In the present text, P38 members (P38α–P38δ) of the mitogen-activated protein kinase modules (i.e., MAPK11–MAPK14) 1 are designated as P38MAPKs to avoid con- fusion with other molecules, the alias of which is also P38. 2

1. Protein P38α is also known as MAPK14, cytokine suppressive anti-inflammatory drug (CSAID)-binding protein CSBP, CSBP1, or CSBP2, and stress-activated protein kinase SAPK2a; P38β as MAPK11 and SAPK2b; P38γ as MAPK12, ERK6, and SAPK3; P38δ as MAPK13 and SAPK4. 2. Alias P38 is used for: (1) mitogen-activated protein kinase MAPK1, extracellular signal- regulated kinase ERK2, as well as P40, P41, and P42; (2) adaptor CRK (chicken tumor virus regulator of kinase, or v-crk sarcoma virus CT10 oncogene homolog); (3) growth fac- tor receptor-binding protein GRB2-related adaptor protein GRAP2 (a.k.a. GRID, GADS, GRB2L, GRF40, GRPL, and Mona); (4) ubiquitin ligase ring finger protein RNF19a, or dorfin; (5) 38-kDa DNA polymerase-δ-interacting protein PolδIP2 (a.k.a. polymerase [DNA- directed] PDIP38 and PolD4); (6) activator of 90-kDa heat shock protein ATPase homo-

919 920 A Notation Rules: Aliases and Symbols A.1 Aliases for Molecules

Aliases include all written variants, i.e., any abbreviation 3 such as acronyms. An acronym corresponds to a word made from the initial letters or syllables of nouns that are pronounceable as a word. Acronyms are generally written with all letters in upper case. Yet, some acronyms are treated as words and written in lower case (e.g., laser [originally LASER] is an acronym for light amplification by stimulated emission of radiation, sonar [originally SONAR] for sound navigation and ranging). A substance name can derive from its chemical name (e.g., am- phetamine: α-methylphenethylamine). Acronyms can give rise to molecule names by adding a scientific suffix such as “-in”, a common ending of molecule nouns (e.g., , a portmanteau, that comes from the alias SIRT, which stands for silent information regulator-2 [two]). Other scientific prefixes and suffixes can be frequently detected throughout the present text. Their meaning is given in appendix Notations – Prefixes and Suffixes, particularly for readers from Asia. Many prefixes are used to specify position, configuration and behavior, quantity, direction and motion, structure, timing, frequency, and speed. A portmanteau is a word that combines initials and some inner letters of at least 2 words (e.g., calmodulin stands for calcium modulated protein; caspase, a cysteine- dependent aspartate-specific protease; chanzyme, an ion channel and enzyme; che- mokine, a chemoattractant cytokine; 4 emilin, an elastin microfibril interfacer; en- dorphins and endomorphins, endogenous morphines; porin, a pore-forming protein; restin, a Reed-Steinberg cell-expressed intermediate filament-associated protein,an alias for cytoplasmic linker protein CLiP1 (or CLiP170); serpin, a serine protease inhibitor; siglec, a sialic acid-binding Ig-like lectin; transceptor, a transporter- related receptor; and Prompt, a promoter upstream transcript). 5 Initialisms are abbreviations that are formed from initial letters of a single long noun or several nouns and, instead of being pronounced like an ordinary word, are read letter-by-letter (e.g., DNA that stands deoxyribonucleic acid). Some abbreviations can give rise to alphabetisms that are written as new words (e.g., Rho-associated, coiled-coil-containing protein kinase [RoCK] that is also called Rho kinase). In biochemistry, multiple-letter abbreviations can also be formed from a single word that can be long (e.g., Cam stands for calmodulin, which is itself a portmanteau word, Trx for thioredoxin, etc.) as well as short (e.g., Ttn for , etc.). log AHSA1; and (7) aminoacyl tRNA synthase complex-interacting multifunctional protein AIMP2, or tRNA synthase complex component JTV1 [608]. 3. In general, abbreviations exclude the initials of short function words, such as “and”, “or”, “of”, or “to”. However, they are sometimes included in acronyms to make them pro- nounceable (e.g., radar [originally RADAR] for radio detection and ranging). These letters are often written in lower case. In addition, both cardinal (size, molecular weight, etc.) and ordinal (isoform discovery order) numbers in names are represented by digits. 4. Cytokines are peptidic, proteic, or glycoproteic regulators that are secreted by cells of the immune system. These immunomodulating agents serve as auto- or paracrine signals. 5. The upper case initial P in Prompt is used to avoid confusion with command-line inter- preter prompt or prompt book to direct precise timing of actions on theater stage. A.1 Aliases for Molecules 921

In addition, single-letter symbols of amino acids are often used to define a molecule alias (e.g., tyrosine can be abbreviated as Tyr or Y, hence SYK stands for spleen tyrosine kinase). Aliases use, in general, capital letters and can include hyphens and dots. Yet, as a given protein can represent a proto-oncogene 6 encoded by a gene that can give rise to an oncogene (tumor promoter) after gain- or loss-of-function mutations, 7 the same acronym represents 3 different entities. 8 Besides, a given abbreviation can designate distinct molecules without necessar- ily erroneous consequence in a given context (e.g., PAR: polyADPribose or protease- activated receptor and GCK: germinal center kinases or glucokinase; in the latter case, the glucokinase abbreviation should be written as GcK or, better, GK). In addition, a large number of aliases that designate a single molecule results from the fact that molecules have been discovered independently several times with possibly updated functions. Some biochemists uppercase the name of a given mol- ecule, whereas others lowercase (e.g., cell division cycle guanosine triphosphatase of the Rho family CDC42 or Cdc42, adaptor growth factor receptor-bound pro- tein GRB2 or Grb2, chicken tumor virus regulator of kinase CRK or Crk, guanine nucleotide-exchange factor Son of sevenless SOS or Sos, etc.). Acronyms are then not always capitalized. Printing style of aliases should not only avoid confusion, but also help one in remembering alias meaning. In the present textbook, choice of lower and upper case letters in molecule aliases is dictated by the following criteria.

6. In 1911, P. Rous isolated a virus that was capable of generating tumors of connective tissue (sarcomas) in chicken. Proteins were afterward identified, the activity of which, when uncontrolled, can provoke cancer, hence the name oncogene given to genes that encode these proteins. Most of these proteins are enzymes, more precisely kinases. The first oncogene was isolated from the avian Rous virus by D. Stéhelin and called Src (from sarcoma). This inves- tigator demonstrated that the abnormal functioning of the Src protein resulted from mutation of a normal gene, or proto-oncogene, which is involved in cell division. 7. Loss-of-function mutations cause complete or partial loss of function of gene products that operate as tumor suppressors, whereas gain-of-function mutations generate gene prod- ucts with new or abnormal function that can then act as oncogenes. Typical tumor-inducing agents are enzymes, mostly regulatory kinases and small guanosine triphosphatases, that fa- vor proliferation of cells, which do normally need to be activated to exert their activities. Once their genes are mutated, these enzymes become constitutively active. Other oncogenes include growth factors (a.k.a. mitogens) and transcription factors. Mutations can also disturb signaling axis regulation, thereby raising protein expression. Last, but not least, chromosomal translocation can also provoke the expression of a constitutively active hybrid protein. 8. Like Latin-derived shortened expressions – as well as foreign words – that are currently written in italics, genes can be italicized. However, this usage is not required in scientific textbooks published by Springer. Italic characters are then used to highlight words within a text to easily target them. Proteins are currently romanized (ordinary print), but with a capital initial. Nevertheless, names (not aliases) of chemical species are entirely lowercased in most – if not all – scientific articles, except to avoid confusion with a usual word (e.g., hedgehog animal vs. Hedgehog protein and raptor [bird of prey] vs. Raptor molecule). 922 A Notation Rules: Aliases and Symbols

(1) An upper case letter is used for initials of words that constitute molecule nouns (e.g., receptor tyrosine kinase RTK). An alias of any compound takes into account added atoms or molecules (e.g., PI: phosphoinositide and PIP: phospho- inositide phosphate) as well as their number (e.g., PIP2: phosphatidylinositol bis- phosphate and DAG: diacylglycerol). (2) A lower case letter is used when a single letter denotes a subfamily or an iso- form when it is preceded by a capital letter (e.g., PTPRe: protein tyrosine phospha- tase receptor-like type-E). Nevertheless, an upper case letter is used in an alias after a single or several lower case letters to distinguish the isoform type (e.g., RhoA iso- form and DNA-repair protein RecA for recombination protein-A), but OSM stands for oncostatin-M, not osmole Osm 9 to optimize molecule identification. These criteria enable to use differently written aliases with the same sequence of letters for distinct molecules (e.g., CLIP for corticotropin-like intermediate peptide, CLiP: cytoplasmic CAP-Gly domain-containing linker protein, and iCliP: intramem- brane-cleaving protease). As the exception proves the rule, current aliases, such as PKA and PLA that des- ignate protein kinase-A and phospholipase-A, respectively, have been kept. Preceded by only 2 upper case letters, a lower case letter that should be used to specify an iso- form can bring confusion with acronyms of other protein types (e.g., phospholamban alias PLb). Nouns (e.g., hormone-like fibroblast growth factor [hFGF] and urokinase-type plasminogen activator [uPA]) or adjectives (e.g., intracellular FGF isoform [iFGF]) that categorize a subtype of a given molecule correspond to a lower case letter to emphasize the molecule species. Hence, an upper case letter with a commonly used hyphen (e.g., I[R]-SMAD that stands for inhibitory [receptor-regulated] SMAD; V- ATPase for vacuolar adenosine triphosphatase; MT1-MMP for membrane type-1 matrix metalloproteinase; and T[V]-SNARE for target [vesicle-associated] soluble Nethylmaleimide-sensitive factor-attachment protein receptor) is then replaced by a lower case letter (e.g., i[r]SMAD, vATPase, mt1MMP, and t[v]SNARE), as is usual for RNA subtypes (mRNA, rRNA, snRNA, and tRNA for messenger, ribosomal, small nuclear, and transfer RNA, respectively). Similarly, membrane-bound and se- creted forms of receptors and coreceptors that can derive from alternative mRNA splicing are defined by a lower case letter (e.g., sFGFR for secreted extracellular FGFR form and sFRP for soluble Frizzled-related protein), as well as eukaryotic translation elongation (eEF) and initiation (eIF) factors. (3) Although l, r, and t can stand for molecule-like, -related, and -type, respec- tively, when a chemical is related to another one, in general, upper case letters are used for the sake of homogenity and to clearly distinguish between the letter L and numeral 1 (e.g., KLF: Krüppel-like factor, CTK: C-terminal Src kinase (CSK)-type kinase, and SLA: Src-like adaptor). (4) An upper case letter is most often used for initials of adjectives contained in the molecule name (e.g., AIP: actin-interacting protein; BAX: BCL2-associated

9. Osmole: the amount of osmotically active particles that exerts an osmotic pressure of 1 atm when dissolved in 22.4 l of solvent at 0 ◦C. A.1 Aliases for Molecules 923

X protein; HIF: hypoxia-inducible factor; KHC: kinesin heavy chain; LAB: linker of activated B lymphocytes; MAPK: mitogen-activated protein kinase; and SNAP: soluble N-ethylmaleimide-sensitive factor-attachment protein); (5) Lower case letters are used when alias letters do not correspond to initials (e.g., Fox – not fox –: forkhead box), except for portmanteau words that are entirely written in minuscules (e.g., gadkin: γ1-adaptin and kinesin interactor). This rule applies, whether alias letters do correspond to successive noun letters (e.g., Par: partitioning defective protein and Pax: paxillin, as well as BrK: breast tumor kinase and ChK: checkpoint kinase, whereas CHK denotes C-terminal Src kinase [CSK]-homologous kinase) or not (e.g., Fz: Frizzled and HhIP: Hedgehog- interacting protein), 10 except for composite chemical species (e.g., DAG: diacyl- glycerol). However, some current usages have been kept for short aliases of chemical species name (e.g., Rho for Ras homolog rather than RHo). In any case, molecule (super)family (class) aliases as well as those of their mem- bers are written in capital letters, such as the IGSF (IGSFi: member i; immunoglob- ulin), KIF (KIFi; kinesin), SLC (SLCi; solute carrier), TNFSF (TNFSFi; tumor- necrosis factor), and TNFRSF (TNFRSFi; tumor-necrosis factor receptor) superfam- ily. Gene names are also written with majuscules when the corresponding protein name contains at least one minuscule, otherwise only the gene name initial is written with an upper case letter that is then followed by lower case letters. To highlight its function, substrate aliases (e.g., ARF GTPases) contained in a molecule alias are partly written with lower case letters (e.g., ArfRP, ArfGEF, Arf- GAP stand for ARF-related protein, ARF guanine-nucleotide exchange factor, and ARF GTPase-activating protein, respectively). Last, but not least, heavy and pedantic designation of protein isoforms based on roman numerals has been avoided and replaced by usual arabic numerals (e.g., angiotensin-2 rather than angiotensin-II), except for coagulation (or clotting) fac- tors. Moreover, character I can mean either letter I or number 1 without obvious dis- crimination at first glance (e.g., GAPI that stands for Ras GTPase-activating protein GAP1, but can be used to designate a growth-associated protein inhibitor). Unnecessary hyphenation in aliases of substances (between an upper case letter, which can define the molecule function, and the chemical alias, or between it and assigned isotype number) has been avoided. In any case, the Notation section serves not only to define aliases, but also, in some instances, as disambiguation pages.

10. The Hedgehog gene was originally identified in the fruit fly Drosophila melanogaster. It encodes a protein involved in the determination of segmental polarity and intercellular signal- ing during morphogenesis. Homologous gene and protein exist in various vertebrate species. The name of the mammal hedgehog comes from hecg and hegge (dense row of shrubs or low trees), as it resides in hedgerows, and hogg and hogge, due to its pig-like, long projecting nose (snout). The word Hedgehog hence is considered as a seamless whole. 924 A Notation Rules: Aliases and Symbols A.2 Symbols for Physical Variables

Unlike substances aliases, symbols for physical quantities are most often repre- sented by a single letter of the Latin or Greek alphabet (i: current; J: flux; L: length; m: mass; p: pressure; P: power; T: temperature; t: time; u: displacement; v: velocity; x: space; λ: wavelength; μ: dynamic viscosity; ρ: mass density; etc.). These symbols are specified using sub- and superscripts (cp and cv: heat capacity at constant pres- sure and volume, respectively; DT : thermal diffusivity; Gh: hydraulic conductivity; GT: thermal conductivity; αk: kinetic energy coefficient; αm: momentum coefficient; etc.). A physical quantity associated with a given point in space at a given time can be: (1) a scalar uniquely defined by its magnitude; (2) a vector characterized by a magnitude, a support, and a direction represented by an oriented line segment defined by a unit vector; and (3) a tensor specified by a magnitude and a few directions. To ensure a straightforward meaning of symbols used for scalar, vectorial, and tensorial quantities, bold face upper (T) and lower (v) case letters are used to denote a tensor and a vector, respectively, whereas both roman (plain, upright)-style upper and lower case letters designate a scalar. List of Currently Used Prefixes and Suffixes

Prefixes (localization) by the body’s cells; endomembranes at organelle surfaces within the cell) “ep-” (variant “eph-”, or “epi-” [πι]): upon “ab-” (Latin) and “apo-” (Greek: απo): away (epigenetics refers to the inheritance from or off (abluminal: endothelial (“-genetic”: ability to procreate edge opposite to wetted surface; [γννητικoς]) of variations in gene apolipoproteins: lipid carriers that expression beyond ("epi-": on, upon, cause egress [also ingress] from above, close to, beside, near, toward, cells; aponeurosis (απoνυρωσις; against, among, beyond, and also) νυρoν: sinew, tendon) muscle sheath change in the DNA sequence. that limits radial motion and enhances “front-” and “pre-”: anterior or in front of axial contraction; and apoptosis: “post-”: behind separation [“-ptosis”: fall (πτωσiς): “infra-” and “sub-”: under or below as leaves fall away from a tree], a type “super-” and “supra-”: above of ) “inter-”: between or among “acr-” (variant “acro-” [ακρoς]): top or apex “peri-” (πρι): around “ad-” (adfecto: to reach; adfio: to blow “tele-” (τλ): remote toward; adfluo: to flow toward): toward “trans-”: across (ad- becomes “ac-” before c, k, or q; “af-” before f [afferent]; “ag-” before Prefixes (composition) g [agglutination]; “al-” before l; “ap-” before p [approximation]; “as-” before “an-” and “aniso-” (ανισoς): unequal, s; and “at-” before t) uneven, heterogeneous παρα “cis-”, “juxta-”, and “para-” ( ): near, “iso-” (ισoς): equal, alike (isomer [μρoς: beside, or alongside part, portion] “contra-”: opposite side; “ipsi-” (ipse): same “mono-” (μoνoς) and “uni-” (unicus): single side; “latero-”: side; “oligo-” (oλιγoς): few, little, small “ecto-” (κτoς), “exo-” (ξo), and “extra-”: “multi-” (multus), “pluri-” (plus, plures), outside, outer, external, or beyond and “poly-” (πoλυς): many, much (exogenous chemicals produced by “ultra-”: in excess. an external source, or xenobiotics [“xeno-”: foreigner]) Prefixes (quantity) “endo-” (νδoν) and “intra-”: inside (endogenous substances synthesized “demi-” (dimidius) and “hemi-” (ημι): half

925 926 List of Currently Used Prefixes and Suffixes

“sesqui-”: one and a half (half more) “macro-” (μακρoς): large, long, or big “di-”or“dis-”(δυo; δις)aswellas“bi-”or “mega-” (μγας): great, large “bis-”: 2, twice “meso-” (μσoς): middle “tri” (τρις, τρι-; tres, tria): 3 “micro-” (μικρoς): small “tetra-” (ττρα), “quadri-” (variant: “nano-” (νανoς): dwarf, tiny “quadr-” and “quadru-”): 4 “homo-” (oμo-): same (oμoλoγoς: agreeing, “penta-” (πντας; pentas), “quinqu-”, and corroborating; variant: “homeo-” “quint-”: 5 [homeostasis]) “-” (ξ) and “sexa-”: 6 “hetero-” (τρo-): other “hepta-” (πτα): 7 “octa-” (oκτα): 8 Prefixes (timing) “nona-” (ννα): 9 (ninth part) “deca-” (δκα): 10 “ana-” (ανα): culminating (anaphase of “quadra-” (quadragenarius): 40 (elements) the cell division cycle), up, above “quinqua-” (quinquagenarius): 50 (ανoδoς: a way up, anode [positive “sexa-” (sexagenarius [sex: 6]: 60 electrode; oδoς; way, path, road, “septua-” (septuagenarius [septem: 7]): 70 track]) “nona-” (nonagenarius): 90 “ante-”: before “circa-”: approximately, around (circadian: Prefixes (motion and direction) approximately one day) “infra-”: below, shorter (infradian: rhythm “af-”: toward the center (single master with lower frequency than that of object); e.g., nerve and vascular circadian rhythm, not smaller period) afferents (ferre: to carry) to brain and “inter-”: among, between, during heart, respectively, rather than toward “meta-” (μτα): after, beyond, behind, any slave, supplied tissue from the set later; in the middle of (metaphase of of the body’s organs; also affector, the cell division cycle); as well as i.e., chemical messenger that brings connected to, but with a change of state a signal to the cell considered as the (metabolism) and about (metadata) object of interest, this exploration “post-”: after focus being virtually excised from the “pre-”: earlier organism with its central command “pro-” (πρo): preceding, first, before system, except received signals (prophase of the cell division cycle) “ef-” (effero: to take away): from the center “telo-” (τλoς): end, completion (efferent; effector, i.e., chemical “ultra-”: beyond, longer (ultradian: period transmitter recruited by the previous smaller than that of 24–28-hour cycle, mediator of a signaling cascade at a i.e., frequency greater than that of the given locus to possibly translocate to circadian rhythm) another subcellular compartment) “antero-” (anterior): before, in front of, Prefixes (functioning modality) facing, or forward “retro-”: behind or backward “auto-” (αυτoς): same, self “tropo-” (τρoπoς): duct direction; (tropa: “brady-” (βραδυς): slow (decelerate) rotation; celestial revolution); e.g., “tachy-” (ταχoς): rapid (accelerate) tropomyosin (μυς, musculus: muscle; “amphi-” (αμϕι): both (amphiphilic μυo-: refers to muscle [μυoτρωτoς: substances are both hydrophilic injured at a muscle]) and lipophilic; amphisomes are generated by both autophagosomes Prefixes (structure and size) and endosomes) List of Currently Used Prefixes and Suffixes 927

“ana-” : upward (anabolism) or against “-phob” (ϕoβια): repulsed (υδρoϕoβια, (anaphylaxis) hydrophobia [Latin]: horror of water) “cata-” (κατα): downward (catabolism, “-phore” (ϕρω): carrier (αμϕρω:to cathode [negative electrode; oδoς; bring up) way, path, road, track]) “-yl” denotes a radical (molecules with “anti-” (αντι): against unpaired electrons) “pro-”: favoring “-ploid” (πλoω): double, fold (diploid, “co-” (coaccedo: add itself to): together twofold; διπλoω: to double; “contra-”: adverse, against, beside, next to, διαπλoω: unfold) opposite “-emia”: in relation to flow (ανμια: “de-”: remove, reduce, separation after flatulence; υηνμια: fair wind), association (Latin de; e.g., deoxy-) particularly blood condition “dys-” (δυς): abnormal (δυσαης): “-genesis” (γνσις): cause, generation, ill-blowing) life source, origin, productive force “equi-” (æque): equal or alike “-iasis”: for diseased condition “hem-” or “hemat-” (αιμα: blood): related “-itis”: inflammation to blood “-lemma” (λμμα: skin): sheath “hypo-” (υπo): under, beneath, and low “-ole” and “-ule”: small (arteriole and “hyper-” (υπρ): above, beyond, and large venule; variant “-ula” [blastula] and “per-”: through (e.g., percutaneous) and “-ulum”) during (e.g., peroperative) “-plasma” (πλασμα): anything molded “pseudo-” (ψυδo): pretended, false (plasma: creature generated from silt “re-”; again of earth) “-plasia” (πλασια): formation, molding Scientific suffixes “-podium” (πoδoς: foot; podium [Latin]: “-ase”: enzyme (synthase, lipase, etc.) small knoll, small protuberance): “-ate”: salt of a base protrusion “-cyte” (κυτoς): cell (erythro- [ρυθρoς: “-poiesis” (πoιω): production red], leuko- [λυκoς: light, bright, “-soma” (σωμα): body clear, white], thrombo- [θρoμβoς: “-sclerosis” (σκλημα): hardness, induration lump, clot], adipo- [adeps: fat; “-stasis” (στασις): stabilization adipalis, adipatus, adipeus, adipinus: (απoκαταστασις: restoration; fatty], fibro- [fibra: fiber, filament], ανυπoστασις: migration) myo- [μυς: muscle, mouse, mussel], “-stomosis” (στoμα: mouth): equipped with myocardiocyte [κραδια: heart; an outlet cardiacus: related to heart, stomach; to “-taxy/tactic” (ταχυ: rapid; τακτικoς:to have heart trouble, stomach trouble], maneuver): related to motion (also etc.); prefix, i.e., ταχυκινησις: quick “-crine” (κρινω): to decide, to separate, and motion; ταχυνω: to accelerate; to secrete (e.g., endocrine regulator) and ταχυπνoια: short breath; not (υκρινω:keepinorder) [δια]ταξις: disposition, arrangement) “-elle”: small (organelle in a cell [like an “-trophy/trophic” (τρoϕις: well fed): related organ in a body]) to growth “-ium”, “-ion”, “-isk”, and “-iscus”: little “-oma”: tumor of (“-ium”: tissue interface and envelope, “-pathy” (παθoς, παθια): disease of such as endothelium and pericardium) “-tomy” (τoμια) and “-ectomy”: surgical “-phil” (ϕιλια): attracted (αϕιλια:wantof removal (απλoτoμια: simple incision; friends) ϕαûrhoυγγoτoμια: laryngotomy) List of Aliases

