The Drosophila Blood-Brain Barrier: Development and Function of a Glial Endothelium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years. -
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells
Expression of SLC2A9 Isoforms in the Kidney and Their Localization in Polarized Epithelial Cells Toru Kimura1, Michi Takahashi1, Kunimasa Yan2, Hiroyuki Sakurai1* 1 Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan, 2 Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Tokyo, Japan Abstract Background: Many genome-wide association studies pointed out that SLC2A9 gene, which encodes a voltage-driven urate transporter, SLC2A9/GLUT9 (a.k.a. URATv1), as one of the most influential genes for serum urate levels. SLC2A9 is reported to encode two splice variants: SLC2A9-S (512 amino acids) and SLC2A9-L (540 amino acids), only difference being at their N- termini. We investigated isoform-specific localization of SLC2A9 in the human kidney and role of N-terminal amino acids in differential sorting in vitro. Methodology/Principal Findings: Isoform specific antibodies against SLC2A9 were developed and human kidney sections were stained. SLC2A9-S was expressed in the apical side of the collecting duct while SLC2A9-L was expressed in the basolateral side of the proximal tubule. GFP fused SLC2A9s were expressed in MDCK cells and intracellular localization was observed. SLC2A9-S was expressed at both apical and basolateral membranes, whereas SLC2A9-L was expressed only at the basolateral membrane. Although SLC2A9-L has a putative di-leucine motif at 33th and 34th leucine, deletion of the motif or replacement of leucine did not affect its subcellular localization. When up to 16 amino acids were removed from the N- terminal of SLC2A9-S or when up to 25 amino acids were removed from the N-terminal of SLC2A9-L, there was no change in their sorting. -
2.1 Drosophila Melanogaster
Overend, Gayle (2010) Drosophila as a model for the Anopheles Malpighian tubule. PhD thesis, University of Glasgow. http://theses.gla.ac.uk/1604/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Drosophila as a model for the Anopheles Malpighian tubule A thesis submitted for the degree of Doctor of Philosophy at the University of Glasgow Gayle Overend Integrative and Systems Biology Faculty of Biomedical and Life Sciences University of Glasgow Glasgow G11 6NU UK August 2009 2 The research reported within this thesis is my own work except where otherwise stated, and has not been submitted for any other degree. Gayle Overend 3 Abstract The insect Malpighian tubule is involved in osmoregulation, detoxification and immune function, physiological processes which are essential for insect development and survival. As the Malpighian tubules contain many ion channels and transporters, they could be an effective tissue for targeting with novel pesticides to control populations of Diptera. Many of the insecticide compounds used to control insect pest species are no longer suited to their task, and so new means of control must be found. -
Transport of Sugars
BI84CH32-Frommer ARI 29 April 2015 12:34 Transport of Sugars Li-Qing Chen,1,∗ Lily S. Cheung,1,∗ Liang Feng,3 Widmar Tanner,2 and Wolf B. Frommer1 1Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; email: [email protected] 2Zellbiologie und Pflanzenbiochemie, Universitat¨ Regensburg, 93040 Regensburg, Germany 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Biochem. 2015. 84:865–94 Keywords First published online as a Review in Advance on glucose, sucrose, carrier, GLUT, SGLT, SWEET March 5, 2015 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Soluble sugars serve five main purposes in multicellular organisms: as sources This article’s doi: of carbon skeletons, osmolytes, signals, and transient energy storage and as 10.1146/annurev-biochem-060614-033904 transport molecules. Most sugars are derived from photosynthetic organ- Copyright c 2015 by Annual Reviews. isms, particularly plants. In multicellular organisms, some cells specialize All rights reserved in providing sugars to other cells (e.g., intestinal and liver cells in animals, ∗ These authors contributed equally to this review. photosynthetic cells in plants), whereas others depend completely on an ex- Annu. Rev. Biochem. 2015.84:865-894. Downloaded from www.annualreviews.org ternal supply (e.g., brain cells, roots and seeds). This cellular exchange of Access provided by b-on: Universidade de Lisboa (UL) on 09/05/16. For personal use only. sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is criti- cal for plants, animals, and humans. -
ALC Neuroprotection in Mitochondrial Dysfunction V2 Mar2013x
