Barzakphdthesis.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Barzakphdthesis.Pdf Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Biophysical and biochemical characterisation of DNA-based inhibitors of the cytosine-mutating APOBEC3 enzymes A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry Massey University, Palmerston North, New Zealand Fareeda Maged Yahya Mohammad Barzak 2020 Abstract With the rise of antiviral and anticancer drug resistance, a new approach must be taken to overcome this burden. The APOBEC3 (A3) family of cytosine deaminases hypermutate cytosines to uracils in single-stranded DNA (ssDNA). These enzymes act as double- edged swords: on one side they protect humans against a range of retroviruses and other pathogens, but several A3s are exploited by viruses and cancer cells to increase their rate of evolution using the enzyme’s mutagenic actions. This latter mode permits escape of cancer cells from the adaptive immune response and leads to the development of drug resistance. In particular, APOBEC3B (A3B) is considered to be a main driving source of genomic mutations in cancer cells. Inhibition of A3B, while retaining the beneficial actions of the other A3 in the immune system, may be used to augment existing anticancer therapies. In this study, we showed for the first time that short ssDNAs containing cytosine analogue nucleosides, 2'-deoxyzebularine (dZ) or 5-fluoro-2'-deoxyzebularine (5FdZ) in place of the substrate 2'-deoxycytidine (dC) in the preferred 5'-TC motif, inhibit the catalytic activity of A3B. However, as most A3 enzymes (except A3G) prefer to deaminate ssDNA with a 5'-TC motif, selective A3B inhibition was uncertain. We noted that nucleotides adjacent to the 5'-CCC motif influence the dC deamination preference of A3A, A3B, and A3G’s. Replacement of the A3B’s preferred dC in the 5'-CCC motif with dZ (5'-dZCC) led to the first selective inhibitor of A3B, in preference to A3A and A3G. Furthermore, using small-angle X-ray scattering (SAXS) we obtained the first model of a full-length two-domain A3 in complex with a dZ-ssDNA inhibitor. Our model showed that the ssDNA was largely bound to the C-terminal domain (CTD) with limited contact to the N- terminal domain in solution, due to the high affinity of the dZ for the CTD active-site. Our work provides a new platform for use of ssDNA-based inhibitors in targeting the mutagenic action of the A3B. Further developments using more potent inhibitors will help to achieve inhibition in cellular studies, with the ultimate goal to complement anti- cancer and antiviral treatments. i ii Acknowledgements "If I have seen further, it is by standing on the shoulders of giants." – Isaac Newton. Therefore, I would like to acknowledge the people who made this project possible. First and foremost, I wish to express my sincere gratitude to my advisors, Assoc. Prof. Vyacheslav Filichev, Dr. Elena Harjes, and Prof. Geoffrey Jameson for giving me the opportunity to undertake this research and expertly guiding me throughout this project. Their continuous support, patience, advice, data analysis, and insightful discussions made this project possible. I would like to extend a big thanks to our APOBEC team for the endless discussions, ideas, and technical support. Dr. Maksim Kvach and Mr. Harikrishnan Mohana Kurup for their design and synthesis of our chemically modified-oligonucleotides, and Dr. Stefan Harjes for his supporting work on A3A and A3G. In addition, thanks to our X-lab structural biology group for their stimulating discussions and advice. Thank you to all the SFS staff who have facilitated my studies through the years, especially Prof. Kathryn Stowell and Assoc. Prof Gillian Norris. A special thanks goes to the lab ladies’ group; your friendships and support have meant the world to me. I am deeply grateful for the assistance of Dr. Timothy Ryan from the Australian Synchrotron SAXS/WAXS beamline for help with SAXS analysis and deconvolution of A3G data. Thank you to Dr. Patrick Edwards for assistance with the NMR spectrometer and Mr. Trevor Loo for performing mass spectrometry experiments and all technical assistance. I wish to acknowledge all our collaborators. Prof. Reuben Harris and Assoc. Prof. Hideki Aihara along with their teams from the University of Minnesota for kindly providing all the plasmid constructs used in this study and for technical training during my visit, Dr. Linda Chelico and her team from the University of Saskatchewan for kindly providing full-length A3G protein used in SAXS studies, Assoc. Prof. Daniel Harki and his team from the University of Minnesota for supporting inhibitor studies on the human A3A and A3BCTD enzymes, and Prof. Kurt Krause and his team from the University of Otago for providing full-length A3G for inhibition assays used to design the A3G oligonucleotides for SAXS studies. iii Thank you to the School of Fundamental Sciences (SFS) for funding my research under the graduate assistance scholarship and their travel fund to present my research at ComBio2018 conference in Sydney. Thank you to NZMS for student travel grant aid to present my research at the NZMS/NZSBMB microbes and molecules meeting 2018 in Dunedin. Furthermore, thank you to both the student travel grants from the Australian Synchrotron and NZSBMB for allowing me to attend and present my work at the Australian Synchrotron User Meeting 2018 in