A ACK: activated CDC42-associated kinase ACP1: acid phosphatase-1, soluble A: Avogadro number (lmwPTP) ( ) A p : area–pressure relation ACTH: adrenocorticotropic hormone A: Almansi strain tensor Factin: filamentous actin A: cross-sectional area (Cav–actin: caveolin-associated Factin) A: actin-binding site Gactin: monomeric globular actin a: acceleration AcvR: activin receptor (TGFβ receptor a: major semi-axis superfamily) AA: arachidonic acid Ad: adrenaline AAA: ATPase associated with diverse ADAM: a disintegrin and metallopeptidase cellular activities (adamalysin) AAA: abdominal aortic aneurysm ADAMTS: a disintegrin and metallopepti- AAAP: aneurysm-associated antigenic dase with thrombospondin protein ADAP: adhesion and degranulation- AAK: adaptin-associated kinase promoting adaptor protein AATK: apoptosis-associated tyrosine kinase ABC: ATP-binding cassette transporter ADAP: ArfGAP with dual PH domains (transfer ATPase) ADF: actin-depolymerizing factor AbI: Abelson kinase interactor (cofilin-related destrin) Abl: Abelson leukemia viral proto-oncogene ADH: antidiuretic hormone (vasopressin) product (NRTK) ADMA: asymmetric dimethylarginine ABLIM: actin-binding LIM domain- ADP: adenosine diphosphate containing protein aDuSP: atypical dual specificity phosphatase ABP: actin-binding protein AE: anion exchanger AC: atrial contraction AEA: N-arachidonoyl ethanolamine ACAP: ArfGAP with coiled-coil, ankyrin (anandamide) repeat, PH domains AF: atrial fibrillation ACase: adenylate cyclase AFAP: ArfGAP with phosphoinositide- ACi: adenylate cyclase isoform i binding and PH domains ACAT: acylCoA–cholesterol acyltransferase aFGF: acidic fibroblast growth factor (FGF1) ACC: acetyl coenzyme-A carboxylase AGAP: ArfGAP with GTPAse, ankyrin ACE: angiotensin-converting enzyme repeat, and PH domains ACh: acetylcholine AGF: autocrine growth factor

929 930 List of Aliases

AGFG: ArfGAP with FG repeats ANT: adenine nucleotide transporter Ago: Argonaute protein Anx: annexin AGS: activator of G-protein signaling AOC: amine oxidase copper-containing AHR: aryl hydrocarbon receptor protein AIF: apoptosis-inducing factor AoV: aortic valve AIP: actin-interacting protein AP: (clathrin-associated) adaptor proteic AIRe: complex AKAP: A-kinase (PKA)-anchoring protein AP: Activator protein (transcription factor) ALE: arbitrary Eulerian Lagrangian AP: activating enhancer-binding protein ALIX: apoptosis-linked gene-2-interacting AP4A: diadenosine tetraphosphate protein-X APAF: apoptotic peptidase-activating factor ALK: anaplastic lymphoma kinase APAP: ArfGAP with PIx- and paxillin- ALKi: type-i activin receptor-like kinase binding domains (TGFβ receptor superfamily) APC: antigen-presenting cell ALOx5: arachidonate 5-lipoxygenase APC: adenomatous polyposis coli protein ALOx5AP: arachidonate 5-lipoxygenase (Ub ligase) activation protein APC/C: anaphase-promoting complex (or ALP: actinin-associated LIM protein cyclosome; Ub ligase) (PDLIM3) APH: anterior pharynx defective phenotype alsin: amyotrophic lateral sclerosis protein homolog (portmanteau) aPKC: atypical protein kinase C ALX: adaptor in lymphocytes of unknown APl: action potential function X Apn: adiponectin AMAP: A multidomain ArfGAP protein Apo: apolipoprotein AMBRA: activating molecule in beclin-1- ApoER: apolipoprotein-E receptor regulated autophagy protein APPL: adaptor containing phospho- AMHR: anti-Müllerian hormone receptor Tyr interaction, PH domain, and (TGFβ receptor superfamily) Leu zipper AMIS: apical membrane initiation site APS: adaptor with a PH and SH2 domain (lumenogenesis) Aqp: aquaporin AMP: adenosine monophosphate AR: adrenergic receptor (adrenoceptor) AMPAR: α-amino 3-hydroxy 5-methyl AR: androgen receptor (nuclear receptor 4-isoxazole propionic acid receptor NR3c4; transcription factor) AMPK: AMP-activated protein kinase AR: area ratio AMSH: associated molecule with SH3 ARAP: ArfGAP with RhoGAP, ankyrin domain (deubiquitinase) repeat, PH domains AmyR: receptor Areg: amphiregulin (EGF superfamily Ang: angiopoietin member) AngL: angiopoietin-like molecule ARF: ADP-ribosylation factor Ank: ankyrin ArfRP: ARF-related protein ANP: atrial natriuretic peptide ARFTS: CKI2A-locus alternate reading ANPR (NP1): atrial natriuretic peptide frame tumor suppressor (ARF or receptor (guanylate cyclase) p14ARF ) ARE: activin-response element ARH: autosomal recessive hypercholes- ARE: androgen response element terolemia adaptor (low-density ARE: anti-oxidant response element lipoprotein receptor adaptor) ARNT: aryl hydrocarbon nuclear receptor ARH: aplysia Ras-related homolog translocator ArhGEF: RhoGEF ANS: autonomic nervous system ARL: ADP-ribosylation factor-like protein List of Aliases 931

ARNO: ARF nucleotide site opener BACE: β-amyloid precursor protein- ARP: absolute refractory period converting enzyme ARP: actin-related protein BAD: BCL2 antagonist of cell death ARPP: cAMP-regulated phosphoprotein BAF: barrier-to-autointegration factor Arr: arrestin BAG: BCL2-associated athanogene ART: arrestin-related transport adaptor (chaperone regulator) (α-arrestin) BAI: brain-specific angiogenesis inhibitor ART: adpribosyltransferase (adhesion-GPCR) Artn: artemin BAIAP: brain-specific angiogenesis ARVCF: armadillo repeat gene deleted in inhibitor-1-associated protein (insulin velocardiofacial syndrome receptor substrate) ARVD: arrythmogenic right ventricular BAK: BCL2-antagonist–killer dystrophy (i)BALT: (inducible) bronchus-associated AS: Akt (PKB) substrate lymphoid tissue ASAP: artery-specific antigenic protein BAMBI: BMP and activin membrane-bound ASAP: ArfGAP with SH3, ankyrin repeat, inhibitor homolog PH domains BAnk: B-cell scaffold with ankyrin repeats ASIC: acid-sensing ion channel Barkor: beclin-1-associated autophagy- ASK: apoptosis signal-regulating kinase related key regulator aSMC: airway smooth muscle cell BAT: brown adipose tissue ASP: actin-severing protein BATF: basic ATF-like AT: antithrombin transcription factor (B-cell-activating ATAA: ascending thoracic aortic aneurysm transcription factor) ATF: activating transcription factor BAX: BCL2-associated X protein AtG: autophagy-related gene product BBB: blood–brain barrier ATMK: ataxia telangiectasia mutated kinase BC: boundary condition ATn: angiotensin bCAM: basal cell adhesion molecule ATng: angiotensinogen (Lutheran blood group glycoprotein) AtOx: anti-oxidant protein (metallochaper- BCAP: B-cell adaptor for phosphatidylinosi- one) tol 3-kinase ATP: BCAR: Breast cancer anti-estrogen ATPase: adenosine triphosphatase resistance docking protein ATR (AT 1/2): angiotensin receptor BCL: B-cell lymphoma (leukemia) protein ATRK: ataxia telangiectasia and Rad3- BCLxL: B-cell lymphoma extra-large related kinase protein AVN: atrioventricular node BCR: B-cell receptor AVV: atrioventricular valves BCR: breakpoint cluster region protein AW: analysis window Bdk: bradykinin BDNF: brain-derived neurotrophic factor B Becn, beclin: BCL2-interacting protein BEM: boundary element method B: Biot-Finger strain tensor Best: bestrophin B: bulk modulus bFGF: basic fibroblast growth factor (FGF2) B: bilinear form BFUe: burst-forming unit erythroid b: minor semi-axis BFUmeg: burst-forming unit megakaryocyte b: body force BGT: betaine–GABA transporter bˆ: unit binormal BH4: tetrahydrobiopterin (enzyme cofactor) B lymphocyte (B cell): bone marrow BID: BH3-interacting domain death agonist lymphocyte BIG: brefeldin-A-inhibited GEFs for ARFs 932 List of Aliases

BIK: BCL2-interacting killer c: stress vector BIM: BH3-containing protein BCL2-like 11 cτ:shear (BCL2L11) cw:wallshearstress BK: high-conductance, Ca++-activated, c: concentration voltage-gated K+ channel c(p):wavespeed BLK: B-lymphoid tyrosine kinase cp:isobarheatcapacity Blm: Bloom syndrome, RecQ DNA cv: isochor heat capacity helicase-like protein C1P: ceramide 1-phosphate BLnk: B-cell linker protein C-terminus: carboxy (carboxyl group BM: basement membrane COOH)-terminus BMAL: brain and muscle ARNT-like protein C/EBP: CCAAT/enhancer-binding protein (gene Bmal) CA: computed angiography BMAT: bone-marrow adipose tissue CAi: carbonic anhydrase isoform i BMF: BCL2 modifying factor Ca: calcium ++ BMP: bone morphogenetic protein (TGFβ CaV: voltage-gated Ca channel ++ superfamily) CaV1.x: L-type high-voltage-gated Ca BMPR: bone morphogenetic protein receptor channel ++ BNIP: BCL2/adenovirus E1B 19-kDa CaV2.x: P/Q/R-type Ca channel ++ protein-interacting protein CaV3.x: T-type low-voltage-gated Ca BNP: B-type natriuretic peptide channel BMX: bone marrow Tyr kinase gene in CAAT: cationic amino acid transporter chromosome-X product CABG: coronary artery bypass grafting BOC: brother of CDO Cables: CDK5 and Abl enzyme substrate BOK: BCL2-related ovarian killer CAK: CDK-activating kinase (pseudokinase) BORG: binder of Rho GTPase Cam: calmodulin (calcium-modulated BRAG: brefeldin-resistant ArfGEF protein) BrCa: breast cancer-associated (suscep- CamK: calmodulin-dependent kinase tibility) protein (tumor suppressor; cAMP: cyclic adenosine monophosphate DNA-damage repair; a.k.a. FancD1) CAP: adenylate cyclase-associated protein BrD: bromodomain-containing protein CAP: carboxyalkylpyrrole protein adduct BrK: breast tumor kinase CAP: chromosome-associated protein BrSK: brain-selective kinase (BrD4) BSEP: bile salt export pump CAPN: calpain gene BTF: basic transcription factor CaPON: carboxy-terminal PDZ ligand of BTK: Bruton Tyr kinase NOS1 (NOS1AP) BUB: budding uninhibited by benzimida- CAR: constitutive androstane receptor zoles (NR1i3) CaR: calcium-sensing receptor C CARP: cell division cycle and apoptosis regulatory protein C: stress tensor CAS: cellular apoptosis susceptibility C: compliance protein C: heat capacity CAS: CRK-associated substrate (or C: chronotropy P130CAS and BCAR1) Cx: type-x chemokine C (γ) CAs: cadherin-associated protein CD:dragcoefficient CASK: calcium–calmodulin-dependent Cf: friction coefficient serine kinase (pseudokinase) CL: lift coefficient CASL: CRK-associated substrate-related Cp: pressure coefficient protein (CAS2) List of Aliases 933

CASP: cytohesin-associated scaffold protein CeP: centrosomal protein caspase: cysteine-dependent aspartate- CEPC: circulating endothelial progenitor specific peptidase cell Cav: caveolin Cer: ceramide CBF: coronary blood flow CerK: ceramide kinase CBF: core-binding factor CerT: ceramide transfer protein CBL: Casitas B-lineage lymphoma adaptor CETP: cholesterol ester transfer protein and Ub ligase CFD: computational fluid dynamics CBLb: CBL-related adaptor CFLAR: caspase-8 and FADD-like apoptosis CBP: cap-binding protein regulator CBP: CREB-binding protein CFTR: cystic fibrosis transmembrane CBP: C-terminal Src kinase-binding protein conductance regulator β CBS: cystathionine -synthase (H2S CFU: colony-forming unit production) CFUb: CFU basophil (basophil-committed CCDC: coiled-coil domain-containing stem cells) protein ++ CFUc: CFU in culture (granulocyte CCICR: calcium channel-induced Ca precursors, i.e., CFUgm) release CFUe: CFU erythroid CCK4: colon carcinoma kinase 4 (PTK7) CFUeo: CFU eosinophil CCL: chemokine CC-motif ligand CFUg: CFU granulocyte CCN: CyR61, CTGF, and NOv (CCN1– CFUgm: CFU granulocyte–macrophage CCN3) family CFUgemm: CFU granulocyte–erythroid– Ccn: cyclin macrophage–megakaryocyte Ccnx–CDKi: type-x cyclin–type-i CFUm: CFU macrophage cyclin-dependent kinase dimer CFUmeg: CFU megakaryocyte CCPg: cell cycle progression protein CFUs: colony-forming unit spleen CCS: copper chaperone for superoxide (pluripotent stem cells) dismutase CG: chromogranin CCT: chaperonin containing T-complex cGK: cGMP-dependent protein kinase protein (protein kinase G) CCx: type-x chemokine CC (β) CCR: chemokine CC motif receptor cGMP: cyclic guanosine monophosphate CD: cluster determinant protein (cluster of CGN: cis-Golgi network differentiation) CGRP: calcitonin gene-related peptide CDase: ceramidase chanzyme: ion channel and enzyme CDC: cell division cycle protein chemokine: chemoattractant cytokine cDC: classical dendritic cell CHIP: C-terminus heat shock cognate-70- CDH: CDC20 homolog interacting protein Cdh: cadherin ChK: checkpoint kinase CDK: cyclin-dependent kinase CHK: CSK homologous kinase Cdm: caldesmon CHOP: CCAAT/enhancer-binding protein CDO: cell adhesion molecule-related/ homologous protein downregulated by oncogenes CHREBP: carbohydrate-responsive CE (CsE): cholesteryl esters element-binding protein CEC: circulating endothelial cell ChT: CELSR: cadherin, EGF-like, LAG-like, and CI: cardiac index seven-pass receptor CICR: calcium-induced calcium release CenP: centromere protein Cin: chronophin CEP: carboxyethylpyrrole CIP: CDC42-interacting protein 934 List of Aliases

CIP2a: cancerous inhibitor of protein CntnAP: contactin-associated protein phosphatase-2A CO: cardiac output CIPC: CLOCK-interacting protein, circadian CoBl: Cordon-bleu homolog (actin CIS: cytokine-inducible SH2-containing nucleator) protein COLD: chronic obstructive lung disease CITED: CBP/P300-interacting transactivator COOL: Cloned out of library (RhoGEF6/7) with glutamic (E) and aspartic acid coSMAD: common (mediator) SMAD (D)-rich C-terminus-containing (SMAD4) protein COx: cyclooxygenase (prostaglandin CK: creatine kinase endoperoxide synthase) CK: casein kinase COx17: cytochrome-C oxidase copper CKI: cyclin-dependent kinase inhibitor chaperone CLAsP: CLiP-associated protein (microtu- CoP: coat protein bule binder) CoP: constitutive photomorphogenic protein ClASP: clathrin-associated sorting protein (Ub ligase) CLC: cardiotrophin-like cytokine COPD: chronic obstructive pulmonary ClC: voltage-gated chloride channel disease ClCa: calcium-activated chloride channel COUPTF: chicken ovalbumin upstream ClIC: chloride intracellular channel promoter transcription factor CLINT: clathrin-interacting protein located (NR2f1/2) in the trans-Golgi network CP4H: collagen prolyl 4-hydroxylase CLIP: corticotropin-like intermediate CPC: chromosomal passenger complex peptide CpG: cytidine-phosphate–guanosine CLiP: cytoplasmic CAP-Gly domain- oligodeoxynucleotide (motif) containing linker protein cPKC: conventional protein kinase C iCliP: intramembrane-cleaving peptidase Cpx: complexin (that clips) CR: complement component receptor CLK: CDC-like kinase Cr: creatine ClNS: Cl− channel nucleotide-sensitive cRABP: cellular retinoic acid-binding CLOCK: circadian locomotor output cycles protein kaput cRBP: cellular retinol-binding protein CLP: common lymphoid progenitor CRAC: Ca++ release-activated Ca++ CLS: ciliary localization signal channel Cmi: chylomicron CRACR: CRAC regulator CMLP: common myeloid–lymphoid Crb: Crumbs homolog polarity complex progenitor CRE: cAMP-responsive element CMP: common myeloid progenitor CREB: cAMP-responsive element-binding CMC: cardiomyocyte protein Col: collagen CRF: corticotropin-releasing factor (family) CoLec: collectin CRH: corticotropin-releasing hormone ColF: collagen fiber CRIB: CDC42/Rac interactive-binding CORM: carbon monoxide (CO)-releasing protein molecule CRIK: citron Rho-interacting, Ser/Thr CNG: cyclic nucleotide-gated channel kinase (STK21) CNS: central nervous system CRK: CT10 regulator of kinase CNT: connecting tubule CRK: chicken tumor virus regulator of CNTi: concentrative nucleoside transporter kinase (SLC28ai) CRKL: V-CRK avian sarcoma virus CT10 CNTF: ciliary neurotrophic factor homolog-like List of Aliases 935

CRL4: cullin-4A RING ubiquitin ligase CX3CLi: type-i CX3C (δ) chemokine ligand CRLR: calcitonin receptor-like receptor CX3CRi: type-i CX3C (δ) chemokine CRP: C-reactive protein receptor Crt: calreticulin cyCK: cytosolic creatine kinase CRTC: CREB-regulated transcription Cyld: cylindromatosis tumor suppressor coactivator protein (deubiquitinase USPL2) Cry: cryptochrome CyP: member of the cytochrome-P450 Cs: cholesterol superfamily CSBP: cytokine-suppressive anti- C3G: Crk SH3-binding GEF inflammatory drug-binding protein γ CSE: cystathionine - (H2S production) D CSF: cerebrospinal fluid CSF: colony-stimulating factor CSF1: macrophage colony-stimulating D: dromotropy factor (mCSF) D: vessel distensibility CSF2: granulocyte–macrophage colony- D: diffusion coefficient stimulating factors (gmCSF and DT : thermal diffusivity sargramostim) D: deformation rate tensor CSF3: granulocyte colony-stimulating d: displacement vector factors (gCSF and filgrastim) D: flexural rigidity D CSK: C-terminal Src kinase : demobilization function (from prolifera- Csk: cytoskeleton tion to quiescence) d Csq: calsequestrin : death, decay, degradation rate CSS: candidate sphingomyelin synthase d: duration CT: cardiotrophin Dab: Disabled homolog CT: computed tomography DAD: delayed afterdepolarization CTBP: C-terminal-binding protein DAG: diacylglycerol CTen: C-terminal tensin-like protein DAPC: dystrophin-associated protein CTF: C-terminal fragment complex CTGF: connective tissue growth factor DAPK: death-associated protein kinase CTL: cytotoxic T lymphocyte DARC: Duffy antigen receptor for CTLA: cytotoxic T-lymphocyte-associated chemokine protein DAT: dopamine active transporter Ctn: catenin DAX: dosage-sensitive sex reversal, CTr: copper transporter adrenal hypoplasia critical region on CtR: calcitonin receptor chromosome X (NR0b1) CTRC: CREB-regulated transcription DBC: deleted in breast cancer protein coactivator DBP: albumin D-element binding protein Cul: cullin (PAR/b–ZIP family) CUT: cryptic unstable transcript DC: dendritic cell CVI: chronic venous insufficiency DCA: directional coronary atherectomy CVLM: caudal ventrolateral medulla DCAF: DDB1- and Cul4-associated factor CVP: central venous pressure DCC: deleted in colorectal carcinoma (netrin CVS: cardiovascular system receptor) Cx: connexin DCT: distal convoluted tubule CXCLi: type-i CXC (C-X-C motif; α) Dctn: dynactin chemokine ligand DDAH: dimethylarginine dimethyl- CXCRi: type-i CXC (C-X-C motif; α) aminohydrolase chemokine receptor DDB: damage-specific DNA-binding protein 936 List of Aliases