LÍDIA ALEXANDRA DOS SANTOS CUNHA ACETYL -L-CARNITINE NEUROPROTECTION IN MITOCHONDRIAL DYSFUNCTION Tese de Candidatura ao Grau de Doutor em Patologia e Genética Molecular, submetida ao Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto Orientadora: Doutora Maria Teresa Burnay Summavielle Categoria: Investigador Auxiliar Afiliação: Instituto de Biologia Molecular e Celular DIRECTIVAS LEGAIS Nesta Tese foram apresentados os resultados contidos nos artigos publicados ou em vias de publicação seguidamente mencionados: Cunha L , Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, Veres DS, Szigeti K, Summavielle T, Máthé D, Metello LF Preclinical imaging: an essential ally in biosciences and drug development (Submitted for publication) Cunha L , Bravo J, Fernandes S, Magalhães A, Costa P, Metello LF, Horvath I, Borges F, Szigeti K, Máthé D, Summavielle T Acetyl-L-Carnitine preconditioning in methamphetamine exposure leads to excessive glucose uptake impairing reference memory and deregulated mitochondrial membrane function (Submitted for publication) Summavielle T, Cunha L , Damiani D , Bravo J, Binienda Z, Koverech A , Virmani A (2011) Neuroprotective action of acetyl-L-carnitine on methamphetamine-induced dopamine release . American Journal of Neuroprotection and Neuroregeneration 3:1-7. Comunicações orais apresentadas em congressos internacionais: Cunha L , Bravo J, Gonçalves R, Rodrigues C, Rodrigues A, Metello LF, Summavielle T The role of mitochondria in acetyl-L-carnitine neuroprotective action European Association of Nuclear Medicine Annual Congress. October 2012. Birmingham, UK. Eur J Nucl Med Mol Imaging (2011) 38 (Suppl 2):S227 iii Apresentações sob a forma de poster em congressos internacionais: Cunha L , Bravo J, Costa P, Fernandes S, Oliveira M, Castro R, Metello LF, Summavielle T Acetyl-L-carnitine improves cell bioenergetics European Association of Nuclear Medicine Annual Congress. -
Transporters
Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences, -
Human Glucose Transporters in Health and Diseases
Human Glucose Transporters in Health and Diseases Human Glucose Transporters in Health and Diseases By Leszek Szablewski Human Glucose Transporters in Health and Diseases By Leszek Szablewski This book first published 2019 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2019 by Leszek Szablewski All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-3558-4 ISBN (13): 978-1-5275-3558-9 CONTENTS Preface ...................................................................................................... vii Chapter 1 .................................................................................................... 1 Characteristics of Human Glucose Transporters Chapter 2 .................................................................................................... 5 Expression of Glucose Transporters in Health The human SLC2 (GLUT) family of membrane proteins ..................... 5 The human SLC5 (SGLT) family of membrane proteins .................... 30 The human SLC50 (SWEET) family of membrane proteins .............. 43 The role of glucose transporters in glucosensing machinery .............. 44 Chapter 3 ................................................................................................. -
Understanding Neurodevelopmental Disorders: the Promise of Regulatory Variation in the 30Utrome
Biological Psychiatry Review Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 30UTRome Kai A. Wanke, Paolo Devanna, and Sonja C. Vernes ABSTRACT Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up w1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 30UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 30UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neuro- developmental disorders and outline strategies for identification and validation of novel putatively pathogenic vari- ation in these regions. This evidence suggests that studying the 30UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders. -
Glucose Transporters As a Target for Anticancer Therapy
cancers Review Glucose Transporters as a Target for Anticancer Therapy Monika Pliszka and Leszek Szablewski * Chair and Department of General Biology and Parasitology, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-621-26-07 Simple Summary: For mammalian cells, glucose is a major source of energy. In the presence of oxygen, a complete breakdown of glucose generates 36 molecules of ATP from one molecule of glucose. Hypoxia is a hallmark of cancer; therefore, cancer cells prefer the process of glycolysis, which generates only two molecules of ATP from one molecule of glucose, and cancer cells need more molecules of glucose in comparison with normal cells. Increased uptake of glucose by cancer cells is due to increased expression of glucose transporters. However, overexpression of glucose transporters, promoting the process of carcinogenesis, and increasing aggressiveness and invasiveness of tumors, may have also a beneficial effect. For example, upregulation of glucose transporters is used in diagnostic techniques such as FDG-PET. Therapeutic inhibition of glucose transporters may be a method of treatment of cancer patients. On the other hand, upregulation of glucose transporters, which are used in radioiodine therapy, can help patients with cancers. Abstract: Tumor growth causes cancer cells to become hypoxic. A hypoxic condition is a hallmark of cancer. Metabolism of cancer cells differs from metabolism of normal cells. Cancer cells prefer the process of glycolysis as a source of ATP. Process of glycolysis generates only two molecules of ATP per one molecule of glucose, whereas the complete oxidative breakdown of one molecule of glucose yields 36 molecules of ATP. -