DDEF: development and differentiation- Dsc: desmocollin enhancing factor (ArfGAP) Dsg: desmoglein DDR: discoidin domain receptor Dsh: Disheveled (Wnt-signaling mediator) De: Dean number DSK: dual-specificity kinase DEC: differentially expressed in chondro- dsRNA: double-stranded RNA cytes (DEC1 and DEC2 are a.k.a Dst: dystonin bHLHe40 and bHLHe41, bHLHb2 DUb: deubiquitinase and bHLHb3, or HRT2 and HRT1) DUS: Doppler ultrasound DEC: deleted in esophageal cancer DuSP: dual-specificity phosphatase DEG: delayed-early gene DV: dead space volume deoxyHb: deoxyhemoglobin (deoxygenated Dvl: Disheveled (cytoplasmic phosphopro- hemoglobin) tein; other alias Dsh) DETC: dendritic epidermal γδ Tcell DVT: deep-vein thrombosis DH: Dbl homology dynactin: dynein activator DHET: dihydroxyeicosatrienoic acid DYRK: dual-specificity Tyr (Y) DHh: desert Hedgehog phosphorylation-regulated kinase Dia: Diaphanous DICOM: digital imaging and communication E for medicine ++ DICR: depolarization-induced Ca release E: strain tensor DISC: death-inducing signaling complex E: electric field Dkk: Dickkopf E: elastic modulus DLg: Disc large homolog E: elastance DLL: Delta-like (Notch) ligand E:energy { }3 DLx: distal-less protein eˆi i=1:basis DM: double minute e: strain vector DMM: DNA methylation modulator e: specific free energy DMPK: -associated E-box: enhancer box sequence of DNA protein kinase E2: ubiquitin conjugase DMT: divalent metal transporter E3: ubiquitin ligase DN1: double-negative-1 cell EAAT: excitatory amino acid (glutamatee– DN2: double-negative-2 cell aspartate) transporter DN3: double-negative-3 cell EAD: early afterdepolarization DNA: deoxyribonucleic acid EAR: V-erbA-related nuclear receptor DNAPK: DNA-dependent protein kinase (NR2f6) DoC2: double C2-like domain-containing EB: end-binding protein protein EBCT: electron beam CT DOCK: dedicator of cytokinesis (GEF) EBF: early B-cell factor DOK: downstream of Tyr kinase docking EC: endothelial cell protein ECA: external carotid artery DOR: δ-opioid receptor ECF: extracellular fluid DPG: diphosphoglyceric acid ECG: electrocardiogram DRAM: damage-regulated modulator of ECM: extracellular matrix autophagy ED1L: EGF-like repeat- and discoidin-1-like DRF: Diaphanous-related formin (for domain-containing protein GTPase-triggered actin rearrange- EDGR: endothelial differentiation gene ment) receptor DRG: dorsal root ganglion EDHF: endothelial-derived hyperpolarizing Drl: Derailed factor List of Aliases 937

EDIL: EGF-like repeats and discoidin-1 EPDC: epicardial-derived cell (I)-like domain-containing protein Epgn: epigen (EGF superfamily member) EDV: end-diastolic volume EPH: erythropoietin-producing hepatocyte EEA: early endosomal antigen receptor kinase or pseudokinase eEF: eukaryotic translation elongation factor (EPHa10 and EPHb6) EEL: external elastic lamina ephrin: EPH receptor interactor EET: epoxyeicosatrienoic acid Epo: erythropoietin EFA6: exchange factor for ARF6 (ArfGEF) EPS: epidermal growth factor receptor EF-Tu: elongation factor Tu pathway substrate EGF: epidermal growth factor ER: endoplasmic reticulum EGFL: EGF-like domain-containing protein ERx: type-x estrogen receptor (NR3a1/2) EGFR: epidermal growth factor receptor eRas: embryonic stem cell-expressed Ras (or EGR: early growth response transcription hRas2) factor ErbB: erythroblastoma viral gene product B EHD: C-terminal EGFR substrate-15 (HER) homology domain-containing protein ERE: estrogen response element (DNA eIF: eukaryotic translation initiation factor sequence) EL: endothelial lipase Ereg: epiregulin (EGF superfamily member) ELAM: endothelial–leukocyte adhesion eRF: eukaryotic release factor molecules ERGIC: endoplasmic reticulum–Golgi ELCA: excimer laser coronary angioplasty intermediate compartment ELK: ETS-like transcription factor (ternary ERK: extracellular signal-regulated protein complex factor [TCF] subfamily) kinase ElMo: engulfment and cell motility adaptor ERK1/2: usually refers to ERK1 and ERK2 Eln: elastin ERM: ezrin–radixin–moesin ElnF: elastin fiber ERMES: endoplasmic reticulum– ELP: early lymphoid progenitor mitochondrion encounter structure EMI: early mitotic inhibitor ERP: effective refractory period EMR: EGF-like module-containing, ERR: estrogen-related receptor (NR3b1– mucin-like, hormone receptor-like NR3b3) protein ESCRT: endosomal sorting complex EMT: epithelial–mesenchymal transition required for transport ENA–VASP: Enabled homolog and ESL: E-selectin ligand vasoactive (vasodilator)-stimulated ESRP: epithelial splicing regulatory protein phosphoprotein family ESV: end-systolic volume ENaC: epithelial Na+ channel ET: endothelin EnaH: Enabled homolog ETP: early thymocyte progenitor endo-siRNA: endogenous small interfering ETR (ETA/B): endothelin receptor RNA ETS: E-twenty six (transcription fac- ENPP: ectonucleotide pyrophosphatase– tor; erythroblastosis virus E26 phosphodiesterase proto-oncogene product homolog) Ens: endosulfine ETV: ETS-related translocation variant ENT: equilibrative nucleoside transporter EVAR: endovascular aneurysm repair ENTPD: ectonucleoside triphosphate Exo: exocyst subunit diphosphohydrolase Ext: exostosin (glycosyltransferase) EPAC: exchange protein activated by cAMP EPAS: endothelial PAS domain protein F EPC: endothelial progenitor cell EPCR: endothelial protein-C receptor F: transformation gradient tensor 938 List of Aliases

F: function fraction of proliferating cells FHoD: formin homology domain-containing F: erythrocytic rouleau fragmentation rate protein (FmnL) f: surface force FIH: factor inhibiting HIF1α (asparaginyl fˆ: fiber direction unit vector hydroxylase) f : binding frequency FIP: focal adhesion kinase family-interacting fC: cardiac frequency protein fR: breathing frequency FIT: Fat-inducing transcript f : friction shape factor FKBP: FK506-binding protein fv: head loss per unit length FlIP: flice-inhibitory protein fi: molar fraction of gas component i FLK: fetal liver kinase FA: fatty acid fMLP: N-formyl methionyl-leucyl- FABP: fatty acid-binding protein phenylalanine FABP: filamentous actin-binding protein FN: fibronectin FACAP: F-actin complex-associated protein Fn: fibrin FAD: flavine adenine dinucleotide Fng: fibrinogen FADD: Fas receptor-associated death Fos: Finkel Biskis Jinkins murine osteosar- domain coma virus sarcoma proto-oncogene FAK: focal adhesion kinase product Fanc: Fanconi anemia protein Fox: forkhead box transcription factor FAN: Fanconi anemia-associated nuclease Fpn: FAPP: phosphatidylinositol four-phosphate FR: flow ratio adaptor protein FRK: Fyn-related kinase Fas: death receptor (TNFRSF6a) FrmD: FERM domain-containing adaptor FasL: death ligand (TNFSF6) FRNK: FAK-related non-kinase FAST: Forkhead activin signal transducer FRS: fibroblast growth factor receptor FB: fibroblast substrate Fbln (Fibl): fibulin FSH: follicle-stimulating hormone Fbn: fibrillin FSI: fluid–structure interaction FBS: F-box, Sec7 protein (ArfGEF) FVM: finite volume method FBx: F-box only protein (ArfGEF) FXR: (NR1h4) FC: fibrocyte Fz: Frizzled (Wnt GPCR) FCHO: FCH domain only protein FcαR: Fc receptor for IgA FcγR: Fc receptor for IgG G FcR: Fc receptor for IgE FCP: TF2F-associating C-terminal domain G: Green-Lagrange strain tensor phosphatase G: shear modulus  FDM: finite difference method G : storage modulus  FEM: finite element method G : loss modulus FERM: four point-1, ezrin–radixin–moesin G: Gibbs function domain G: conductance Fer: Fes-related Tyr kinase Gp: pressure gradient Fes: feline sarcoma kinase Ge: electrical conductivity FFA: free fatty acid Gh: hydraulic conductivity FGF: fibroblast growth factor GT: thermal conductivity FGFR: fibroblast growth factor receptor g: gravity acceleration FGR: viral feline Gardner-Rasheed sarcoma g: physical quantity oncogene homolog kinase g: detachment frequency FHL: four-and-a-half LIM-only protein g: free enthalpy List of Aliases 939

G protein: guanine nucleotide-binding GCN2: general control non-derepressible 2 protein (Gαβγ trimer) (pseudokinase) Gα: α subunit (signaling mediator) of gCSF: granulocyte colony-stimulating factor G protein (CSF3) Gαi (Gi): inhibitory Gα subunit GD: disialoganglioside Gαs (Gs): stimulatory Gα subunit GDP: guanosine diphosphate Gαt (Gt): , Gα subunit of GDF: growth differentiation factor rhodopsin GDF: ()GDI displacement (dissociation) GsXL: extra-large Gs protein factor Gαi/o (Gi/o): Gα subunit class GDI: guanine nucleotide-dissociation α α G q/11 (Gq/11): G subunit class inhibitor α α G 12/13 (G12/13): G subunit class GDNF: glial cell line-derived neurotrophic Gβγ: dimeric subunit (signaling effector) of factor G protein GEF: guanine nucleotide (GDP-to-GTP)- Ggust : , G protein α subunit (Gi/o) exchange factor of taste receptor GF: growth factor Gol f : G protein α subunit (Gs) of olfactory GFAP: glial fibrillary acidic protein receptor (intermediate filament) GAB: GRB2-associated binder GFL: GDNF family of ligands GABA: γ-aminobutyric acid GFP: geodesic front propagation − GABAA: GABA ionotropic receptor (Cl GFR: growth factor receptor channel) GFRαi: type-i GDNF family receptor-α GABAB: GABA GGA: Golgi-localized γ-adaptin ear- (GPCR) containing Arf-binding protein GABARAP: GABAA receptor-associated Ggust: (G protein) Gα subunit gustducin protein GH: GaBP: globular actin-binding protein GHR: GADD: growth arrest and DNA-damage- GHRH: growth hormone-releasing hormone induced protein GIP: GPCR-interacting protein gadkin: γ1-adaptin and kinesin interactor GIRK: Gβγ-regulated inwardly rectifying GAG: glycosaminoglycan K+ channel GAK: cyclin G-associated kinase GIT: GPCR kinase-interacting protein Gal: GKAP: G-kinase-anchoring protein GAP: GTPase-activating protein GKAP: glucokinase-associated phosphatase GAPDH: glyceraldehyde 3-phosphate (DuSP12) dehydrogenase GKAP: guanylate kinase-associated protein GAS: growth arrest-specific non-coding, GLK: GCK-like kinase single-stranded RNA GluK: ionotropic glutamate receptor (kainate GAT: γ-aminobutyric acid transporter type) GATA: DNA sequence GATA-binding GluN: ionotropic glutamate receptor protein (TF) (NMDA type) GBF: Golgi-associated brefeldin-A-resistant GluR: ionotropic glutamate receptor (AMPA guanine nucleotide-exchange factor type) GCAP: guanylate cyclase-activating protein GluT: glucose transporter GCC: Golgi coiled-coil domain-containing GlyCAM: glycosylation-dependent cell protein adhesion molecule GCK: germinal center kinase GlyR: glycine receptor (channel) GCKR: GCK-related kinase GlyT: GCNF: (NR6a1) GM: monosialoganglioside 940 List of Aliases gmCSF: granulocyte–monocyte colony- HAND: heart and neural crest derivatives stimulating factor (CSF2) expressed protein GMP: granulocyte–monocyte progenitor Hb: hemoglobin GMP: guanosine monophosphate HbSNO: Snitrosohemoglobin GnRH: gonadotropin-releasing hormone HBEGF: heparin-binding EGF-like growth GP: glycoprotein factor Gpc: glypican HCK: hematopoietic cell kinase GPI: glycosyl-phosphatidylinositol anchor HCLS: hematopoietic lineage cell-specific gpiAP: GPI-anchored protein Lyn substrate protein GPCR: G-protein-coupled receptor HCN: hyperpolarization-activated, cyclic GPx: glutathione peroxidase nucleotide-gated K+ channel GQ: quadrisialoganglioside HCNP: hippocampal cholinergic neurostim- GR: glucocorticoid receptor (NR3c1) ulatory peptide GRAP: GRB2-related adaptor protein (or HCT: helical CT GAds) HDAC: histone deacetylase complex GRB: growth factor receptor-bound protein HDL: high-density lipoprotein GRC: growth factor-regulated, Ca++- HDL–C: HDL–cholesterol permeable, cation channel (TRPV2) HDL–CE: HDL–cholesteryl ester GRE: glucocorticoid response element HDM: human double minute (Ub ligase) (DNA sequence) HEET: hydroxyepoxyeicosatrienoic GRK: G-protein-coupled receptor kinase hemin: heme oxygenase-1 inducer GRP: G-protein-coupled receptor phospha- HERG: human ether-a-go-go related gene tase HER: human epidermal growth factor GSH: reduced form of glutathione receptor (HER3: pseudokinase) GSK: glycogen synthase kinase HES: Hairy enhancer of split GSSG: oxidized form of glutathione HETE: hydroxyeicosatrienoic acid (glutathione disulfide) HEV: high endothelial venule GT: trisialoganglioside HGF: hepatocyte growth factor GTF: general transcription factor HGFA: hepatocyte growth factor activator GTP: guanosine triphosphate (serine peptidase) GTPase: guanosine triphosphatase HGFR: hepatocyte growth factor receptor GuCy: guanylate cyclase (CyG) HGS: HGF-regulated Tyr kinase substrate GWAS: genome-wide association study (HRS) HhIP: Hedgehog-interacting protein H HIF: hypoxia-inducible factor HIP: huntingtin-interacting protein H: height HIP1R: HIP1-related protein H : history function His: histamine H: dissipation Hjv: hemojuvelin h: head loss HK: hexokinase h: thickness HL: hepatic lipase h: specific enthalpy HMG: high mobility group protein hT: heat transfer coefficient HMGB: high mobility group box protein hm: mass transfer coefficient HMGCoAR: hydroxy methylglutaryl HA: hyaluronic acid coenzyme-A reductase HAD: haloacid dehalogenase HMT: histone methyl HAP: huntingtin-associated protein HMWK: high-molecular-weight HAT: histone acetyltransferase HNF: hepatocyte nuclear factor (NR2a1/2) HAAT: heterodimeric amino acid transporter HNP: human neutrophil peptide List of Aliases 941 hnRNP: heterogeneous nuclear ribonucleo- ID: inhibitor of DNA binding protein IDL: intermediate-density lipoprotein HODE: hydroxy octadecadienoic acid IDmiR: immediately downregulated HOP: HSP70–HSP90 complex-organizing microRNA protein IDOL: inducible degrader of LDL receptor HotAIR: HOX antisense intergenic RNA (Ub ligase) (large intergenic non-coding RNA) IEG: immediate-early gene HOx: heme oxygenase IEL: internal elastic lamina Hox: homeobox DNA sequence (en- IEL: intra-epithelial lymphocyte codes homeodomain-containing IfIH: interferon-induced with helicase-C morphogens) domain-containing protein HPK: hematopoietic progenitor kinase Ifn: interferon (MAP4K) IfnAR: interferon-α/β/ω receptor hpRNA: long hairpin RNA IFT: intraflagellar transport complex hRas: Harvey Ras Ig: immunoglobulin HRE: hormone response element (DNA IGF: insulin-like growth factor sequence) IGFBP: IGF-binding protein HRM: hypoxia-regulated microRNA IgHC: immunoglobulin heavy chain hRNP: heterogeneous ribonucleoprotein IgLC: immunoglobulin light chain HRS: hepatocyte growth factor-regulated iGluR: ionotropic glutamate receptor Tyr kinase substrate IH: intimal hyperplasia HRT: Hairy and enhancer of Split-related IHh: indian Hedgehog transcription factor IK: intermediate-conductance Ca++- HS: heparan sulfate activated K+ channel HSC: hematopoietic stem cell IκB: inhibitor of NFκB HSC: heat shock cognate IKK: IκB kinase HSER: heat stable enterotoxin receptor (guanylate cyclase 2C) IL: interleukin HSP: heat shock protein (chaperone) ILC: innate lymphoid cell HSPG: heparan sulfate proteoglycan iLBP: intracellular lipid-binding protein Ht: hematocrit ILK: integrin-linked (pseudo)kinase HTR: high temperature requirement IMM: inner mitochondrial membrane endopeptidase IMP: Impedes mitogenic signal propagation INADl: inactivation no after-potential D I protein InCenP: inner centromere protein I: identity tensor InF: inverted formin i: current InsIG: insulin-induced gene product I: inotropy (ER anchor) IAP: inhibitor of apoptosis protein InsL: insulin-like peptide IBABP: intestinal bile acid-binding protein InsR (IR): insulin receptor IC: isovolumetric contraction InsRR: insulin receptor-related receptor ICA: internal carotid artery IP: inositol phosphate ICAM: intercellular adhesion molecule IP3: inositol (1,4,5)-trisphosphate ++ (IgCAM member) IP3R: IP3 receptor (IP3-sensitive Ca - IgCAM: immunoglobulin-like cell adhesion release channel) molecule IP4: inositol (1,3,4,5)-tetrakisphosphate ICF: intracellular fluid IP5: inositol pentakisphosphate ICliP: intramembrane-cleaving peptidase IP6: inositol hexakisphosphate 942 List of Aliases

IPCEF: interaction protein for cytohesin JNK: Jun N-terminal kinase (MAPK8– exchange factor MAPK10) IPOD: (perivacuolar) insoluble protein JNKBP: JNK-binding protein; deposit JNKK: JNK kinase IPP: inositol polyphosphate phosphatase JSAP: JNK/SAPK-associated protein IPP: ILK–PINCH–parvin complex Jun: avian sarcoma virus-17 proto-oncogene iPSC: induced pluripotent stem cell product (Japanese juunana: seventeen IQGAP: IQ motif-containing GTPase- [17]; TF) activating protein (IQ: first 2 amino JUNQ: juxtanuclear quality-control acids of the motif: isoleucine [I; compartment commonly] and glutamine [Q; invariably]). IR: isovolumetric relaxation K IRAK: IL1 receptor-associated kinase (IRAK2: pseudokinase) K: conductivity tensor IRE: irreversible electroporation K: bending stiffness IRES: internal ribosome entry site K: reflection coefficient IRF: interferon-regulatory protein (transcrip- Kd: dissociation constant (index of ligand– tion factor) target affinity: ([L][T])/[C]; [L], [T], IRFF: interferon-regulatory factor family [C]: molar concentrations of the IRP: iron regulatory protein ligand, target, and created complex, IRS: insulin receptor substrate respectively) ISA: intracranial saccular aneurysm KM: Michaelis constant (chemical reaction ISG: interferon-stimulated gene product kinetics) iSMAD: inhibitory SMAD (SMAD6 or Km: material compressibility SMAD7) k: cross-section ellipticity ITAM: immunoreceptor tyrosine-based kATP : myosin ATPase rate −23 activation motif kB: Boltzmann constant (1.38×10 J/K) Itch: Itchy homolog (Ub ligase) kc: spring stiffness Itg: integrin km: mass-transfer coefficient ITIM: immunoreceptor tyrosine-based kP: Planck constant inhibitory motif KR: resistance coefficient KaP: ITK: interleukin-2-inducible T-cell kinase + ITPK: inositol trisphosphate kinase KATP : ATP-sensitive K channel IVC: inferior vena cava KCa1.x: BK channel IVP: initial value problem KCa2/3/4.x: SK channel KCa5.x: IK channel IVUS: intravascular ultrasound + KIR: inwardly rectifying K channel + KV: voltage-gated K channel J KAP: kinesin (KIF)-associated protein Kap: karyopherin J:flux KAT: lysine (K) acetyltransferase + − Jm: cell surface current density KCC: K –Cl cotransporter JAM: junctional adhesion molecule KChAP: K+ channel-associated protein JaK: Janus (pseudo)kinase KChIP: KV channel-interacting protein JIP: JNK-interacting protein (MAPK8IP1 KDELR: KDEL (Lys–Asp–Glu–Leu) and -2) endoplasmic reticulum retention JMy: junction-mediating and regulatory receptor protein KDR: kinase insert domain receptor List of Aliases 943

KHC: kinesin heavy chain Le: entry length KIF: kinesin family LEF: lymphoid enhancer-binding transcrip- KIR: killer cell immunoglobulin-like tion factor receptor LGalS: lectin, galactoside-binding, soluble KIT: cellular kinase in tyrosine (SCFR) cell adhesion molecule Kk: kallikrein LGIC: ligand-gated ion channel KLC: kinesin light chain LGL: lethal giant larva protein KLF: Krüppel-like factor LH: luteinizing hormone KLR: killer cell lectin-like receptor LIF: leukemia-inhibitory factor Kn: Knudsen number LIFR: leukemia-inhibitory factor receptor KOR: κ-opioid receptor LIMA: LIM domain and actin-binding kRas: Kirsten Ras protein Krt: keratin LIME: -interacting molecule KSR: kinase suppressor of Ras (adaptor; LIMK: Lin1, Isl1, and Mec3 motif- pseudokinase) containing kinase LIMS: LIM and senescent cell antigen-like- L containing domain protein LiNC: linker of nucleoskeleton and L: velocity gradient tensor cytoskeleton L:inertance lincRNA: large intergenic non-coding RNA L: length LipC: hepatic lipase LA: left atrium LipD: lipoprotein lipase LAB: linker of activated B lymphocyte LipE: hormone-sensitive lipase LAd: LcK-associated adaptor LipG: endothelial lipase LANP: long-acting natriuretic peptide LipH: lipase-H LAP: leucine-rich repeat and PDZ liprin: LAR PTP-interacting protein domain-containing protein (4-member LIR: leukocyte immunoglobulin-like family) receptor LAP: latency-associated peptide (4 isoforms LIS: lissencephaly protein LAP1–LAP4) LKB: liver kinase-B LAP: nuclear lamina-associated polypeptide LKLF: lung Krüppel-like factor LAR: leukocyte common-antigen-related LLTC: large latent TGFβ complex receptor (PTPRF) LMan: lectin, mannose-binding LAT: linker of activated T lymphocytes LMO: LIM domain-only-7 protein LaTS: large tumor suppressor Lmod: leiomodin (actin nucleator) LAX: linker of activated X cells (both B and LMPP: lymphoid-primed multipotent T cells) progenitor LBR: lamin-B receptor LMR: laser myocardial revascularization LCA: left coronary artery Ln: laminin LCAT: lysolecithin cholesterol acyltrans- LOx: lipoxygenase ferase LP: lipoprotein LCC: left coronary cusp LPA: lysophosphatidic acid LCK: leukocyte-specific cytosolic LPase: lipoprotein lipase (non-receptor) Tyr kinase lpDC: lamina propria dendritic cell LCP: lymphocyte cytosolic protein (adaptor Lphn: latrophilin (adhesion-GPCR) SLP76) LPL: lysophospholipid LDL: low-density lipoprotein LPLase: lysophospholipase LDLR: low-density lipoprotein receptor LPP: lipid phosphate phosphatase LDV: laser Doppler velocimetry LPR: lipid phosphatase-related protein 944 List of Aliases

LPS: lipopolysaccharide MAIT: mucosal-associated invariant LQTS: long-QT syndrome T lymphocyte LRAT: lecithin–retinol acyltransferase MALT: mucosa-associated lymphoid tissue LRH: liver receptor homolog (NR5a2) MAO: monoamine oxidase LRO: lysosome-related organelle MAP: microtubule-associated protein LRP: LDL receptor-related protein MAP1LC3: microtubule-associated LRRTM: leucine-rich repeat-containing protein-1 light chain-3 (LC3) mAP: mean arterial pressure LSK: Lin−,SCA1+,KIT+ cell MAPK: mitogen-activated protein kinase LST: lethal with Sec-thirteen MAP2K: MAPK kinase LSV: long saphenous vein MAP3K: MA2KP kinase LT (Lkt): leukotriene MAP3K7IP: MAP3K7-interacting protein LTBP: latent TGFβ-binding protein MAPKAPK: MAPK-activated protein ++ LTCC: L-type Ca channel (CaV1) kinase LTK: leukocyte tyrosine kinase MARCKS: myristoylated alanine-rich LUbAC: linear ubiquitin chain assembly C kinase substrate complex MaRCo: macrophage receptor with LV: left ventricle collagenous structure (ScaRa2) LVAD: left ventricular assist device MARK: microtubule affinity-regulating LX: lipoxin kinase LXR: (NR1h2/3) MASTL: microtubule-associated Ser/Thr LyVE: lymphatic vessel endothelial kinase-like protein hyaluronan receptor MAT: ménage à trois MATK: megakaryocyte-associated Tyr M kinase MAVS: mitochondrial antiviral signaling M: molar mass protein M : moment MBP: myosin-binding protein m: mass MBP: myeloid–B-cell progenitor Ma: Mach number MBTPSi: membrane-bound transcription MACF: microtubule-actin crosslinking factor peptidase site i factor MCAK: mitotic centromere-associated mAChR: acetylcholine muscarinic receptor kinesin (metabotropic; GPCR) MCAM: melanoma cell adhesion molecule MAD: mothers against decapentaplegic MCL1: BCL2-related myeloid cell leukemia homolog sequence protein-1 MAD: mitotic arrest-deficient protein MCLC: stretch-gated Mid1-related chloride MAdCAM: mucosal vascular addressin cell channel adhesion molecule MCM: minichromosome maintenance MAF: V- musculoaponeurotic fi- protein brosarcoma oncogene homolog MCP: monocyte chemoattractant protein (TF) mCSF: macrophage colony-stimulating MAGI: membrane-associated guanylate factor (CSF1) kinase-related protein with inverted MCT: monocarboxylate–proton cotrans- domain organization porter MAGP: microfibril-associated glycoprotein mDC: myeloid dendritic cell MAGuK: membrane-associated guanylate MDM: mitochondrial distribution and kinase morphology protein List of Aliases 945

MDR: multiple drug resistance (ABC MLKL: mixed lineage kinase-like transporter) pseudokinase MEF: myocyte enhancer factor MLL: mixed lineage [myeloid–lymphoid] megCSF: megakaryocyte colony-stimulating leukemia factor factor MLLT: mixed lineage leukemia translocated MEJ: myoendothelial junction protein MELK: maternal embryonic leucine zipper MLP: muscle LIM protein kinase mmCK: myofibrillar creatine kinase MEP: megakaryocyte erythroid progenitor MME: membrane metalloendopeptidase MEP: myeloid–erythroid progenitor MMM: maintenance of mitochondrial MET: mesenchymal–epithelial transition morphology protein factor (proto-oncogene; HGFR) MMP: matrix metallopeptidase METC: mitochondrial electron transport MO: mouse protein chain Mo: monocyte metHb: methemoglobin MOMP: mitochondrial outer membrane MGIC: mechanogated ion channel permeabilization μ mGluR: metabotropic glutamate receptor MOR: -opioid receptor MGP: matrix Gla protein MP: MAPK partner MHC: major histocompatibility complex MPF: mitosis (maturation)-promoting factor MHC: myosin heavy chain (CcnB–CDK1 complex) MyHC or MYH: myosin heavy chain gene MPG: N-methylpurine (N-methyladenine)- DNA miCK: mitochondrial creatine kinase MPO: median preoptic nucleus MiCU: mitochondrial calcium uptake protein Mpo: myeloperoxidase Mid: midline MP : membrane protein, palmitoylated MinK: misshapen-like kinase P MPP: multipotent progenitor miR: microRNA MR: mineralocorticoid receptor (NR3c2) miRNP: microribonucleoprotein mRas: muscle Ras (or rRas3) MiRP: MinK-related peptide MRCK: myotonic dystrophy kinase-related MIRR: multichain immune-recognition CDC42-binding kinase receptor MRI: (nuclear) magnetic resonance imaging MIS: Müllerian inhibiting substance mRNA: messenger RNA MIS: mini-invasive surgery mRNP: messenger ribonucleoprotein MIS: mitochondrial intermembrane space MRTF: myocardin-related transcription MIST: mastocyte immunoreceptor signal factor transducer MSC: mesenchymal stem cell MIT: mini-invasive therapy MSH: melanocyte-stimulating hormone MiV: mitral valve MSIC: mechanosensitive ion channel MIZ: -interacting zinc finger protein MSSCT: multi-slice spiral CT MJD: Machado-Joseph disease protein MST: mammalian sterile-twenty-like kinase domain-containing peptidase (DUb) MSt1R: macrophage-stimulating-1 factor MKL: megakaryoblastic leukemia-1 fusion receptor (RON) coactivator MT: metallothionein MKP: mitogen-activated protein kinase MTM: myotubularin (myotubular myopathy- phosphatase associated gene product) MLC: myosin light chain mtMMP: membrane-type MMP (mtiMMP: MLCK: myosin light-chain kinase type-i mtMMP) MLCP: myosin light-chain phosphatase MTMR: myotubularin-related phosphatase MLK: mixed lineage kinase MTOC: microtubule organizing center 946 List of Aliases

MTP: myeloid–T-cell progenitor Ncdn: neurochondrin MTP: microsomal triglyceride transfer NCK: non-catalytic region of Tyr kinase protein adaptor MuRF: muscle-specific RING finger NCoA: nuclear receptor coactivator (Ub ligase) NCoR: nuclear receptor corepressor MuSK: muscle-specific kinase NCR: natural cytotoxicity-triggering MVB: multivesicular body receptor MVE: multivesicular endosome (MVB) ncRNA: non-coding RNA MVO2: myocardial oxygen consumption NCS: neuronal calcium sensor MWSS: maximal wall shear stress NCKX: Na+–Ca++–K+ exchanger MyB: V- myeloblastosis viral oncogene NCLX: Na+–Ca++–Li+ exchanger homolog (TF) NCX: Na+–Ca++ exchanger + − − MyC: V-myc myelocytomatosis viral NDCBE: Na -dependent Cl –HCO3 oncogene homolog (TF) exchanger MyHC: myosin heavy chain NecL: nectin-like molecule MyLC or MYL: myosin light-chain gene NEDD: neural precursor cell expressed, MyPT: myosin phosphatase targeting subunit developmentally downregulated MyT: myelin transcription factor NDFIP: NEDD4 family-interacting protein NeK: never in mitosis gene-A (NIMA)- N related kinase NES: nuclear export signal N: sarcomere number NESK: NIK-like embryo-specific kinase nˆ: unit normal vector nesprin: nuclear envelope spectrin repeat n: mole number protein n: PAM density with elongation x NeuroD: neurogenic differentiation protein n: myosin head density NF: neurofilament protein (intermediate NA: Avogadro number filament) N-terminus: amino (amine group NH2)- NF: neurofibromin (RasGAP) terminus NFAT: nuclear factor of activated T cells NAADP: nicotinic acid adenine dinucleotide NFe2: erythroid-derived nuclear factor-2 phosphate NFH: neurofilament, heavy polypeptide nAChR: acetylcholine nicotinic receptor NFκB: nuclear factor κ light chain enhancer (ionotropic; LGIC) of activated B cells NAD: nicotine adenine dinucleotide NFL: neurofilament, light polypeptide NADPH: reduced form of nicotinamide NFM: neurofilament, medium polypeptide adenine dinucleotide phosphate NGAL: neutrophil gelatinase-associated NAd: noradrenaline lipocalin NAF: nutrient-deprivation autophagy factor NGF: nerve growth factor NALT: nasal-associated lymphoid tissu Ngn: neogenin (netrin receptor) NAmPT: nicotinamide phosphoribosyltrans- NHA: Na+–H+ antiporter ferase NHE: Na+–H+ exchanger Nanog: ever young (Gaelic) NHERF: NHE regulatory factor NAP: NCK-associated protein (NCKAP) NHR: nuclear hormone receptor NAT: nucleobase–ascorbate transporter NIc: nucleoporin-interacting protein NAT1: noradrenaline transporter NIK: NFκB-inducing kinase + NaV voltage-gated Na channel NIK: NCK-interacting kinase + − NBC: Na –HCO3 cotransporters NIP: neointimal proliferation NCC: non-coronary cusp NK: NCC: Na+–Cl− cotransporter NKCC: Na+–Ka+–2Cl− cotransporter List of Aliases 947

NKG: NK receptor group NST: nucleus of the solitary tract NKT: natural killer T cell NT: neurotrophin NKx2: NK2 transcription factor-related NT5E: ecto-5-nucleotidase homeobox protein NTCP: sodium–taurocholate cotransporter NLR: NOD-like receptor (nucleotide- polypeptide binding oligomerization domain, NTF: N-terminal fragment Leu-rich repeat-containing) NTP: nucleoside triphosphate NLS: nuclear localization signal NTPase: nucleoside triphosphate NMDAR: Nmethyl Daspartate receptor superfamily member NmU: neuromedin-U NTRK: neurotrophic tyrosine receptor NO: nitric oxide (nitrogen monoxide) kinase (TRK) NonO: non-POU domain-containing NTRKR: neurotrophic Tyr receptor octamer-binding protein kinase-related protein (ROR(RTK)) NOR: neuron-derived orphan receptor NTS: nucleus tractus solitarius (NR4a3) Nu: Nusselt number NOS: nitric oxide synthase NuAK: nuclear AMPK-related kinase NOS1: neuronal NOS NuP: nucleoporin (nuclear-pore complex NOS1AP: NOS1 adaptor protein protein) NOS2: inducible NOS NuRD: nucleosome remodeling and histone NOS3: endothelial NOS deacetylase NOx: NAD(P)H oxidase NuRR: nuclear receptor-related factor Noxa: damage (Latin) (NR4a2) NPAS: neuronal PAS domain-containing nWASP: neuronal WASP transcription factor NPC: nuclear-pore complex O NPC: Niemann-Pick disease type-C protein NPC1L: Niemann-Pick protein-C1-like OGlcNAc: βNacetyl Dglucosamine nPKC: novel protein kinase C OCRL: oculocerebrorenal syndrome of NPY: neuropeptide Y Lowe phosphatase NR: nuclear receptor Oct: octamer-binding transcription factor NRAP: nebulin-related actinin-binding ODE: ordinary differential equation protein OGA: OGlcNAcase nRas: neuroblastoma Ras (βNacetylglucosaminidase) NRBP: nuclear receptor-binding protein OMM: outer mitochondrial membrane NRF: nuclear factor erythroid-derived-2 ORC: origin recognition complex (NF-E2)-related factor ORF: open reading frame NRF1: nuclear respiratory factor-1 ORP: OSBP-related protein Nrg: neuregulin (EGF superfamily member) OSA: obstructive sleep apnea Nrgn: neuroligin OSBP: oxysterol-binding protein Nrp: neuropilin (VEGF-binding molecule; OSI: oscillatory shear index VEGFR coreceptor) OSM: oncostatin M NRPTP: non-receptor protein Tyr phospha- OSMR: oncostatin M receptor tase OSR (OxSR): oxidative stress-responsive NRSTK: non-receptor Ser/Thr kinase kinase NRTK: non-receptor Tyr kinase OTK: off-track (pseudo)kinase Nrxn: neurexin OTU: ovarian tumor superfamily peptidase NSCLC: non-small-cell lung cancer (deubiquitinase) NSF: N-ethylmaleimide-sensitive factor OTUB: otubain (Ub thioesterase of the OTU NSLTP: non-specific lipid-transfer ) 948 List of Aliases

OVLT: organum vasculosum lamina PCMRV: phase-contrast MR velocimetry terminalis PCr: phosphocreatine oxyHb: oxyhemoglobin (oxygenated PCT: proximal convoluted tubule hemoglobin) PCTP: phosphatidylcholine-transfer protein PD: pharmacodynamics P pDC: plasmacytoid dendritic cell PdCD: programmed cell death protein P : permeability PdCD6IP: PdCD 6-interacting protein P:power PdCD1Lg: programmed cell death-1 ligand P: cell division rate PDE: phosphodiesterase p: production rate PDE: partial differential equation p:pressure PDGF: platelet-derived growth factor pi: partial pressure of gas component i PDGFR: platelet-derived growth factor PA: phosphatidic acid receptor PAAT: proton–amino acid transporter PDI: protein disulfide isomerase PACS: phosphofurin acidic cluster sorting PDK: phosphoinositide-dependent kinase protein Pe: Péclet number PAF: platelet-activating factor PE: pulmonary embolism PAFAH: platelet-activating factor acetylhy- PEBP: phosphatidylethanolamine-binding drolase protein PAG: phosphoprotein associated with PECAM: platelet–endothelial cell adhesion glycosphingolipid-enriched mi- molecule crodomains PEDF: pigment epithelium-derived factor PAH: polycyclic aromatic hydrocarbon (serpin F1) PAH: pulmonary arterial hypertension PEn2: presenilin enhancer-2 PAI: plasminogen activator inhibitor PEO: proepicardial organ PAK: P21-activated kinase Per: Period homolog PALR: promoter-associated long RNA PERK: protein kinase-like endoplasmic PALS: protein associated with Lin-7 reticulum kinase PAMP: pathogen-associated molecular PERP: P53 apoptosis effector related to pattern peripheral myelin protein PMP22 PAMP: proadrenomedullin peptide PET: positron emission tomography PAR: polyADPribose Pex: peroxin PAR: promoter-associated, non-coding RNA PF: platelet factor PARi: type-i peptidase-activated receptor PFK: phosphofructokinase Par: partitioning defective protein pFRG: parafacial respiratory group PARG: polyADPribosyl glycosidase PG: prostaglandin PARP: polyADPribose polymerase PGC: PPARγ coactivator PASR: promoter-associated short RNA pGC: particulate guanylate cyclase PATJ: protein (PALS1) associated to tight PGEA: prostaglandin ethanolamide junctions PGF: paracrine growth factor Pax: paxillin PGG: prostaglandin glycerol ester Paxi: paired box protein-i (transcription PGi2: prostacyclin regulator) PGP: permeability glycoprotein PBC: pre-Bötzinger complex (ventilation PGx: type-x (D, E, F, H, I) prostaglandin frequency) PGxS: type-x prostaglandin synthase PBIP: Polo box-interacting protein PH: pleckstrin homology domain PC: polycystin PHD: prolyl hydroxylase PC: protein C PhK: List of Aliases 949

PHLPP: PH domain and Leu-rich repeat PK: pharmacokinetics protein phosphatase PK: protein kinase PI: phosphoinositide (phosphorylated PKA: protein kinase A phosphatidylinositol) PKB: PI(4)P: phosphatidylinositol 4-phosphate PKC: protein kinase C PI(i)PiK: phosphatidylinositol i-phosphate PKD: protein kinase D i-kinase PKG: protein kinase G PI(i,j)P2: phosphatidylinositol (i,j)- PKL: paxillin kinase linker bisphosphate (PIP2) PKMYT (MYT): membrane-associated PI(3,4,5)P3: phosphatidylinositol (3,4,5)- Tyr–Thr protein kinase trisphosphate (PIP3) PKN: protein kinase novel PI3K: phosphatidylinositol 3-kinase Pkp: plakophilin PI3KAP: PI3K adaptor protein PL: phospholipase PIiK: phosphatidylinositol i-kinase PLA2: phospholipase A2 PIAS: protein inhibitor of activated STAT PLC: phospholipase C (SUMo ligase) PLD: phospholipase D PIC: pre-initiation complex PLb: phospholamban PICK: protein that interacts with C-kinase PLd: phospholipid PIDD: P53-induced protein with a death PlGF: placental growth factor domain PLK: Polo-like kinase PIKE: phosphoinositide 3-kinase enhancer PLTP: phospholipid transfer protein (GTPase; ArfGAP) PMCA: plasma membrane Ca++ ATPase PIKK: phosphatidylinositol 3-kinase-related PML: promyelocytic leukemia protein kinase (pseudokinase) PMR: percutaneous (laser) myocardial PIM: provirus insertion of Molony murine revascularization leukemia virus gene product PMRT: protein arginine methyltransferase PIN: peptidyl prolyl isomerase interacting Pn: plasmin with NIMA Png: plasminogen PINCH: particularly interesting new PNS: peripheral nervous system Cys–His protein (or LIMS1) PoG: proteoglycan PInK: PTen-induced kinase PoM: pore membrane protein PIP: phosphoinositide monophosphate Pon: paraoxonase PIPiK: phosphatidylinositol phosphate POPx: partner of PIX i-kinase POSH: scaffold plenty of SH3 domains PIP2: phosphatidylinositol bisphosphate PP: protein phosphatase PIP3: phosphatidylinositol triphosphate PP3: protein phosphatase 3 (PP2b or PIPP: proline-rich inositol polyphosphate calcineurin) 5-phosphatase PPAR: peroxisome proliferator-activated PIR: paired immunoglobulin-like receptor receptor (NR1c1–3) piRNA: P-element-induced wimpy PPG: photoplethysmography testis-interacting (PIWI) RNA PPId: peptidyl prolyl isomerase-D PIRT: phosphoinositide-interacting regulator PPIP: monopyrophosphorylated inositol of TRP channels phosphate PITP: phosphatidylinositol-transfer protein (PP)2IP: bispyrophosphorylated inositol Pitx: pituitary (or paired-like) homeobox phosphate transcription factor PPK: PIP kinase PIV: particle image velocimetry PPM: protein phosphatase (magnesium- PIX: P21-activated kinase (PAK)-interacting dependent) exchange factor (Rho(Arh)GEF6/7) PPR: pathogen-recognition receptor 950 List of Aliases

PPRE: PPAR response element (DNA PtdSer (PS): phosphatidylserine sequence) PtdIns (PI): phosphatidylinositol PR: receptor (NR3c3) PTen: phosphatase and tensin homo- PRC: protein regulator of cytokinesis log deleted on chromosome ten PRC: Polycomb repressive complex (phosphatidylinositol 3-phosphatase) Prdx: peroxiredoxin PTFE: polytetrafluoroethylene pre-cDC: pre-classical dendritic cell PTH: pre-miR: precursor microRNA PTHRP: parathyroid hormone-related preBotC: pre-Bötzinger complex protein preKk: prekallikrein PTK: protein Tyr kinase PREx: PIP3-dependent Rac exchanger PTK7: pseudokinase (RTK) (RacGEF) PTP: protein Tyr phosphatase PRG: plasticity-related gene product PTPni: protein Tyr phosphatase non-receptor PRH: -releasing hormone type i pri-miR: primary microRNA PTPR: protein Tyr phosphatase receptor PRL: phosphatase of regenerating liver PTRF: RNA polymerase-1 and transcript Prl: prolactin release factor PrlR: PUFA: polyunsaturated fatty acid PRMT: protein arginine (R) N- PUMA: P53-upregulated modulator of methyltransferase apoptosis Prompt: promoter upstream transcript PuV: pulmonary valve Protor: protein observed with Rictor PVF: PDGF- and VEGF-related factor PROX: prospero homeobox gene PVNH: paraventricular nucleus of Prox: PROX gene product (transcription hypothalamus factor) PVR: pulmonary vascular resistance PrP: processing protein PWS: pulse wave speed PRPK: P53-related protein kinase Px: pannexin PRR: pattern recognition receptor PXR: (NR1i2) PRR: prorenin and renin receptor PYK: proline-rich tyrosine kinase PS: presenilin P2X: purinergic ligand-gated channel PS: protein S P53AIP: P53-regulated apoptosis-inducing PSC: pluripotent stem cell protein PSD: postsynaptic density adaptor p75NtR: pan-neurotrophin receptor PsD: postsynaptic density PSEF: pseudo-strain energy function Q PSer: phosphatidylserine PSGL: P-selectin glycoprotein ligand Q: material quantity PSKh: protein serine kinase H Qe: electric current density Psm: proteasome subunit QT: thermal energy (heat) PSTPIP: Pro–Ser–Thr phosphatase- qT: transfer rate of thermal energy (power) interacting protein q:flowrate PTA: plasma thromboplastin antecedent Ptc: Patched receptor (Hedgehog signaling) R PTCA: percutaneous transluminal coronary angioplasty R: resistance PtcH: Patched Hedgehog receptor R : local reaction term PTCRA: PTC rotational burr atherectomy Rh: hydraulic radius PtdCho (PC): phosphatidylcholine Rg: gas constant PtdEtn (PE): phosphatidylethanolamine RR: respiratory quotient List of Aliases 951