Isolation of State-Dependent Monoclonal Antibodies Against the 12-Transmembrane Domain Glucose Transporter 4 Using Virus-Like Particles
Isolation of state-dependent monoclonal antibodies against the 12-transmembrane domain glucose transporter 4 using virus-like particles David F. Tuckera, Jonathan T. Sullivana, Kimberly-Anne Mattiaa, Christine R. Fishera, Trevor Barnesa, Manu N. Mabilaa, Rona Wilfa, Chidananda Sullia, Meghan Pittsa, Riley J. Paynea, Moniquetta Halla, Duncan Huston-Patersona, Xiaoxiang Denga, Edgar Davidsona, Sharon H. Willisa, Benjamin J. Doranza, Ross Chambersa, and Joseph B. Ruckera,1 aIntegral Molecular, Philadelphia, PA 19104 Edited by H. Ronald Kaback, University of California, Los Angeles, CA, and approved April 27, 2018 (received for review September 24, 2017) The insulin-responsive 12-transmembrane transporter GLUT4 into the cell, thereby contributing to the maintenance of ac- changes conformation between an inward-open state and an ceptable glucose levels (3). Type 2 diabetes is, in part, defined by outward-open state to actively facilitate cellular glucose uptake. the inability of insulin to stimulate GLUT4 mobilization (insulin Because of the difficulties of generating conformational mAbs resistance). against complex and highly conserved membrane proteins, no Studying GLUT4 trafficking to the cell surface remains diffi- reliable tools exist to measure GLUT4 at the cell surface, follow its cult, in part because of the scarcity of tools available to measure trafficking, or detect the conformational state of the protein. Here wild-type GLUT4 protein (3, 4). Translocation of GLUT4 to the we report the isolation and characterization of conformational plasma membrane has been studied primarily by using fluo- mAbs that recognize the extracellular and intracellular domains rescently tagged GLUT4. For example, by using an HA epitope of GLUT4, including mAbs that are specific for the inward-open tag inserted into the first external loop of GLUT4 and a GFP tag and outward-open states of GLUT4. -
A Bridge Between Genes and Brain Activities Juko Ando
【Grant-in-Aid for Scientific Research(S)】 Humanities and Social Sciences (Social sciences) Title of Project:A Twin Study on Sociability and Mental Health: A Bridge between Genes and Brain Activities Juko Ando (Keio University, Faculty of Letters, Professor ) Research Area:behavioral genetics, psychology, brain science, genomics Keyword:twin, genetics, environment, 【Purpose and Background of the Research】 at home and in campus (3) brain structure/function studies by NIRS and At the coming of the dawn of a behavioral MRI neurogenomics era, it has been becoming (4) molecular genetic studies by whole genome rapidly possible to clarify the mechanism in wide SNP scan which how genes and behavior are connected. 【Expected Research Achievements and This can be realized with the integration work Scientific Significance】 of traditional behavioral genetics, recent Genetic and environmental influences on advances of brain sciences, and molecular adaptive social behavior, mental health, and genetics. learning abilities will be clarified. We focus The purpose of this study is to clarify how specifically on “gene-environment interaction” in which genetic effects are manifested sociability, mental health, and related differently in different environmental psychological traits are being developed situations, and “gene- environment correlation” through interactive processes of genes and in which genes are selected by and/or select environment via neurological structures and specific environmental situations. Brain structure and functioning as well as responsible -
Rgma) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Neurobiology of Disease Repulsive guidance molecule a (RGMa) induces neuropathological and behavioral changes that closely resemble Parkinson's disease J.a. Korecka1, E. B. Moloney1, R. Eggers1, B. Hobo1, S. Scheffer1, N. Ras-Verloop1, R.j. Pasterkamp2, D.f. Swaab3, A.b. Smit4, R.e. Van Kesteren4, K. Bossers1 and J. Verhaagen1,4 1Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands 2Department of Translational Neuroscience, Brain Center Rudolf Magnus, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands 3Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands 4Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1085-1087, 1081 HV, The Netherlands DOI: 10.1523/JNEUROSCI.0084-17.2017 Received: 8 January 2017 Revised: 12 July 2017 Accepted: 11 August 2017 Published: 21 August 2017 Author contributions: JK- experimental design, experimental execution, acquiring data, analyzing data, writing the manuscript; EM- experimental execution, acquiring data, analyzing data, writing the manuscript; RE- experimental execution, experimental design; BH-experimental execution; SS- experimental execution, acquiring data, analyzing data; NRV- experimental execution, acquiring data, analyzing data; RP- experimental design, providing reagents; DS- experimental design,; AS- experimental design, ; RK- experimental design,; KB- experimental design, experimental execution, help with analyzing the data, writing the manuscript; JV- experimental design, writing the manuscript Conflict of Interest: The authors declare no competing financial interests.