R: recruitment function (from quiescence to REDD: regulated in development and proliferation) DNA-damage response gene product r:cellrenewalrate Rel: reticuloendotheliosis proto-oncogene r: radial coordinate product (TF; member of NFκB) RA: right atrium REP: Rab escort protein RAAS: renin–angiotensin–aldosterone ReR: renin receptor (PRR) system restin: Reed-Steinberg cell-expressed Rab: Ras from brain intermediate filament-associated Rab11FIP: Rab11 family-interacting protein protein (CLiP1) Rac: Ras-related C3-botulinum toxin ReT: rearranged during transfection substrate (receptor Tyr kinase) RACC: receptor-activated cation channel RevRE: reverse (Rev)-ErbA (NR1d1/2) RACK: receptor for activated C-kinase response element (DNA sequence) RAD: recombination protein-A (RecA)- RFA: radiofrequency ablation homolog DNA-repair protein RGL: Ral guanine nucleotide dissociation Rad: radiation sensitivity protein stimulator-like protein (GEF) Rag: Ras-related GTP-binding protein RGS: regulator of G-protein signaling Ral: Ras-related protein RHEB: Ras homolog enriched in brain RAlBP: retinaldehyde-binding protein RHS: equation right-hand side RalGDS: Ral guanine nucleotide-dis- Rho: Ras homologous sociation stimulator RIAM: Rap1-GTP-interacting adaptor RAMP: (calcitonin receptor-like) receptor- RIBP: RLK- and ITK-binding protein activity-modifying protein RICH: RhoGAP interacting with CIP4 Ran: Ras-related nuclear protein homolog RANTES: regulated upon activation, normal RICK: receptor for inactive C-kinase T-cell expressed, and secreted product Rictor: rapamycin-insensitive companion of (CCL5) TOR RAP: receptor-associated protein RIF: Rho in filopodium Rap: Ras-proximate (Ras-related) protein RIn: Ras and Rab interactor (RabGEF) Raptor: regulatory associated protein of RIN: Ras-like protein expressed in neurons TOR (GTPase) RAR: retinoic acid receptor (NR1b2/3) RIP: regulated intramembrane proteolysis Ras: rat sarcoma viral oncogene homolog (small GTPase) RIPK: receptor-interacting protein kinase RasA: Ras p21 protein activator RISC: RNA-induced silencing complex rasiRNA: repeat-associated small interfering RIT: Ras-like protein expressed in many RNA (PIWI) tissues RASSF: Ras interaction/interference protein RKIP: Raf kinase inhibitor protein RIN1, afadin, and Ras association RlBP: retinaldehyde-binding protein domain-containing family protein RLC: RISC-loading complex RB: RLK: resting lymphocyte kinase (TXK) RBC: red blood cell (erythrocyte) RNA: ribonucleic acid RBP: retinoid-binding protein RNABP: RNA-binding protein RC: ryanodine calcium channel (RyR) RNase: ribonuclease RCA: right coronary artery RnBP: renin-binding protein RCan: regulator of calcineurin RNF2: RING finger protein-2 (Ub ligase) RCC: right coronary cusp RNP: ribonucleoprotein RCC: regulator of chromosome condensation Robo: roundabout Re: Reynolds number ROC: receptor-operated channel 952 List of Aliases

RoCK: Rho-associated, coiled-coil- s: sarcomere length containing protein kinase s: evolution speed ROI: region of interest SAA: serum amyloid A − + ROMK: renal outer medullary potassium SACCl(K): stretch-activated Cl (K )- channel selective channel ROR: RAR-related orphan receptor SAc: suppressor of actin domain-containing (NR1f1–NR1f3) 5-phosphatase ROR(RTK): receptor Tyr kinase-like orphan sAC: soluble adenylate cyclase receptor SACCNS: stretch-activated cation non- ROS: reactive oxygen species selective channel Ros: V-ros UR2 sarcoma virus proto- SACM1L: suppressor of actin mutation-1- oncogene product (RTK) like RPIP: Rap2-interacting protein SAH: subarachnoid hemorrhage RPS6: ribosomal protein S6 SAIC: stretch-activated ion channel RPTP: receptor protein Tyr phosphatase SAN: sinoatrial node rRas: related Ras SAP: SLAM-associated protein rRNA: ribosomal RNA SAP: stress-activated protein RSA: respiratory sinus arrhythmia SAPi: synapse-associated protein i RSE: rapid systolic ejection SAPK: stress-activated protein kinase RSK: P90 (MAPK) RSKL: ribosomal protein S6 kinase-like SAR: secretion-associated and Ras-related (pseudokinase) protein rSMAD: receptor-regulated SMAD SBE: SMAD-binding element (SMAD1–SMAD3, SMAD5, and SBF: SET-binding factor SMAD9) Sc: Schmidt number RSMCS: robot-supported medical and SCA: stem cell antigen surgical system SCAMP: secretory carrier membrane protein RSpo: R-spondin SCAP: SREBP cleavage-activating protein RSTK: receptor Ser/Thr kinase (SREBP escort) RTK: receptor Tyr kinase SCAR: suppressor of cAMP receptor RTN: retrotrapezoid nucleus (WAVe) Rubicon: RUN domain and Cys-rich ScaR: scavenger receptor domain-containing, beclin-1- SCF: SKP1–Cul1–F-box Ub-ligase complex interacting protein SCF: stem cell factor Runx: Runt-related transcription factor SCFR: stem cell factor receptor (KIT) RV: right ventricle Scgb: secretoglobin RVF: rapid ventricular filling SCLC: small-cell lung cancer RVLM: rostral ventrolateral medulla scLC: squamous-cell lung cancer (NSCLC RVMM: rostral ventromedial medulla subtype) RXR: (NR2b1–NR2b3) SCN: suprachiasmatic nucleus RYK: receptor-like Tyr (Y) kinase SCO: synthesis of cytochrome-C oxidase (pseudokinase) SCP (CTDSP): small C-terminal domain RyR: ryanodine receptor (ryanodine- (CTD)-containing phosphatase ++ sensitive Ca -release channel) Scp: stresscopin ( 3) Scrib: Scribble polarity protein S Sdc: syndecan SDF: stromal cell-derived factor S: Cauchy-Green deformation tensor SDPR: serum deprivation protein response s:entropy SE: systolic ejection List of Aliases 953

SEF: strain-energy function SIP: steroid receptor coactivator-interacting SEF: similar expression to FGF genes protein (inhibitor of RTK signaling) siRNA: small interfering RNA SEK: SAPK/ERK kinase SiRP: signal-regulatory protein Sema: semaphorin (Sema, Ig, trans- SIRT: sirtuin (silent information regulator-2 membrane, and short cytoplasmic [two]; histone deacetylase) domain) SIT: SHP2-interacting transmembrane SERCA: sarco(endo)plasmic reticulum adaptor calcium ATPase SK: small conductance Ca++-activated K+ serpin: serine peptidase inhibitor channel SerT: SKi: sphingosine kinase-i SF: steroidogenic factor (NR5a1) SKIP: sphingosine kinase-1-interacting SFK: SRC-family kinase protein SFO: subfornical organ SKIP: skeletal muscle and kidney-enriched SFPQ: splicing factor proline and inositol phosphatase glutamine-rich SKP: S-phase kinase-associated protein sFRP: secreted Frizzled-related protein SLA: Src-like adaptor SftP (SP): surfactant protein SLAM: signaling lymphocytic activation sGC: soluble guanylate cyclase molecule SGK: serum- and glucocorticoid-regulated SLAMF: SLAM family member kinase SLAP: Src-like adaptor protein SGlT: Na+–glucose cotransporter (SLC5a) SLC: solute carrier class member Sgo: shugoshin (Japanese: guardian spirit) SLCO: solute carrier organic anion class SH: Src homology domain transporter Sh: Sherwood number SLK: Ste20-like kinase SH3P: Src homology-3 domain-containing Sln: sarcolipin adaptor protein SLPI: secretory leukocyte peptidase inhibitor Shank: SH3 and multiple ankyrin repeat SLTC: small latent TGFβ complex domain-containing protein SM: sphingomyelin SHAX: SNF7 (VSP32) homolog associated SMA: smooth muscle actin with ALIX SMAD: small (son of, similar to) mothers SHB: Src homology-2 domain-containing against decapentaplegia homolog adaptor SMAP: Small ArfGAP protein, stromal SHC: Src-homologous and collagen-like membrane-associated GTPase- substrate activating protein SHC: Src homology-2 domain-containing SMase: sphingomyelinase transforming protein SMC: smooth muscle cell SHh: sonic Hedgehog Smo: Smoothened SHIP: SH-containing inositol phosphatase SMPD: sphingomyelin phosphodiesterase SHP: SH-containing protein Tyr phosphatase SMRT: silencing mediator of retinoic acid (PTPn6/11) and SHP: small heterodimer partner (NR0b2) SMS: sphingomyelin synthase shRNA: small (short) hairpin RNA SMURF: SMAD ubiquitination regulatory SIAH: Seven in absentia homolog (Ub factor ligase) SNAAT: sodium-coupled neutral amino acid siglec: sialic acid-binding Ig-like lectin transporter SIK: salt-inducible kinase SNAP: soluble N-ethylmaleimide-sensitive SIn: stress-activated protein kinase- factor-attachment protein interacting protein SnAP: synaptosomal-associated protein 954 List of Aliases

SNARE: SNAP receptor SREBP: sterol regulatory element-binding SNF7: sucrose non-fermenting (VPS32) protein SNIP: SMAD nuclear-interacting protein SRF: snoRNA: small nucleolar RNA SRM/SMRS: Src-related kinase lacking snoRNP: small nucleolar ribonucleoprotein regulatory and myristylation sites SNP: single-nucleotide polymorphism SRP: stresscopin-related peptide (uro- snRNA: small nuclear RNA cortin 2) snRNP: small nuclear ribonucleoprotein SRPK: splicing factor RS domain-containing SNx: sorting nexin protein kinase SOC: store-operated Ca++ channel SRY: sex-determining region Y SOCE: store-operated Ca++ entry SSAC: shear stress-activated channel SOCS: suppressor of cytokine signaling SSE: slow systolic ejection protein Ssh: slingshot homolog phosphatase SOD: superoxide dismutase SSI: STAT-induced STAT inhibitor SorbS: sorbin and SH3 domain-containing ssRNA: single-stranded RNA adaptor Sst: somatostatin SOS: Son of sevenless (GEF) SSV: short saphenous vein Sost: sclerostin St: Strouhal number SostDC: sclerostin domain-containing STAM: signal-transducing adaptor molecule protein STAMBP: STAM-binding protein (Ub SOX: sex-determining region Y (SRY)-box isopeptidase) gene StAR: steroidogenic acute regulatory protein Sox: SOX gene product (transcription factor) StART: StAR-related lipid transfer protein SP1: specificity protein (transcription factor) STAT: signal transducer and activator of SPARC: secreted protein acidic and rich in transduction cysteine STEAP: six transmembrane epithelial SPC: sphingosylphosphorylcholine antigen of the prostate SPCA: secretory pathway Ca++ ATPase STICK: substrate that interacts with SPECT: single photon emission CT C-kinase Sph: sphingosine StIM: stromal interaction molecule SphK: sphingosine kinase STK: protein Ser/Thr kinase SPI: spleen focus-forming virus (SFFV) STK1: stem cell protein Tyr kinase receptor proviral integration proto-oncogene STLK: Ser/Thr kinase-like (pseudo)kinase product (transcription factor) Sto: Stokes number SPInt: serine peptidase inhibitor StRAd: STe20-related adaptor SPN: supernormal period STRAP: Ser/Thr kinase receptor-associated SPP: sphingosine phosphate phosphatase protein SpRED: Sprouty-related protein with an StRAP: stress-responsive activator of P300 EVH1 domain Stx: syntaxin (SNAREQ) SPURT: secretory protein in upper SUMo: small ubiquitin-related modifier respiratory tract SUn: Sad1 and Unc84 homology protein SQTS: short-QT syndrome SUR: sulfonylurea receptor SR: sarcoplasmic reticulum SUT: stable unannotated transcript SR: Arg/Ser domain-containing protein SV: stroke volume (alternative splicing) SVC: superior vena cava SRA: steroid receptor RNA activator SVCT: sodium-dependent vitamin-C SRC: steroid receptor coactivator transporter Src: sarcoma-associated (Schmidt-Ruppin SVF: slow ventricular filling A2 viral oncogene homolog) kinase SVP: synaptic vesicle precursor List of Aliases 955

SVR: systemic vascular resistance TACE: tumor-necrosis factor-α-converting SW: stroke work enzyme (ADAM17) SwAP70: 70-kDa switch-associated protein TACE: transarterial chemoembolization (RacGEF) TAF: TBP-associated factor SYK: spleen tyrosine kinase TAK: TGFβ-activated kinase (MAP3K7) Synj: synaptojanin TALK: TWIK-related alkaline pH-activated Syp: synaptophysin K+ channel Syt: synaptotagmin TANK: TRAF family member-associated S1P: sphingosine 1-phosphate NFκB activator S6K: P70 ribosomal S6 kinase (P70RSK) TASK: TWIK-related acid-sensitive K+ channel T TASR: terminus-associated short RNA TAP: transporter associated with antigen T: extrastress tensor processing (ABC transporter) T: transition rate from a cell cycle phase to Taz: taffazin the next TBC1D: Tre2 (or USP6), BUB2, CDC16 T: temperature domain-containg RabGAP T lymphocyte (T cell): thymic lymphocyte TBCK: tubulin-binding cofactor kinase TC: cytotoxic T lymphocyte (CD8+ effector (pseudokinase) T cell; CTL) TBK: TANK-binding kinase TC1: type-1 cytotoxic T lymphocyte TBP: TATA box-binding protein (subclass- TC2: type-2 cytotoxic T lymphocyte 4F transcription factor) TCM: central memory T lymphocyte TBx: T-box transcription factor TConv: conventional T lymphocyte TC: thrombocyte (platelet) TEff: effector T lymphocyte TCA: tricarboxylic acid cycle TEM: effector memory T lymphocyte TCF: T-cell factor TFH: follicular helper T lymphocyte TCF: ternary complex factor TH: helper T lymphocyte (CD4+ effector TcFi: type-i transcription factor T cell) TCP: T-complex protein THi: type-i helper T lymphocyte TCR: T-cell receptor (i = 1/2/9/17/22) TEA: transluminal extraction atherectomy TH3:TGFβ-secreting TReg lymphocyte TEC: Tyr kinase expressed in hepatocellular TL: lung transfer capacity (alveolocapillary carcinoma membrane) TEF: thyrotroph embryonic factor TR1: type-1, IL10-secreting, regulatory (PAR/b–ZIP family) T lymphocyte TEK: Tyr endothelial kinase TReg: regulatory T lymphocyte TEM: transendothelial migration hi aTReg: CD45RA−, FoxP3 , activated Ten: tenascin TReg cell TF: transcription factor iTReg: inducible TReg lymphocyte Tf: transferrin nTReg: naturally occurring (natural) TFPI: tissue factor pathway inhibitor TReg lymphocyte TfR: transferrin receptor low rTReg: CD45RA+, FoxP3 , resting TG: triglyceride (triacylglycerol) TReg cell TGF: transforming growth factor tˆ: unit tangent TGFBR: TGFβ receptor gene t: time TGFβRAP: TGFβ receptor-associated TβRi: type-i TGFβ receptor protein TAA: thoracic aortic aneurysm TGN: trans-Golgi network TAB: TAK1-binding protein THETE: trihydroxyeicosatrienoic acid 956 List of Aliases

THIK: tandem pore-domain halothane- TP: thromboxane-A2 Gq/11-coupled inhibited K+ channel receptor THR: thyroid hormone receptor (NR1a1/2) TP53I: tumor protein P53-inducible protein TIAM: T-lymphoma invasion and tPA: tissue plasminogen activator metastasis-inducing protein (RacGEF) Tpo: thrombopoietin TICE: transintestinal cholesterol efflux TPPP: tubulin polymerization-promoting TIE: Tyr kinase with Ig and EGF homology protein domains (angiopoietin receptor) TPST: tyrosylprotein sulftotransferase TIEG: TGFβ-inducible early gene product TR: testicular receptor (NR2c1/2) TIGAR: TP53-inducible glycolysis and TRAAK: TWIK-related arachidonic apoptosis regulator acid-stimulated K+ channel TIM: T-cell immunoglobulin and mucin TRADD: tumor-necrosis factor receptor- domain-containing protein associated death domain adaptor Tim: timeless homolog TRAF: tumor-necrosis factor receptor- TIMM: translocase of inner mitochondrial associated factor membrane TRAM: TRIF-related adaptor molecule TIMP: tissue inhibitor of metallopeptidase transceptor: transporter-related receptor TIRAP: Toll–IL1R domain-containing TRAP: TNF receptor-associated protein adaptor protein (HSP75) tiRNA: transcription initiation RNA TraPP: transport protein particle TJ: tight junction TRAT: T-cell receptor-associated transmem- TKR: Tyr kinase receptor brane adaptor TLC: total lung capacity Trb: Tribbles homolog (pseudokinase) TLR: Toll-like receptor TRE: TPA-response element (AP1/CREB- TLT: TREM-like transcript binding site on promoters) TLX: tailless receptor (NR2e1) TRE: trapped in endoderm TM: thrombomodulin TREK: TWIK-related K+ channel TMi: transmembrane segment-i of TREM: triggering receptor expressed on membrane protein myeloid cells TMC: twisting magnetocytometry TRESK: TWIK-related spinal cord K+ TMePAI: transmembrane prostate androgen- channel induced protein TRF: TBP-related factor TMy: tropomyosin TRH: thyrotropin-releasing hormone Tnn (TN): troponin TRIF: Toll–IL1R domain-containing adaptor Tn: thrombin inducing Ifnβ TNF: tumor-necrosis factor TRIM: T-cell receptor-interacting molecule TNFαIP: tumor-necrosis factor-α-induced TRIP: TGFβ receptor-interacting protein protein (eIF3S2) TNFR: tumor-necrosis factor receptor TRK: tropomyosin receptor kinase (NTRK) TNFRSF: tumor-necrosis factor receptor tRNA: transfer RNA superfamily member TRP: transient receptor potential channel TNFSF: tumor-necrosis factor superfamily TRPA: ankyrin-like transient receptor member potential channel TNK:TyrkinaseinhitorofNFκB TRPC: canonical transient receptor potential Tns: tensin channel TOR: target of rapamycin TRPM: melastatin-related transient receptor TORC: target of rapamycin complex potential channel TORC: transducer of regulated CREB TRPML: mucolipin-related transient activity (a.k.a. CRTC) receptor potential channel List of Aliases 957

TRPN: no mechanoreceptor potential C Ucn: urocortin TRPP: polycystin-related transient receptor UCP: uncoupling protein potential channel UDP: uridine diphosphate-glucose TRPV: vanilloid transient receptor potential UK: urokinase channel ULK: uncoordinated-51-like kinase TrrAP: transactivation (transforma- (pseudokinase) tion)/transcription domain-associated Unc: uncoordinated receptor protein (pseudokinase) uPA: urokinase-type plasminogen activator TrV: tricuspid valve (urokinase) TRx: thioredoxin uPAR: uPA receptor TRxIP: thioredoxin-interacting protein uPARAP: uPAR-associated protein TSC: complex (CLec13e) TSH: thyroid-stimulating hormone UPR: unfolded protein response TSLP: thymic stromal lymphopoietin UPS: ubiquitin-proteasome system Tsp: thrombospondin UP4A: uridine adenosine tetraphosphate Tspan: tetraspanin Uro: urodilatin TsPO: translocator protein of the outer US: ultrasound mitochondrial membrane USC: unipotential stem cell tSNARE:targetSNARE USF: upstream stimulatory factor tsRNA: tRNA-derived small RNA USI: ultrasound imaging tssaRNA: transcription start site-associated USP: ubiquitin-specific peptidase (deubiqui- RNA tinase) Ttn: titin (pseudokinase) UTP: uridine triphosphate TUT: terminal uridine transferase UTR: untranslated region TWIK: tandem of P domains in a weak UVRAG: ultraviolet wave resistance- inwardly rectifying K+ channel associated gene product TxA2: thromboxane A2 (thromboxane) TxB2: thromboxane B2 (thromboxane V metabolite) TXK: Tyr kinase mutated in X-linked V:leftstretchtensor agammaglobulinemia V: volume TxaS: thromboxane-A synthase Vq: cross-sectional average velocity TyK: tyrosine kinase Vs: specific volume T3: tri-iodothyronine v: velocity vector T4: thyroxine v: recovery variable + TP: plus-end-tracking proteins V1(2)R: type-1(2) vomeronasal receptor V1A/1B/2: type-1a/1b/2 arginine vasopressin U receptor VAAC: volume-activated anion channel − + U: right stretch tensor VAC Cl(K): volume-activated Cl (K )- u: displacement vector selective channel u: electrochemical command VACamKL: vesicle-associated CamK-like u: specific internal energy (pseudokinase) Ub: ubiquitin VAC C NS: volume-activated cation UbC: ubiquitin-conjugating enzyme non-selective channel UbE2: E2 ubiquitin conjugase VAChT: vesicular acetylcholine transporter UbE3: E3 ubiquitin ligase VAIC: volume-activated ion channel UbL: ubiquitin-like protein VAMP: vesicle-associated membrane protein UCH: ubiquitin C-terminal hydrolase (DUb) (synaptobrevin) 958 List of Aliases

VanGL: Van Gogh (Strabismus)-like protein VVO: vesiculo-vacuolar organelle VAP: VAMP-associated protein vWF: von Willebrand factor VASP: vasoactive stimulatory phosphopro- tein W VAT: vesicular amine transporter vATPase: vesicular-type H+ ATPase W: vorticity tensor VAV: ventriculoarterial valve W : strain energy density Vav: GEF named from Hebrew sixth letter W: work, deformation energy VC: vital capacity w: weight VCAM: vascular cell adhesion molecule w: grid velocity VCt: vasoconstriction WASH: WASP and SCAR homolog VDAC: voltage-dependent anion channel WASP: Wiskott-Aldrich syndrome protein (porin) WAT: white adipose tissue VDACL: plasmalemmal, volume- and WAVe: WASP-family verprolin homolog voltage-dependent, ATP-conductive, WBC: white blood cell large-conductance, anion channel WDR: WD repeat-containing protein VDCC: voltage-dependent calcium channel Wee: small (Scottish) VDP: vesicle docking protein WHAMM: WASP homolog associated with VDt: vasodilation actin, membranes, and microtubules VEGF: vascular endothelial growth factor WIP: WASP-interacting protein VEGFR: vascular endothelial growth factor WIPF: WASP-interacting receptor protein VF: ventricular fibrillation WIPI: WD repeat domain-containing VF: ventricular filling phosphoinositide-interacting protein VGAT: vesicular GABA transporter WNK: with no K (Lys) kinase VGC: voltage-gated channel Wnt: wingless-type VgL: Vestigial-like protein WPWS: Wolff-Parkinson-White syndrome VGluT: vesicular glutamate transporter WNRRTK: Wnt and neurotrophin VHL: von Hippel-Lindau Ub ligase receptor-related receptor Tyr kinase VIP: vasoactive intestinal peptide (ROR(RTK)) VLDL: very-low-density lipoprotein WSB: WD-repeat and SOCS box-containing VLDLR: very-low-density lipoprotein protein (Ub ligase) receptor WSS: wall shear stress VMAT: vesicular monoamine transporter WSSTG: WSS transverse gradient VN: vitronectin WWTR: WW domain-containing transcrip- VPO: vascular peroxidase tion regulator VPS: vacuolar protein sorting-associated kinase X VR: venous return VRAC: volume-regulated anion channel X : trajectory VRC: ventral respiratory column X: reactance VRK: vaccinia-related kinase X: Lagrangian position vector VS: vasostatin x: position vector vSMC: vascular smooth muscle cell {x,y,z}: Cartesian coordinates vSNARE: vesicular SNAP receptor XBE: X-factor-binding element (SNARE) XBP: X-box-binding protein (transcription VSOR: volume-sensitive outwardly factor) rectifying anion channel XIAP: X-linked inhibitor of apoptosis VSP: voltage-sensing phosphatase (Ub ligase) List of Aliases 959

Y ZnF: zinc finger protein ZO: zonula occludens Y: admittance coefficient YAP: Yes-associated protein Miscellaneous YBP: Y-box-binding protein (transcription factor) 2-5A: 5-triphosphorylated, (2,5)- YY: yin yang (transcriptional repressor) phosphodiester-linked oligoadenylate Z 2AG: 2-arachidonyl glycerol 3DR: three-dimensional reconstruction Z: impedance 3BP2: Abl Src homology-3 domain-binding ZAP70: ζ-associated protein 70 adaptor ZBTB: zinc finger and BTB (Broad 4eBP1: inhibitory eIF4e-binding protein complex, Tramtrack, and bric-à-brac) 5HT: serotonin domain-containing transcription factor 7TMR: 7-transmembrane receptor (GPCR) Complementary Lists of Notations

Greek Letters κo: osmotic coefficient κs: size ratio {κ }9 α: volumic fraction k k=1: tube law coefficients α: convergence/divergence angle κe: correction factor α: attenuation coefficient Λ: head loss coefficient λ αk: kinetic energy coefficient L: Lamé coefficient λ αm: momentum coefficient : stretch ratio β: inclination angle λ: wavelength 2 λ {βi} : myocyte parameters A: area ratio 1 λ βT : coefficient of thermal expansion a: acceleration ratio Γ: domain boundary λL: length ratio λ ΓL: local reflection coefficient q: flow rate ratio λ ΓG: global reflection coefficient t : time ratio γ: heat capacity ratio λv: velocity ratio γ: activation factor μ: dynamic viscosity γg: amplitude ratio (modulation rate) of g μL: Lamé coefficient ν γs: surface tension : kinematic viscosity γ˙:shearrate νP: Poisson ratio δ: boundary layer thickness Π: osmotic pressure ρ T : emissivity (thermal energy radiation) : mass density τ e: electric permittivity : time constant ε: strain Φ: potential ε: small quantity φ(t): creep function ζ: singular head loss coefficient ϕ: phase ζ: transmural coordinate χ: Lagrangian label 3 {ζ j} : local coordinate chii: molar fraction of species i 1 χ η: azimuthal spheroidal coordinate i: wetted perimeter θ: circumferential polar coordinate ψ(t): relaxation function Ψ θ: (eˆx,tˆ) angle : porosity κ:wallcurvature ω: angular frequency Ω κc: curvature ratio : computational domain κd:dragcoefficient κh: hindrance coefficient Dual Notations

961 962 Complementary Lists of Notations

Bϕ: basophil s: solute Eϕ: eosinophil s: serial Lϕ: lymphocyte s: systolic Mϕ: macrophage t: stream division aaMϕ: alternatively activated macrophage T:total caMϕ: classically activated macrophage t: turbulence Nϕ: neutrophil t: time derivative of order 1 Σc: sympathetic tt: time derivative of order 2 pΣc: parasympathetic tis: tissue V: ventricular Subscripts v: venous w:wall A: alveolar, atrial w: water (solvent) Ao: aortic Γ: boundary a: arterial θ: azimuthal app: apparent +: positive command atm: atmospheric −: negative command b: blood ∗: at interface c: contractile 0: reference state (·0: unstressed or low shear c: center rate) c: point-contact ∞: high shear rate D: Darcy (filtration) d: diastolic Superscripts dyn: dynamic a E: expiration, Eulerian : active state e e: external : elastic f e: extremum :fluid h eff:effective : hypertensive n f:fluid : normotensive p g:grid : passive state p I: inspiration :power s i: internal : solid T inc: incremental : transpose v L: Lagrangian : viscoelastic l: limit :scale ∗ : line-contact : complex variable  M: macroscopic · : first component of complex elastic and m:mean shear moduli  : maximum · : second component of complex elastic m: muscular, mouth and shear moduli met: metabolic : static, stationary, steady variable μ: microscopic P: pulmonary Mathematical Notations p: parallel p: particle T: bold face capital letter means tensor q: quasi-ovalization v: bold face lower case letter means vector r: radial S, s: upper or lower case letter means scalar rel: relative Δ•: difference S: systemic δ•: increment Complementary Lists of Notations 963 d • /dt: time gradient kinase, and corresponding gene and ∂t : first-order time partial derivative oncogene product, respectively) • ∂tt: second-order time partial derivative : radical (unpaired electron[s]) ΔNT ∂i: first-order space partial derivative with : truncated form without the N-terminal respect to spatial coordinate xi domain ∇ ΔCT : gradient operator : truncated form without the C-terminal ∇u: displacement gradient tensor domain ∇ ( ) v: velocity gradient tensor D L X: D (L)-stereoisomer of amino ∇· : divergence operator acids and carbohydrates (chirality ∇2 : Laplace operator prefixes for dextro- [dexter: right] || +: positive part and levorotation [lævus: left]), i.e., || −: negative part dextro(levo)rotatory enantiomer • ˙: time derivative GX: globular form of X molecule • ¯: time mean F(G)actin: polymeric, filamentous (mono- • ˘: space averaged meric, globular) actin • : ensemble averaged X: carboxy (carboxyl group COOH • C ˜: dimensionless [C])-terminal cleaved part of molecule •+ ∈ [ , ] : normalized ( 0 1 ) X •ˆ:peakvalue NX: amino (amine group NH2 [N])-terminal •∼: modulation amplitude cleaved part of molecule X det(•): determinant X: cytosolic molecule cof(•): cofactor c X: membrane-bound molecule tr(•): trace m tX: truncated isoform X X Cranial Nerves i: type-i isoform of the receptor of ligand (i: integer) I: olfactory nerve (sensory) XRi: receptor isoform i of ligand X (i: II: optic nerve (sensory) integer) X+: molecule X expressed (X-positive) III: oculomotor nerve (mainly motor) + IV: trochlear nerve (mainly motor) X : cation; also intermediate product X of V: trigeminal nerve (sensory and motor) oxidation (loss of electron) from a VI: abducens nerve (mainly motor) reductant (or reducer) by an oxidant VII: facial nerve (sensory and motor) (electron acceptor that removes VIII: vestibulocochlear (auditory-vestibular) electrons from a reductant) nerve (mainly sensory) X−: molecule X absent (X-negative) − IX: glossopharyngeal nerve (sensory and X : anion; also intermediate product X of motor) reduction (gain of electron) from an X: vagus nerve (sensory and motor) oxidant (or oxidizer) by a reductant XI: cranial accessory nerve (mainly motor) (electron donor that transfers electrons XII: hypoglossal nerve (mainly motor) to an oxidant) XA: activator form of molecule X Chemical Notations Xa: active form of molecule X XECD: soluble fragment correponding to [X]: concentration of X species the ectodomain of molecule X after X (x): upper and lower case letters cor- extracellular proteolytic cleavage respond to gene and corresponding and shedding (possible extracellular protein or conversely (i.e., Fes, messenger or sequestrator) FES, and fes designate protein, a X(ER): endoplasmic reticulum type of proto-oncogene product that acts as a molecule X 964 Complementary Lists of Notations small GTPaseGTP(GDP): active (inactive) iX: inhibitory mediator (e.g., iSMAD) or form of small (monomeric), regulatory intracellular (e.g., iFGF) or inducible guanosine triphosphatase (e.g., iNOS) isoform XGTP(GDP): GTP (GDP)-loaded molecule X kX: renal type (kidney) molecule X XICD: soluble fragment correponding to ksX: kidney-specific isoform of molecule X intracellular domain of molecule lX: lysosomal molecule X X after intracellular proteolytic l,acX: lysosomal, acidic molecule X cleavage (possible messenger and/or mX: mammalian species or membrane- transcription factor; e.g., NotchICD: associated molecule X (e.g., mTGFβ) intracellular Notch fragment) mtX: mitochondrial type of molecule X XM: methylated molecule X nX: neutral X; neuronal type (e.g., nWASP) XMT: mitochondrial type of molecule X oxX: oxidized molecule X (e.g., oxLDL) XP: phosphorylated molecule X plX: plasmalemmal type of molecule X pAA: phosphorylated amino acid (pSer, pThr, rX: receptor-associated mediator or receptor- and pTyr) like enzyme; also regulatory type of XPM: plasmalemmal type of molecule X molecular species (e.g., rSMAD) XR: repressor form of molecule X sX: secreted, soluble form of molecule X XS: soluble form s,acX: secreted, acidic molecule X XSNO: Snitrosylated molecule X skX: skeletal myocyte isoform (e.g., XU: ubiquitinated protein X skMLCK) smcX: smooth muscle cell isoform (e.g., X : alternative splice variant alt smcMLCK) X : full-length protein X FL tX: target type of X (e.g., tSNARE); tissue X : high (low, mid)-molecular-weight h(l,m)MW type (e.g., tPA) isotype tmX: transmembrane type of X X : long (short) isoform (splice variants) L(S) vX: vesicle-associated (e.g., vSNARE) or X : catalytic subunit c vacuolar (e.g., vATPase) type of X X X P: palmitoylated molecule GPX: glycoprotein (X: molecule abbreviation Xi: number of molecule or atom (i: integer, or assigned numeral) often2or3) Xx:(x: single letter) splice variants (X1–X2)i: oligomer made of i complexes X1: human form (ortholog) constituted of molecules X1 and X2 Xi: isoform type i (paralog or splice variant; (e.g., histones) i: integer) a, c, nX: atypical, conventional, novel Xi/j: (i,j: integers) refers to either both molecule X (e.g., PKC) isoforms (i.e., Xi and Xj,suchas acX: acetylated molecule X (e.g., acLDL) ERK1/2) or heterodimer (i.e., Xi–Xj, al, ac, nX: alkaline, acidic, neutral molecule such as ARP2/3) X (e.g., sphingomyelinase) X1/X2: molecular homologs or commonly asX: alternatively spliced molecule X (e.g., used aliases (e.g., contactin-1/F3) asTF) PI(i)P, PI(i,j)P2,PI(i,j,k)P3: i,j,k (inte- cX: cellular, cytosolic, constitutive (e.g., gers): position(s) of phosphorylated cNOS), or cyclic (e.g., cAMP and OH groups of the inositol ring of cGMP) molecule X phosphatidylinositol mono-, bis-, and caX: cardiomyocyte isoform (e.g., caMLCK) trisphosphates dX: deoxyX eX: endothelial isoform (e.g., eNOS and Amino Acids eMLCK) hX: human form (ortholog); heart type (e.g., Ala (A): alanine hFABP); hormone-like isoform (FGF) Arg (R): arginine Complementary Lists of Notations 965

Asn (N): asparagine OH−: hydroxide anion − Asp (D): aspartic acid PO3 : phosphate anion − 4 AspCOO : aspartate 2− SO4 : sulfate anion CysH (C): cysteine Zn++: zinc cation (common oxidation state) Cys: cystine Gln (Q): glutamine Inhaled and Signaling Gas Glu (E): glutamic acid − CO: carbon monoxide (or carbonic oxide; GluCOO : glutamate signaling gas and pollutant) Gly (G): glycine CO : carbon dioxide (cell waste) His (H): histidine 2 H S: hydrogen sulfide (signaling gas) Iso, Ile (I): isoleucine 2 He: helium (inert monatomic gas) Leu (L): leucine N : nitrogen (inert diatomic gas) Lys (K): lysine 2 NO: nitric oxide (or nitrogen monoxide; Met (M): methionine signaling gas and pollutant) Phe (F): phenylalanine NO : nitrogen dioxide (air pollutant) Pro (P): proline 2 O : oxygen (cell energy producer) Ser (S): serine 2 SO : sulfur dioxide (air pollutant) Thr (T): threonine 2 Trp (W): tryptophan Tyr (Y): tyrosine Nitric Oxide Derivatives Val (V): valine NO•: free radical form + Ions NO : nitrosyl or nitrosonium cation NO−: nitroxyl or hyponitrite anion Asp−: aspartate (carboxylate anion of (inodilator) aspartic acid) HNO: protonated nitroxyl anion − 3 HNO2: nitrous acid ADP : ADP anion − 4− ATP : ATP anion NO2 : nitrite anion ++ − Ca : calcium cation NO3 : nitrate anion Cl−: chloride anion Reactive Oxygen and Nitrogen Species Co++: cobalt cation Cu+: copper monovalent cation H2O2: hydrogen peroxide Cu++: copper divalent cation N2O3: dinitrogen trioxide Fe++: ferrous iron cation • NO2: nitrogen dioxide Fe3+: ferric iron cation − − O2 : superoxide Glu : glutamate (carboxylate anion of O=C(O•)O−: carbonate radical glutamic acid) • + OH : hydroxyl radical (hydroxide ion H : hydrogen cation (proton) neutral form) + − H3O : hydronium (oxonium or hydroxo- ONOO : peroxynitrite nium) cation − HCO3 : bicarbonate anion 2− Time Units HPO4 : hydrogen phosphate anion K+: potassium cation ++ d: day Mg : magnesium cation h: hour Mg 2− ATP : ATP anion mn: minute Mn++: manganese cation + s: second Na : sodium cation wk: week Ni++: nickel cation (common oxidation state) SI-Based and Non-SI Units of Quantity 966 Complementary Lists of Notations mmol, nmol, μmol: milli-, nano-, (osm: number of moles of a osmotically micromoles active chemical compound) (amount of a chemical species, one mole kDa: kiloDalton containing about 6.02214078×1023 (Da: atomic or molecular mass unit) molecules) ppm: parts per million mosm: milliosmole l: liter Index

Symbols adenomatous polyposis coli...... 732 ADPribose ...... 41, 121, 172 adenosine ...... 17, 85, 86, 225, 300, 474 ADPribosylhydrolase...... 41 adenosine receptor ...... 229, 262, 474 Nacetylglucosaminyltransferase ...... 40 adenylate cyclase16, 248, 310, 409, 532, 543 (pro)renin receptor ...... 413, 742 adhesionGPCR...... 428 βNacetylglucosaminidase...... 40 adipocyte 314, 315, 397, 420, 500, 502, 534, β-glycan (TβR3) ...... 665, 669 739 14-3-3 protein ...... 40, 653, 737 adiponectin ...... 352, 419, 492 ...... 419, 492 A adiposetissue...... 213, 336, 419, 420, 589 α-actinin...... 251 ADP . . 85, 86, 262, 299, 453, 483, 485, 490, α-adrenergic receptor 83, 297, 415, 493, 502 491 α2-antiplasmin...... 415 adrenaline ...... 296, 298, 366, 499, 500 AATyKkinase...... 641 ABC transporter . . 16, 81, 96, 228, 265, 285, adrenocorticotropic hormone ...... 555 315, 393, 399, 403, 405, 537 adrenomedullin...... 513 acetylation...... 37 adrenomedullin receptor...... 514 acetylcholine . . . . 82, 83, 225, 279, 290, 366, aging ...... 183, 750 415, 470 agmatine...... 414 acetylglucosamination...... 40 agrin ...... 471, 645, 646 ACh muscarinic receptor...... 226, 470 airwayepithelium...... 81, ACh nicotinic receptor ...... 140, 365, 613 88, 106, 131, 132, 176, 202, 257, 259, actin 158, 229, 263, 265, 313, 654, 708, 731, 262, 263, 266, 267, 288, 301, 308, 751, 753 319, 344, 380, 412, 488, 619, 643 actin depolymerizing factor ...... 471 airway smooth muscle cell . . . 176, 263, 426, action potential ...... 215, 364 452, 472, 527, 584 activating transcription factor (ATF) . . . . 683 airwaysurfacefluid...... 328 Activator protein-1 . 126, 387, 389, 436, 794 AKAP.29, 32, 102, 145, 170, 174, 177, 227, activin...... 668 254, 263, 264, 466 acylCoA–cholesterol acyltransferase. . . .403 albumin...... 343 adamlysin . 57, 553, 613, 619, 627, 656, 660, aldosterone ...... 202, 226, 391, 525 706, 750, 780 ALK receptor S/T kinase (TGFRSF) . . . 662, adaptor ...... 29, 788, 792 671, 675, 676, 679 ADAPadaptor...... 788 ALKreceptorYkinase...... 645

967 968 Index allergen...... 302 arterial tortuosity syndrome...... 315 allostery...... 28 asbestos...... 619 alveolar macrophage ...... 340, 353 asthma...... 762 alveolus ...... 267, 322 atherosclerosis 332, 341, 352, 359, 406, 439, ALXadaptor...... 789 516, 645 AMP...... 85 ATP...... 80,81,85,87, amphetamine...... 585 89, 123, 133, 150, 159, 167, 173, 176, amphiregulin ...... 605 177, 179, 183, 187, 189, 193, 227, AMPK ...... 42, 419, 492 228, 259–262, 266, 289, 299, 308, amylin...... 513 379, 409, 483, 485, 487, 490, 491, 799 amyloid precursor protein ...... 340, 347 ATPsynthase...... 269 anandamide ...... 116, 129, 132 ATPanion...... 81,260 anaphylatoxin...... 519 autoregulation...... 480 androgenreceptor...... 388 autotaxin...... 550 aneurysm...... 506 axin...... 732 angiogenesis...... 79, Axl (RTK) ...... 596, 642, 803 85, 283, 398, 432, 478, 480, 509, 529, 548, 550, 553, 563, 566, 573, 582, B 619, 621, 626, 636, 653, 658, 660, β-adrenergic receptor51, 461, 466, 479, 481, 693, 700, 703, 715, 720, 739, 746, 769 493, 512 angiopoietin ...... 660, 693, 715 B-cellreceptor...... 58,783 angiotensin . . . 131, 134, 185, 243, 287, 344, BACEprotease...... 57 413, 420, 504, 530, 618, 619 Bardet-Biedl syndrome protein...... 742 angiotensin-converting enzyme 39, 506, 511, baroreceptor...... 200 513 baroreflex ...... 475, 496 angiotensin receptor . . . . . 238, 464, 487, 504 basalcell...... 326 ankyrin ...... 158, 177, 179, 211, 229 BCAR/CAS docker ...... 417, 645 annexin ...... 418, 546 BCL2 protein ...... 178, 530 anoctamin...... 259 bestrophin ...... 259 antiporter...... 91 Bezold-Jarischreflex...... 117 aortic body...... 365 biasedsignaling...... 500 APCUbligase...... 737 bicarbonate ...... 153, 266 apelin ...... 419, 508 biglycan...... 625, 736 apelin receptor ...... 419, 508 bile acid ...... 392, 402, 510 apolipoprotein . 321, 332, 352, 405, 672, 674 bilitranslocase ...... 303 apolipoprotein-E receptor ...... 349 biomarker...... 259 apoptosis ...... 113, 774 birth...... 530 APSadaptor...... 790 bistability ...... 676 aquaporin ...... 305, 328, 587 BK channel ...... 181, 220, 226, 244 arachidonic acid82, 129, 132, 133, 234, 516, BLnkadaptor...... 790 517, 524, 544 blood–brain barrier.312, 323, 325, 431, 541, ARFGTPase...... 404 543, 765 arginine...... 414 bloodpressure...... 202 Argosome...... 736 bloodvolume...... 202 arrestin . . 131, 459, 462, 490, 577, 578, 612, BMP ...... 345, 668, 674, 713 707, 726, 740 ...... 510 arrhythmogenic right ventricular dysplasia Bowditch/Treppeeffect...... 189 667 bradykinin...... 415, 510 artemin...... 651 ...... 510 Index 969 brain . 90, 121, 198, 213, 282, 286, 315, 322, cardiac frequency ...... 365, 521 328, 336, 419 cardiomyocyte...... 39, 51, BrCa1Ubligase...... 50 91, 135, 161, 167, 171, 174, 175, 181, breathing frequency ...... 365, 576 183, 196, 197, 206, 208, 210, 213, bronchoconstriction . . . . . 452, 472, 473, 544 214, 229, 237, 242, 249, 252, 260, bronchodilation ...... 452, 499 261, 266, 284, 293, 308, 313, 389, brush cell ...... 207, 258, 323, 365 409, 412, 419, 463, 464, 471, 480, 492, 499, 506, 507, 509, 515, 527, C 530, 532, 563, 565, 567, 582, 602, C-reactiveprotein...... 765 612, 619, 709, 744, 752, 790 C/EBP factor ...... 396, 397 cardiomyopathy...... 284, 481 C1qTNFSF...... 148 cardiotonicsteroid...... 214 Ca++-induced Ca++ release. .180, 185, 186 cardiotrophin...... 767 Ca++ 2-porechannel...... 172 carotid body ...... 201, 247, 365 CaV channel . . 132, 164, 167, 169, 240, 248, CARP2(RFFL1)Ubligase...... 782 308, 409, 452, 487, 523, 535, 543, casein kinase. .127, 251, 388, 473, 646, 653, 560, 745 720, 724, 732, 740 cadherin ...... 492, 645, 697 caspase ...... 178, 627, 775, 781, 797 cADPR ...... 161, 185 catenin ...... 346, 696, 697, 728, 730 calcitonin...... 513 cathepsin ...... 420, 568 calcitonin gene-related peptide . 83, 117, 513 caveola ...... 214, 355, 356, 515, 612 calcium ...... 32, 42, 65–67, 80, 81, 83, caveolin . . . . 39, 49, 117, 176, 201, 229, 244, 89–91, 111, 113, 116, 119, 121, 123, 265, 313, 389, 572, 614, 633, 666 126, 127, 130–133, 147, 157, 160, CBLbadaptor...... 790 173, 179, 244, 287, 308, 341, 343, CBL Ub ligase 601, 603, 607, 630, 633, 639, 365, 414, 491, 496, 514, 524, 532, 720 788, 805 calcium-sensingreceptor...... 514 CBP (HAT)...... 379, 381 calciumblip...... 180 CCPgadaptor...... 790 calcium oscillation ...... 179 CD36...... 537 calcium puff ...... 173, 175, 180 CDC25 phosphatase ...... 41 calcium spark...... 175, 181, 187, 248 cellulin...... 605 calciumtransient...... 126 cell cycle ...... 41, 239, 667, 749 calcium wave ...... 180, 181 cell migration . 293, 319, 341, 342, 434, 630 calmodulin . . . 102, 119, 171, 178, 183, 250, cellpolarity...... 637 251, 467, 582 central nervous system . . 140, 291, 419, 474, calmodulin-dependent kinase . . . 35, 80, 144, 522, 746 171, 172, 178, 183, 184, 189, 199, cerebellin ...... 148 226, 233, 237, 240, 501, 507, 681, 747 cerebrospinal fluid ...... 365, 578 calpain...... 42,178 ceruloplasmin...... 284 calreticulin ...... 340, 341 CE transfer protein ...... 350, 406 calsequestrin...... 189 CFTR channel. . .81, 96, 155, 258, 262, 265, Cam2K...... 493 319, 326, 498, 552 cAMP . . 16, 32, 80, 133, 266, 308, 326, 388, cGMP...... 17,133 411, 490, 497, 543 chemerin...... 420 cancer ...... 530, 717 chemerinreceptor...... 420 cannabinoid receptor ...... 116, 515 chemokine ...... 341, 359 carbonic anhydrase ...... 153, 268 chemokine receptor ...... 517 carbon dioxide ...... 253, 333, 365 chemotaxis ...... 420, 518–520, 545, 584 carbon monoxide ...... 202, 247, 399 Chibby...... 736 970 Index chloride . . 81, 85, 88, 95, 139, 141, 149, 157 creatinekinase...... 415 cholecystokinin...... 520 CREB factor ...... 16, 168, 192, 198, 384 cholesterol. . . .237, 321, 350, 352, 392, 393, CRK adaptor ...... 349, 626 399, 402, 403, 537 crosstalk 40, 71, 79, 389, 456, 458, 503, 513 cholesterol ester transfer protein...... 402 Cryptic ...... 605, 665, 671 choline...... 290 CSF2...... 332 cholinetransporter...... 290 CSF3...... 564 chondroitin sulfate proteoglycan . . . 691, 698 CSF receptor ...... 640 choriogonadotropin ...... 539 CTDSP/SCP phosphatase ...... 681 chromogranin ...... 178 cubilin...... 344 chylomicron ...... 350, 403 cullin Ub ligase...... 737 chymase...... 420 cyclin-dependent kinase . 178, 460, 641, 724, chymotrypsin ...... 568 763 cIAPUbligase...... 798 cyclooxygenase132, 390, 515, 565, 567, 747 ciliary beat frequency . . . 132, 133, 365, 634 cysticfibrosis...... 88 ciliary neurotrophic factor ...... 767 cytochrome-Coxidase...... 283 ciliated cell ...... 326 cytochromeC...... 178 circadian rhythm ...... 401, 408, 542, 579 cytochrome P450 ...... 372, 402 cis-actingfactor...... 59 cytokinesis...... 41 Cl−–H+ antiporter...... 255 cytokinereceptor...... 370 Cl−–H+ exchanger ...... 155, 255, 258 cytotoxicTcell...... 324 − − Cl –HCO3 exchanger . . 155, 265, 268, 327, 328 D Clara cell...... 400, 534 Dab adaptor...... 339, 343, 349, 665, 672 clathrin...... 49,614 DAPKkinase...... 147 clathrin-coated pit ...... 285, 343, 464, 611 DDRkinase...... 642 claudin...... 305 decorin...... 423, 625 ClCa channel ...... 181, 262, 265, 327, 487 DeltexUbligase...... 707 ClC channel...... 81, 156, 255 demethylase...... 43 ClICchannel...... 263 dendritic cell ...... 123, 280, 496, 641, 800 ClNSchannel...... 82,265 dermatansulfate...... 625 CNG channel ...... 136, 216, 252 DGKkinase...... 616 coagulationfactor...... 420 diabetes...... 799 cofilin...... 471 diacylglycerol . 110, 120, 244, 464, 505, 567 collagen...... 354, 643 Dickkopf...... 739 collectin...... 353 diffusion...... 268 complement ...... 366, 519 Disheveled . . . . 465, 646, 728, 730, 736, 741 connexin ...... 89 Dispatched ...... 719, 720 connexon ...... 89 distal-less homeobox (DLx) ...... 564 contactin ...... 691, 696 divalentmetaltransporter...... 285 copper ...... 283 DLg adaptor . . 144, 145, 223, 227, 239, 240, copper ATPase ...... 270, 283 343, 498, 576 copper transporter ...... 283 DM2Ubligase...... 463 cortactin...... 235 DOCKGEF...... 417 corticosterone...... 402 DOK adaptor . 639, 646, 651, 660, 665, 789, corticotropin-releasing hormone...... 521 805 cortisol...... 390 dopamine . . 84, 141, 225, 296, 310, 522, 578 CRACchannel...... 162 dopamine receptor ...... 265, 522 creatine...... 414 dynamin ...... 719 Index 971 dynein ...... 674, 685 epidermal growth factor . . 73, 248, 389, 602, dynorphin ...... 509, 524, 559 724 dystroglycan...... 36 epigen...... 605 dystrophin ...... 196 epiregulin ...... 605, 620 epithelial–mesenchymal transition ...... 626 E epithelium...... 206 E2Ffactor...... 38,683 epsin...... 607 EAATtransporter...... 292 ERK . . . 23, 72, 81, 124, 201, 202, 214, 273, ecto-5-nucleotidase ...... 17, 87, 474 286, 297, 341, 358, 389, 390, 399, ecto-alkaline phosphatase...... 87 413, 417, 419, 421, 422, 439, 462, ectonucleotidase ...... 87 487, 496, 501, 503, 506, 507, 510, ectoproteinkinase...... 485 518, 522, 526, 527, 532, 533, 545, EET ...... 90, 132, 255 548, 552, 561, 572, 574, 578, 579, EGF-like domain-containing protein . . . . 619 581, 588, 601, 606, 609, 612, 616, EGFRpathwaysubstrate...... 607 619, 628, 630, 635, 645, 661, 667, EGF receptor . 249, 381, 417, 507, 532, 602, 680, 685, 771, 773, 794 711 erythrocyte . . . 81, 85, 86, 90, 216, 249, 266, eicosanoid...... 129, 301 320, 580 elastase ...... 201, 420 ESCRT...... 59,604, 615 electrolyte...... 93 estrogen...... 503, 531, 612, 696 embryo/fetus...... 175 estrogen-relatedreceptor...... 392 ENaC channel . 200, 226, 262, 265, 287, 327 estrogenGPCR...... 531, 540 endocannabinoid ...... 129, 225, 515 excitatory postsynaptic potential . . . 142, 145 endocytosis ...... 630 exercise...... 490 endoglin ...... 665, 669, 672, 678 exporter ...... 91 endomorphin ...... 225, 560 ezrin–radixin–moesin ...... 206, 265, 628 endophilin ...... 498 endoplasmic reticulum ...... 113 F endoplasmic reticulum stress...... 195 farnesoidXreceptor...... 392 endorphin ...... 559 fatty acid ...... 301, 330, 398, 532 endosome ...... 21, 59, 125, 258, 356, 629 fattyacid-bindingprotein...... 301 endothelin134, 175, 185, 243, 325, 506, 526, fatty acid transport protein ...... 637 619 Fcreceptor...... 784 endothelin receptor ...... 526 feedback...... 19, 21, 25, 32, 65, endothelium ...... 45, 79, 71, 119, 132, 151, 166, 170, 171, 179, 84, 131, 132, 206, 230, 249, 262, 266, 186, 192, 245, 260, 263, 289, 349, 303, 312, 353, 356, 357, 389, 397, 385, 393, 397, 399, 413, 416, 421, 399, 410, 419, 473, 478, 490, 492, 441, 467, 491, 499, 509, 555, 598, 507, 509, 527, 528, 541, 564, 580, 602, 607, 608, 613, 628, 644, 656, 582, 628, 637, 658, 672, 678, 695, 679, 680, 707, 711–713, 719, 725 697, 708, 709, 739, 746, 752, 753 feedforward ...... 162, 608 ENDPKkinase...... 87,88 ferritin...... 285 enkephalin ...... 509, 524, 559 FGF receptor ...... 621, 771 ENPP ectonucleotidase ...... 16, 87 fibrin...... 415 ENTPD ectonucleotidase . . 86, 87, 474, 490 fibrinogen...... 491 EpCAM...... 750 fibroblast ...... 206, 410, 506, 507, 570 ephrin...... 653, 713 fibroblast growth factor ...... 249, 410, 691 EPH receptor ...... 593, 653 fibronectin...... 738 epican(CD44)...... 627 fibrosis...... 645, 745 972 Index

filamin...... 666 glucocorticoid receptor ...... 145, 390 flavonoid ...... 303 glucose ...... 358, 522 FLK2 (CD135) ...... 640 glucose transporter . 313, 398, 420, 630, 633 flotillin ...... 633 glutamate ...... 84, 142, 414, 521, 538 foam cell ...... 332, 336, 358 glutamate–aspartate transporter ...... 292 focal adhesion ...... 505, 739 glutamate channel ...... 142, 521, 747 focal adhesion kinase . . . 381, 504, 645, 650, glutamate receptor ...... 538 657, 699, 789 glutathione...... 46 follicle-stimulating hormone ...... 539 GLUT enhancer factor (GEF) ...... 313 Fos factor ...... 181, 388, 516, 522 glycan...... 38 FoxCfactor...... 715 glycerol...... 308 FoxGfactor...... 718 glycinechannel...... 149 FoxH factor ...... 666, 682 glycogen synthase kinase206, 543, 667, 681, FoxOfactor...... 661 724, 732 Frizzled ...... 346, 465, 535, 728 glycoprotein hormone receptor ...... 539 functionalhyperemia...... 539 glycosaminoglycan ...... 47 functionalselectivity...... 500 glycosylation ...... 38, 139, 150, 260 furin ...... 201, 339, 705 glypican...... 39 Fyn kinase ...... 178, 349, 358, 633, 640 goblet cell ...... 488 Golgi body ...... 258, 283 G gonadotropin-releasing hormone ...... 540 GABA ...... 84, 141, 225, 291 GPCR...... 463 GABAA channel...... 141 GPCR kinase ...... 459, 473, 490, 578 GABAB receptor ...... 226, 535 GPCR phosphatase ...... 460 GAB adaptor . . 527, 617, 618, 626, 699, 788 GPIanchor...... 39 GAds/GRAP2adaptor...... 788 GRB adaptor . . . . 32, 40, 507, 526, 603, 631, galanin...... 536 651, 788, 789 galanin-likepeptide...... 536 Gregg’s phenomenon ...... 528 ganglioside ...... 601, 604 Grouchofactor...... 743 gapjunction...... 90 growth factor...... 366, 601, 747 gastrin...... 520 growth hormone-releasing hormone399, 537 gastrin-releasingpeptide...... 510 gutflora...... 532 gastransporter...... 333 Gprotein...... 61 GATAfactor...... 709 G protein-coupled receptor ...... 366 GDF...... 668 GDNF ...... 650 H gelsolin...... 549 H+–K+ ATPase ...... 269, 328 general transcription factor GTF2 . 378, 392, H+ ATPase . . . 254, 258, 268, 269, 298, 328, 682 413, 742 ghrelin...... 537 HV channel ...... 106, 267 ghrelin receptor ...... 399, 537 HBEGF...... 248 girdin...... 620 HCKkinase...... 763 GIRK channel...... 216, 223, 410 HCN channel ...... 137, 409, 452, 543 − glialcell...... 260 HCO3 transporter...... 153, 254 Glifactor...... 722 HDL...... 332, 350, 352, 405 ...... 503, 537 Headactivator...... 347 glucagon-like peptide ...... 537 heart 117, 121, 130, 282, 286, 293, 315, 322, glucagonreceptor...... 537 328, 336, 419, 527, 589, 649, 674, glucocorticoid...... 202, 237, 322, 402, 521 698, 780 Index 973 heartfailure...... 240 I heat-gated ion channel . . 112, 123, 124, 128, iKACh current...... 216 130 IDL...... 350 heat shock protein...... 202, 387, 796, 799 IDOL Ub ligase ...... 337, 394 HECWUbligase...... 737 IGF2Rreceptor...... 416 Hedgehog ...... 344, 464, 624, 709, 718 IGF receptor ...... 632 helperTcell...... 151 IKchannel...... 249 heme ...... 202, 247 imidazolinereceptor...... 414 heme oxygenase ...... 201, 202, 247, 399 immunoglobulin ...... 366 heparan sulfate proteoglycan ...... 39, importer ...... 91 64, 340, 341, 344, 594, 623, 625, 636, infarction...... 532 657, 688, 736, 739 inflammasome ...... 797, 799 heparin ...... 341, 625, 736 inflammation ...... 399, 765 inhibin...... 668 hepatocyte ...... 321, 328, 332, 393 initiation factor ...... 331 hepatocytegrowthfactor...... 762 inositol trisphosphate67, 161, 172, 173, 244, hepcidin...... 675 496, 567 hepsin...... 624 inotropy...... 493 HER receptor ...... 503, 592, 593, 610 InsRRreceptor...... 632 HESfactor...... 708 insulation...... 72 HETE ...... 129, 171, 398 insulin . . . 130, 206, 308, 312, 313, 321, 389, HETEE ...... 129 415, 422, 473, 496, 500, 503, 521, HGFactivator...... 625 534, 593, 653, 695, 697, 739 HGF receptor ...... 624, 803 insulin-like growth factor130, 286, 389, 724, histamine...... 410, 541 745 histaminereceptor...... 541 insulin-likepeptide...... 573 histone deacetylase ...... 604, 613 insulin receptor ...... 40, 423, 631 HODE...... 398 insulin receptor substrate . . . . . 618, 632, 739 Homerscaffold...... 179, 185, 192, 539 integrin...... 14, hormone...... 106, 215, 362, 366, 576 64, 224, 261, 262, 265, 297, 358, 362, hormone response element...... 387 417, 517, 627, 643, 645, 689, 738, 788 HPETE...... 129 intercalateddisc...... 206 HPETEE ...... 129 interferon...... 330 HRS (ZFYVE8) ...... 604, 607 interferonregulatoryfactor...... 797 HRT factor ...... 708, 715 interleukin ...... 90, 297, 332, 747, 799 intermediatefilament...... 613 HUNK kinase ...... 616 intimal hyperplasia ...... 134, 249 HUWE1(ArfBP1)Ubligase...... 401 intracellular hormone receptor ...... 363 hydrogen ...... 90, 147, 153, 173 intramembrane-cleaving protease ...... 57 hydrogen ion control ...... 94, 207, 412 inversin...... 742 hydrogenperoxide...... 411 ioncarrier...... 66 hydrogensulfide...... 230 ion pump ...... 108 hydronium ion ...... 204, 266 IP3 receptor ...... 214, 539 hydroxylation ...... 42 IQGAP ...... 68 hypertension...... 135, 183, 214, 565 IRAK (pseudo)kinase ...... 758, 793 hypertrophy ...... 617, 619 iron...... 285 hypothalamus...... 509, 586 ischemic preconditioning ...... 411, 480 hypoxia . . . 90, 167, 202, 230, 480, 567, 748 Itch Ub ligase ...... 131, 607, 616 hypoxia-inducible factor ...... 43, 747 ITKkinase...... 788 974 Index

J LDL...... 350 JadeUbligase...... 748 LDLR-related protein . . . 339, 416, 706, 728 JAMMmetalloprotease...... 52 LDLRAPadaptor...... 339 . . 421, 436, 504, 507, 563, 658, LDLR receptor 335, 336, 355, 407, 416, 728 694, 763, 803 lecithin–cholesterol acyltransferase 350, 406 JNK 125, 358, 436, 501, 508, 572, 581, 588, lectin ...... 353, 359, 422, 643, 800 616, 628, 635, 645, 656, 671, 674, leptin ...... 421, 521, 534, 555 681, 730, 739–741, 747, 777, 794, 798 leptinreceptor...... 421 junctin...... 190 leucyl–cystinyl aminopeptidase ...... 312 junctophilin ...... 191 leukemiainhibitoryfactor...... 767 Jun factor ...... 388, 516 leukocyte ...... 106, 420, 491, 619, 755 K leukotriene ...... 129, 398, 544, 547 K+–H+ exchangingATPase...... 155 leukotriene receptor ...... 544 LGR(GPCR)...... 739 K1P channel...... 217 LIMK kinase ...... 471, 685 K2P channel...... 217, 218, 253 KATP channel ...... 227, 329, 411, 415 lipocalin...... 302 KCa (BK) channel ...... 478, 539 lipoprotein ...... 366 KCa (SK)channel...... 543 lipoprotein lipase ...... 350 KCa channel ...... 116, 132, 216, 220, 244 lipoxin ...... 544 KIR channel . . 158, 222, 260, 318, 319, 327, lipoxygenase ...... 129, 341, 545 329, 409, 452, 478, 487, 516, 535, liprin ...... 688, 695, 696, 699 539, 556, 560 liver 121, 282, 299, 302, 314, 315, 328, 329, KNa channel ...... 220, 252 336, 343, 419, 420, 527 KV channel39, 219, 230, 327, 487, 543, 690, liverkinase-B...... 493 695 liver X receptor ...... 321, 323, 332, 393 ...... 510 long-QT syndrome...... 243 kallikrein ...... 512 long-term potentiation...... 143 KCCcotransporter...... 262 LPA receptor ...... 551 kidney . . 54, 81, 92, 108, 111, 120, 123, 130, LTKkinase...... 645 131, 164, 202, 207, 255, 282, 286, lung 107, 116, 117, 121, 164, 174, 176, 198, 288, 290, 293, 299, 302, 305, 309, 213, 286, 299, 302, 305, 311, 314, 311, 314, 315, 322, 328, 336, 412, 315, 320–322, 336, 353, 400, 419, 419, 522, 524, 589, 596, 643, 653, 420, 527, 558, 572, 589, 596, 643, 671, 674, 698, 780 645, 653, 671, 674, 688, 695, 697, kinesin ...... 721, 726 698, 718, 720, 762, 780, 781, 792 kinin...... 510 luteinizing hormone...... 539 kininogen ...... 510 ...... 543 lymphangiogenesis ...... 553, 636, 638, 658 Klotho ...... 622, 750 lymphatic ...... 661 Kremenreceptor...... 739 lymphocyte . . . 108, 162, 172, 236, 249, 260, 280, 357, 487, 534, 580, 583, 641, L 777, 787 lamellipodium...... 635 Lyn kinase ...... 131, 358, 616, 786 larynx...... 262 lysophosphatidic acid . . . 398, 410, 465, 548, latrophilin GPCR ...... 544 550 LATadaptor...... 788 lysophospholipid ...... 548 LcK kinase ...... 694, 772, 789 lysosomalprotein...... 356 LCP2adaptor...... 788 lysosome ...... 113, 125, 259, 356 Index 975

M mineralocorticoid receptor ...... 145, 391 macrophage . . 280, 283, 321–323, 332, 350, MISTadaptor...... 790 397, 399, 537, 564, 640, 644, 739, mitochondrial Ca++ uptake protein. . . . .162 747, 787, 802 mitochondrion 162, 198, 262, 283, 299, 315, magnesium . . . 111, 133, 134, 147, 152, 153, 384 182, 183, 187, 251, 261, 271, 285, mitoferrin...... 285 287, 586 mitofusin...... 710 maltosetransporter...... 318 mitogen- and stress-activated kinase . . . . 792 manganese...... 196 mitosignalosome...... 797 mannose 6-phosphate receptor. . . . .412, 416 MJD deubiquitinase ...... 52 MAPK ...... 19, 29, 30, 35, 68, 69, MMP . . . . . 57, 415, 553, 565, 570, 622, 628, 73, 264, 293, 388, 460, 487, 492, 496, 643–645, 769 504, 510, 527, 543, 564, 602, 656, monocarboxylate transporter ...... 155, 281 681, 724, 758, 763, 797 monocyte ...... 564 mastocyte 123, 176, 421, 454, 553, 584, 625, ...... 556 639 mRNA...... 59 MATKkinase...... 639 mucin...... 488 matriptase...... 624 mucociliary clearance ...... 203, 262, 488 Maxianionchannel...... 82,259 mucus ...... 203, 263 mechanogatedchannel...... 107 multidrug resistance transporter ...... 323 mechanosensitive channel. . . .107, 110, 119, multivesicular body ...... 61, 735 134, 156 MuSK kinase ...... 471, 646 mechanosome...... 12 MyB transcription factor ...... 196, 199 mechanotransduction 86, 201, 308, 435, 454, MycBP2Ubligase...... 401 462, 659 MyC transcription factor . 264, 667, 682, 749 Mediator complex ...... 381 MyD88 adaptor ...... 757, 792, 793 melanin-concentrating hormone ...... 554 myocardin ...... 390 melanocortinreceptor...... 554 myocardium ...... 578 melanocyte-stimulating hormone . . 554, 555 myocyte enhancer factor (MEF) ...... 313 melatonin...... 556 myogenic differentiation factor (MyoD).683 membrane raft ...... 39, 63, 332, 633 myogenic response ...... 134 Mer(RTK)...... 596, 616, 642, 803 myosin...... 313, 567 mesenchymal–epithelial transition ...... 634 myosin light-chain kinase ...... 494 metallothionein...... 284 myristoylation ...... 45, 247, 444 metastasis...... 262, 626 myristoyltransferase...... 45 methylation...... 43 methyltransferase...... 43 N Mg++ ATPase...... 271 Na+–Ca++–K+ exchanger...... 197 Mg++ transporter...... 285 Na+–Ca++–Li+ exchanger...... 197 MibUbligase...... 706 Na+–Ca++ exchanger . . 135, 158, 166, 175, Mical...... 752 186, 195, 196, 213, 420, 509, 526, 530 microphthalmia transcription factor (MiTF) Na+–Cl− cotransporter...... 92 259 Na+–H+ antiporter...... 155 microRNA . 21, 77, 321, 338, 395, 397, 499, Na+–H+ exchanger 153, 155, 206, 254, 268, 607, 609, 737 328, 343, 420, 499, 507, 509, 523, microtubule ...... 211, 666 524, 526, 530, 552, 562, 734 + − microtubule-associated protein ...... 132 Na –HCO3 symporter ...... 155, 262 microvillus...... 265 Na+–K+ ATPase . . 158, 197, 200, 212, 226, midkine...... 691 269, 292, 296, 523 976 Index

NaV channel ...... 39, 158, 208, 561, 693 neurotrophin RTK ...... 646 NAADP...... 161, 172 neurturin...... 651 NAADP receptor ...... 172 neutrophil . 85, 283, 357, 433, 487, 546, 564 NAD+ ...... 172 nexin ...... 569, 674 NADPH oxidase . . . 185, 268, 303, 307, 505, NFκB...... 25,45, 635, 779 50, 341, 387, 398, 464, 465, 487, 628, natriuretic peptide . . . 17, 310, 407, 506, 507 717, 736, 758, 773, 792, 797, 805 natriuretic peptide receptor . . . 407, 409, 556 NFκB-inducing kinase ...... 798 NCK adaptor ...... 381, 788 NFAT factor ...... 199, 487, 530, 787, 805 NCoAcoactivator...... 379 NHERF...... 562 NCoRcorepressor...... 377 nicotine ...... 140, 192 NDPKkinase...... 88 nicotinicacid...... 559 neddylation ...... 56, 607 Niemann-Pick type-C protein ...... 403 NEDD Ub ligase. . .202, 235, 261, 288, 607, nitricoxide...... 17,45,83, 616 84, 132, 133, 178, 183, 184, 254, 305, nephron. .199, 202, 207, 226, 253, 286, 288, 310, 333, 356, 390, 407, 411, 414, 291, 343 473, 490, 491, 506, 512, 526, 598 nervegrowthfactor...... 73 nitric oxide synthase 45, 124, 183, 196, 266, nervoussystem...... 527 303, 325, 390, 399, 487, 506, 507, nestin...... 613 530, 661 neuralizedUbligase...... 706 nitrosylation...... 45,487 neuregulin ...... 610, 613 NKCCcotransporter...... 641 neurite growth-promoting factor...... 691 NKx2-5factor...... 400 neurogenic differentiation factor (NeuroD) NMDA receptor ...... 226 389 nociceptin...... 560 neurokinin...... 584 NOD-like receptor ...... 796 neuromedinB...... 510 Nodal...... 665 neuromedinC...... 510 nodal cell ...... 261, 409 neuromedinN...... 558 non-receptorTyrkinase...... 457 neuromedin receptor ...... 556 noradrenaline . . . . 82, 83, 170, 251, 296, 500 neuromedinS...... 557 nose ...... 262, 424 neuromedinU...... 556 Notch ...... 619, 623, 703, 720, 727 neuromuscular junction ...... 82, 471, 646 Notumpectinacetylesterase...... 39 neuron ...... 213, 260, 422 NRFfactor...... 709 neuropeptideB...... 557 nuclear estrogen receptor...... 24, 388 neuropeptideEI...... 554 nuclear respiratory factor (NRF1) ...... 384 neuropeptideFF...... 543 nucleobinding (calnuc) ...... 345, 348 neuropeptideGE...... 554 nucleoside...... 474, 482 neuropeptideK...... 584 nucleotide ...... 474, 482 neuropeptideS...... 557 neuropeptideW...... 557 O neuropeptide Y ...... 422, 554, 556, 557 obesity...... 421 neurophysin...... 588 occludin...... 306 neuropilin ...... 636, 751 octopamine...... 585 neuroregulin ...... 602, 713 omentin...... 422 ...... 347, 369, 524, 525, 558 oncostatin...... 767 neurotransmitter . . . 106, 215, 225, 362, 366, opioid...... 559 576 Orai Ca++ channel...... 163 neurotrophin ...... 646 ORCC Cl− channel ...... 265, 327 Index 977 ...... 562 phosphatidic acid ...... 505, 550 osmoreceptor...... 131 phosphodiesterase ...... 16, 535 osmoticpressure...... 81,107 phosphoinositide ...... 113, 234 osteoclast...... 802 phospholamban...... 194 osteoprotegerin...... 780 phospholipase A . . . 132, 133, 505, 543, 550, OTU deubiquitinase...... 52 578 oxidative stress ...... 42, 56, 315, 353, 741 phospholipase C91, 113, 115–117, 125, 153, oxygen...... 247, 253, 333, 365 162, 176, 226, 229, 244, 262, 409, oxysterol ...... 726 420, 475, 480, 486, 493, 505, 509, oxytocin ...... 83, 586, 587 511, 523, 543, 556, 572, 578, 598, 623, 626, 637, 788, 789 P phospholipase D ...... 33, 505, 578, 581 P-typeATPase...... 160 phospholipid ...... 548 P1receptor...... 482 phosphorylation ...... 20, 21, 31, 34, 150 P21-activated kinase ...... 381, 471, 609 PI3K202, 214, 341, 419, 460, 527, 532, 579, P2X channel ...... 80, 82, 90, 150, 260, 482 598, 612, 615, 626, 633, 637, 656, P2Y GPCR ...... 80, 133, 260, 262, 482 763, 789 P300 (HAT) ...... 379, 381 PIASSUMoligase...... 765 P38MAPK . . . 358, 419, 460, 501, 508, 516, Piezo (Fam38) ...... 107 561, 581, 588, 606, 614, 628, 641, pituitary ACase-activating peptide ...... 588 671, 685, 773, 777, 794, 798 PKMytkinase...... 41 P53 transcription factor . . 33, 38, 41, 43, 44, plasmerosome ...... 117, 164, 213, 214 264, 699 plasmin ...... 201, 415, 420, 624 P70 ribosomal S6 kinase (S6K) . . . . 419, 685 plasminogen ...... 415 pacemaker...... 101, 137 platelet . . 178, 249, 265, 297, 320, 354, 357, palmitoylation ...... 46, 233, 389, 444 453, 491, 553, 642, 643, 803 pannexin...... 90,487 platelet-activatingfactor...... 563 parasympathetic...... 83, 650 platelet-derived growth factor . . . . . 410, 746 parathyroid hormone ...... 562 pleiotrophin ...... 645, 691 parathyroid hormone-related peptide. . . .562 plexin...... 628, 650, 751, 752 Patched ...... 719, 725 PLuNC...... 201 paxillin ...... 650, 657, 699, 789 PMCA pump ...... 186, 195 PDGF receptor...... 417, 634 pneumocyte ...... 322, 343, 344, 400 PDK1kinase...... 633 Polo-likekinase...... 749 Peli1Ubligase...... 794 polyADPribosylglycosidase ...... 41 pepducin...... 518 polyADPribosylpolymerase...... 41 peptidase...... 339 polyadpribosylation...... 41 peptidase-activated receptor ...... 568 Polycomb chromatin repressor ...... 779 peptideYY...... 534 polycystin ...... 125, 434 pericyte...... 658 polysialyltransferase...... 39 peripheralnervoussystem...... 140 pore...... 91 perivascularnerve...... 85 potassium...... 81,157 peroxisome ...... 329, 330, 384 PP1 . . 40, 172, 177, 184, 225, 233, 246, 527, persephin...... 651 609, 672 PGCfactor...... 382 PP2 . . 44, 172, 177, 225, 251, 259, 410, 461, pH . . 204–206, 247, 253, 275, 281, 294, 300, 512, 609, 672, 681, 724, 737 308, 328, 365, 439 PP3 ...... 196, 233, 237, 410, 530, 564, 787 phagocytosis...... 268, 804 PPAR factor ...... 301, 323, 352, 395, 419 phosphacan ...... 700 PPM1 ...... 264, 410, 681 978 Index pre-Bötzinger complex ...... 576 PTPRc ...... 694, 764 pregnancy...... 512 PTPRd...... 694 prenylation...... 46,444 PTPRe ...... 695, 764 presenilin ...... 611, 750 PTPRf ...... 627, 696 primary cilium . . . . . 126, 435, 447, 720, 742 PTPRg...... 696 prion...... 340 PTPRh...... 696 prokineticin...... 563 PTPRj ...... 627, 696 prokineticinreceptor...... 563 PTPRk...... 697 prolactin-releasingpeptide...... 543 PTPRm...... 697 prolyl hydroxylase ...... 43 PTPRn...... 697 prostacyclin...... 132, 398, 490, 565, 567 PTPRn2...... 697 prostaglandin . . 309, 310, 328, 398, 512, 565 PTPRo ...... 656, 698 prostanoid receptor ...... 248, 565 PTPRq...... 698 proteasome...... 49,460 PTPRr...... 698 proteinC...... 568 PTPRs...... 699 protein domain ...... 28 PTPRt...... 699 protein kinase A80, 129, 144, 171, 177, 183, PTPRu...... 699 184, 225, 243, 246, 266, 289, 309, PTPRv...... 699 327, 389, 452, 466, 543, 609, 720, PTPRz1...... 700 721, 724 pulmonary hypertension . 120, 297, 530, 685 protein kinase B . . . 178, 206, 422, 460, 506, purine...... 474, 482 510, 532, 543, 564, 582, 609, 628, pyrimidine...... 482 633, 661, 667, 717, 724, 752, 773, 803 proteinkinaseC...... 73, R 80, 120, 129, 144, 171, 183, 185, 226, R-spondin ...... 739 229, 244, 246, 262, 266, 325, 336, Rab GTPase ...... 61, 314, 464, 719, 749 420, 473, 480, 496, 509, 530, 609, Rac GTPase . . . 501, 572, 630, 730, 739, 740 629, 633, 639, 681, 763, 805 Rafkinase...... 609 protein kinase D ...... 286, 473 RAMP...... 514 protein kinase G . . . 171, 177, 246, 266, 411, RapGEF...... 349 676, 681 rapsyn...... 646 protein S ...... 803, 804 Rap GTPase ...... 349, 645 proteoglycan...... 725 RasA GAP ...... 626, 628 proteolysis...... 57 RasGAP...... 598 proton-sensingGPCR...... 551 Ras GTPase ...... 507, 616, 656, 680 pseudogene ...... 109 RE1-silencing transcription factor (REST) pseudokinase ...... 591, 654 248 PTen phosphatase ...... 578, 633 reactive oxygen species . . 58, 171, 185, 206, PTK7 kinase ...... 593, 650, 742 254, 268, 283, 315, 411, 505, 508, PTPn1...... 422, 615, 627, 764 516, 529, 619, 635, 688, 779, 799 PTPn11/SHP2 206, 421, 511, 527, 626, 628, receptor-operated channel . . . . 133, 134, 163 633, 634, 637, 639, 764, 786, 789, receptor for activated C kinase ...... 348 803, 805 receptor Ser/Thr kinase ...... 366, 662 PTPn2...... 627, 764 receptor Tyr kinase ...... 366, 457, 593 PTPn4...... 148 receptor Tyr phosphatase...... 366, 687 PTPn6/SHP1 . 598, 637, 639, 653, 764, 786, recepzyme ...... 362 796, 803, 805 recoverin...... 460 PTPRa...... 689 reduction–oxidation ...... 58 PTPRb...... 260, 601, 646, 661, 691 reelin ...... 335, 349 Index 979 reelinreceptor...... 349 Schnurritranscriptionfactor...... 264 refractoryperiod...... 186 sclerostin...... 345 regulator of G-protein signaling . . . 226, 436, secretase...... 336, 611, 613, 627, 706 458, 466, 473, 511 secreted Fz-related protein ...... 738, 746 relaxin...... 573 secretin ...... 537, 589 renin ...... 289, 412, 524 Sefinhibitor...... 624 repressilator...... 66 selenoprotein...... 192 repulsive guidance molecule ...... 675 semaphorin...... 628, 649, 650, 751 resistin...... 423 senescence...... 750 resistinreceptor...... 423 SERCA pump ...... 156, 186, 193 respiratoryepithelium...... 634 serotonin ...... 84, 225, 243, 296, 399, 574 respiratoryneuron...... 253 serotonin 5HT3 channel...... 149 retinaldehyde-binding protein ...... 303 serotonin5HTreceptor...... 297 retinoic acid ...... 301, 400 serotonintransporter...... 297 retinoic acid-binding protein ...... 302 serpin ...... 339, 415, 711 retinoic acid-related orphan receptor . . . . 401 serumamyloid-A...... 546 retinoic acid receptor ...... 301, 400, 676 Ser protease ...... 201, 204 retinoid...... 301 SGK kinase ...... 203, 226, 288 retinoid X receptor...... 301, 321, 400 SH3BP2adaptor...... 789 retinol-binding protein ...... 301 SHBadaptor...... 790 retromer...... 347 SHC adaptor . . . 40, 341, 507, 526, 603, 626, ReTreceptor...... 650 644, 651 RhoGEF...... 752 shear...... 86 Rho GTPase . . 153, 501, 572, 730, 739, 749, SHIP phosphatase ...... 633, 787, 805 752 SIAH Ub ligase ...... 378, 790 RIBPadaptor...... 789 sialidase...... 39 RIPkinase...... 798 sialylation...... 39,328 RNA-bindingprotein...... 60 siglec...... 770 RNAoperon/regulon...... 60 signalingspecificity...... 68 RoCK kinase ...... 494, 567 signalingrobustness...... 64 ROMK channel ...... 226, 266, 287, 327 sinoatrial node ...... 138 RON (MSt1R) kinase ...... 595, 634, 803 sirtuin...... 708, 740 ROR (RTK) ...... 535, 741 SITadaptor...... 789 Roskinase...... 653 SK channel ...... 220, 225, 249 Runxtranscriptionfactor...... 683 SLAMreceptor...... 804 ryanodine receptor ...... 180, 248, 264 SLAadaptor...... 790 RYK kinase ...... 535, 651, 652, 741 SLC transporter ...... 155, 266, 274, 393 SMAD factor.34, 38, 79, 299, 344, 378, 678 S Smoothened ...... 464, 719, 722 S100 protein ...... 189, 418 smooth muscle cell...... 83, 84, SAPadaptor...... 804 91, 108, 125, 130–132, 167, 171, 181, sarcolipin...... 194 185, 187, 196, 198, 199, 206, 213, SARMadaptor...... 792 230, 238, 243, 248, 249, 315, 341, SARGTPase...... 403 390, 413, 417, 452, 473, 490, 492, scaffoldprotein...... 28,73,144 506, 508, 528, 532, 563, 570, 619, scavenger receptor . 350, 399, 403, 405, 407, 644, 709, 739, 765 537 SMURF Ub ligase ...... 616, 666, 671, 672 SCF receptor ...... 638 Snail homolog (Snai) ...... 683 SCF Ub ligase ...... 379, 666, 732, 799 SOCS...... 422, 639, 762, 803 980 Index sodium ...... 81, 125, 157, 266 sympathoexcitatory reflex ...... 512 solubleadenylatecyclase...... 412 symporter ...... 92 solubleguanylatecyclase...... 410 synaptojanin...... 658 somatostatin ...... 225, 579 synaptotagmin...... 314 sorcin...... 191 syndecan ...... 625, 645 SOS GEF . . 32, 33, 527, 601, 604, 606, 628, syntaxin...... 266 633, 788 syntrophin ...... 196 Soxtranscriptionfactor...... 743 SP1transcriptionfactor...... 299 T SPCA pump ...... 156, 196 T-cellfactor(TCF)...... 743 spectrin...... 666 tachykininreceptor...... 584 sphingomyelinase ...... 779 TAM receptor ...... 803 sphingosine 1-phosphate . . . . . 320, 410, 580 TATA box-binding protein (TBP)...... 743 spindle checkpoint ...... 52, 749 TCRreceptor...... 805 spinophilin ...... 466 tenascin...... 691 Sprouty ...... 601, 624 testicularreceptor...... 391 SPURTsensor...... 204 tetraspanin ...... 615, 639, 772 Src kinase . 58, 147, 178, 208, 214, 226, 237, TGF receptor...... 662 349, 381, 389, 390, 417, 460, 503, thermosensitive ion channel . . 112, 127, 131 504, 526, 527, 609, 614, 616, 619, thioredoxin ...... 46, 120 623, 626, 653, 656, 685, 689, 694, thioredoxin-interacting protein ...... 799 695, 789, 802 thrombin ...... 568, 625 SREBP factor...... 321, 393 thrombospondin ...... 341, 354, 356, 706 STAMBP deubiquitinase ...... 609 thromboxane ...... 243, 248, 491, 565, 567 STAMadaptor...... 604 thrombus...... 178 STAT factor51, 322, 421, 436, 611, 616, 626, ...... 563 629, 639, 658, 694, 709, 762, 763, 803 thyroid-stimulating hormone ...... 539 Stefan-Maxwellequation...... 268 thyroid hormone...... 202, 386, 555 stemcell...... 206 thyroid transcription factor (TTF) ...... 322 stemcellfactor...... 638 thyrotropin-releasing hormone ...... 555 steroid ...... 363, 386 TIAMGEF...... 628, 630 sterol regulatory element-binding pro- TIE receptor ...... 660, 693 tein(SREBP)...... 322 tightjunction...... 306 StIM Ca++ sensor ...... 110, 163 TIRAPadaptor...... 792 STK39/SPAKkinase...... 287 tissue factor ...... 568, 573 store-operated channel . . 113, 119, 134, 162, tissue plasminogen activator ...... 415 163, 187 TNFαIPDUb/Ubligase...... 52 stretch-activated ion channels ...... 107 TNFRSF...... 30,630, 773 substance P ...... 83, 117, 369, 524, 584 TNFSF...... 630 sulfation...... 46 Toll-like receptor ...... 358, 790, 804 SUMo ...... 54, 237, 253, 632 traceamine...... 585 sumoylation...... 54,671 trachea ...... 262, 263 SUMo sentrin-specific protease ...... 54 tracheobronchialtree...... 262 superoxide dismutase ...... 85, 283, 284 TRAF Ub ligase . 30, 50, 644, 671, 758, 771, surfactant ...... 320, 322 773, 777, 778, 780, 781, 794, 795 surfactant protein ...... 322, 400 TRAMadaptor...... 792 Swi–SNF chromatin-remodeler ...... 379 trans-actingfactor...... 59 SYK kinase ...... 694, 786, 789, 802 transceptor...... 273 sympathetic ...... 83, 533, 650 transcriptionfactor...... 61,372 Index 981 transducisome...... 27 vascular endothelial growth factor . 249, 398, transferrin...... 285 636, 650 transferrin receptor ...... 285 vascular smooth muscle cell . . . 85, 120, 131, transforming growth factor . . . 248, 264, 299, 134, 166, 176, 211, 213, 230, 237, 344, 508, 662 259, 297, 342, 419, 479, 509, 527, transmembrane electric potential difference 619, 657, 658 94 vascular tone . . 113, 237, 243, 245, 248, 522 transporter...... 92 vasculogenesis ...... 548, 635, 700 transthyretin...... 302 vasoactive intestinal peptide . . . 83, 546, 588 transversetubule...... 260 vasoactive stimulatory phosphoprotein . . 411 TRATadaptor...... 789 vasoconstriction 85, 119, 120, 134, 185, 246, Trbadaptor...... 685 248, 297, 451, 473, 496, 506, 529, TREMreceptor...... 801 530, 544, 557, 567, 570, 586, 587 triadin...... 190 vasodilation . . . . 84, 113, 116, 132, 187, 213, tricarboxylic acid cycle...... 162 230, 243, 244, 246, 249, 356, 389, TRIFadaptor...... 792 410, 411, 420, 451, 474, 506, 512, triglyceride...... 350 524, 529, 530, 539, 567, 586, 701 TRIMUbligase...... 683 vasopressin 83, 108, 202, 309, 420, 509, 586 troponin ...... 188 vATPase ...... 155, 269 TRP channel . . . 42, 108, 172, 248, 308, 348, Vav GEF ...... 788, 789, 805 410, 434, 564 VDACchannel/porin...... 262 trypsin ...... 204, 568 VEGF receptor ...... 636 tryptase ...... 420, 455 vesicle...... 31,61 tubulin...... 211 vesicular ACh transporter ...... 291, 298 tumor-necrosis factor ...... 297, 325, 331 vesicularcalciumchannel...... 162 tumor cell . . . . . 439, 603, 622, 630, 751, 796 vesicularGABAtransporter...... 291 Tweety homolog channel ...... 260 vesicular glutamate transporter ...... 291 TyK2kinase...... 563 vesicular monoamine transporter . . 291, 298 tyramine...... 585 VHLUbligase...... 43 TyrO3 (RTK) ...... 596, 642, 803 visfatin...... 423 tyrosylprotein sulfotransferase ...... 47 vitamin-A ...... 301, 343, 372, 377, 400 vitamin-B ...... 319, 343, 344, 559 vitamin-C ...... 301, 315 U vitamin-D ...... 343, 344, 372, 377, 726 ubiquitin ...... 59, 61, 63, 615, 737 vitamin-E ...... 343, 344 ubiquitination . . . . 21, 47, 463, 671, 708, 738 vitronectin...... 417 UCH deubiquitinase ...... 52 VLDL...... 350 UCKkinase...... 616 VLDLRreceptor...... 349 uniporter...... 92 voltage-gated channel ...... 103, 199 uPAreceptor...... 342 volume-activated anion channel ...... 82 urmylation...... 56 volume-activated ion channels ...... 107 urocortin...... 521 von Willebrand factor ...... 491 urodilatin...... 408 VRAC channel ...... 261, 265 urokinase...... 342, 415 VSORchannel...... 81 urotensin...... 586 USP deubiquitinase . . 52, 463, 609, 615, 738 W Willis circle ...... 710 V wine polyphenol ...... 389 VangL...... 741 WNK kinase ...... 120, 226, 286, 287 982 Index

Wnt.345, 346, 399, 413, 650–652, 699, 727, ZBTBfactor...... 413 750 ZEBfactor...... 78 ZFYVE anchor ...... 665, 667, 672, 679 Y zinc ...... 116, 147, 149, 152, 267, 304, 720 Yeskinase...... 358 ZnFadaptor...... 790 Z zonula occludens protein ...... 564 ZAP70 kinase ...... 593, 789 zwitterion ...... 294