Melbourne. Thank you to my friends, siblings, and family for their support. Most importantly, I wish to thank my parents Maged and Sohair for their encouragement, love, support, and patience throughout my life. I am forever indebted for everything you provided for me. I could not have done any of this without you. I dedicate this thesis to you. iv List of Abbreviations General abbreviations and definitions Abbreviation Definition °C Degrees Celsius × g Multiples of gravitational force ΔG Gibbs free energy ΔH Enthalpy ΔS Entropy ΔTm Change in melting temperature λ Wavelength 1H-NMR Proton NMR 1/V0 Inverse of initial rate of a reaction 1/[S] Inverse of the substrate concentration 1/[I] Inverse of the inhibitor concentration 298 K 298 Kelvin 5FdZ 5-Fluoro-2'-deoxyzebularine Å Angstrom (10-10 m) A260 Absorbance at 260 nm A280 Absorbance at 280 nm A600 Absorbance at 600 nm A1 APOBEC1 A2 APOBEC2 A3(A-H) APOBEC3A-H A3A-mimic A3BCTD-QM-ΔL3-AL1swap A3BCTD-AL1 A3BCTD-QM-ΔL3-AL1swap A3BCTD* A3BCTD-QM-ΔL3-A3Aloop1swap-E255A A4 APOBEC4 aa Amino acid ABC Ammonium bicarbonate ACN Acetonitrile v Abbreviation Definition AID Activation-induced cytosine deaminase Amp Ampicillin APOBEC Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide aq. Aqueous Au Absorbance units bp Base pair β-ME β-mercaptoethanol cDNA Complementary DNA CDA Cytosine deaminase Chi2 (or 2) Chi-squared distribution CTD Carboxyl terminal domain C-terminal Carboxyl terminal D2O Deuterium oxide dA 2'-Deoxyadenosine Da Daltons dadU 2'-Deoxy-3-deazauridine dadZ 2'-Deoxy-3-deazazebularine dC 2'-Deoxycytidine dG 2'-Deoxyguanosine Dmax Maximum dimension dT 2'-Deoxythymidine dU 2'-Deoxyuridine dZ 2'-Deoxyzebularine DNA 2'-Deoxyribonucleic acid dsDNA Double-stranded DNA DSS 4,4-Dimethyl-4-silapentane-1-sulfonic acid DTT Dithiothreitol [E] Enzyme concentration E. coli Escherichia coli EDTA Ethylenediaminetetraacetic acid EFA Estimated factor analysis vi Abbreviation Definition His6 Hexa-histidine tag HMW High molecular weight HSQC Heteronuclear single quantum coherence I Scattering intensity [I] Inhibitor concentration I(0) Forward scattering intensity Ig Immunoglobulin IMAC Immobilized metal affinity chromatography IPTG Isopropyl-β-D-thiogalactoside ITC Isothermal titration calorimetry Ka Equilibrium binding association constant kb Kilobase pairs (of DNA) kcat Catalytic rate constant kcat/Km Specificity constant (catalytic efficiency) Kd Equilibrium dissociation binding constant kDa KiloDalton Ki Inhibition constant Km Michaelis constant (apparent binding) LB Luria Bertani media LMW Low molecular weight M9 media M9 minimal media mAU Milli absorbance units min Minute mM Millimolar mRNA Messenger RNA MW Molecular weight n Sample size NES Nuclear export signal NLS Nuclear localisation signal NMR Nuclear magnetic resonance NSD Normalised spatial discrepancy vii Abbreviation Definition N-terminal Amino terminal NTD N-terminal domain OD Optical density at 600 nm Oligo Oligonucleotide PAGE Polyacrylamide gel electrophoresis PCR Polymerase chain reaction PDB Protein data bank pH Negative decadal logarithm of proton activity (concentration) PIPES 1,4-Piperazinediethanesulfonic acid P(r) Pair distribution plot p.s.i. Pounds per square inch q Scattering vector qmin Minimum scattering vector RNA Ribonucleic acid RNP Ribonucleoprotein Rg Radius of gyration RT Reverse transcriptase [S] Substrate concentration SAXS Small angle X-ray scattering sec Seconds SEC Size exclusion chromatography SD Standard deviation SDS Sodium dodecyl sulfate SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis ssDNA Single-stranded DNA SVD Singular value decomposition TB Transformation buffer TEMED Tetramethylethylenediamine Tm Melting temperature Tris Trisaminomethane TWEEN 20 Polyethylene glycol sorbitan monolaurate viii Abbreviation Definition V Porod volume V0 Initial rate of a reaction Vmax Maximum rate of a reaction Wt Wild-type ix Oligonucleotides used in this study Abbreviations Sequence 9merC-oligo or TCA-oligo
Recommended publications
  • Realizing the Allosteric Potential of the Tetrameric Protein Kinase a RIΑ Holoenzyme
    Structure Article Realizing the Allosteric Potential of the Tetrameric Protein Kinase A RIa Holoenzyme Angela J. Boettcher,1,6 Jian Wu,1,6 Choel Kim,2 Jie Yang,1 Jessica Bruystens,1 Nikki Cheung,1 Juniper K. Pennypacker,1,3 Donald A. Blumenthal,4 Alexandr P. Kornev,3,5 and Susan S. Taylor1,3,5,* 1Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA 2Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA 3Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA 4Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA 5Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093, USA 6These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.str.2010.12.005 SUMMARY the active site cleft in the C subunit in the inactive holoenzyme but is disordered in the dissociated free R subunits (Li et al., PKA holoenzymes containing two catalytic (C) 2000). The linker, as summarized in Figure 1, can be divided subunits and a regulatory (R) subunit dimer are acti- into three segments, the consensus inhibitor site (P-3 to P+1), vated cooperatively by cAMP. While cooperativity the N-linker that joins the inhibitor site to the D/D domain, and involves the two tandem cAMP binding domains in the C-linker that becomes ordered in the heterodimeric holoen- each R-subunit, additional cooperativity is associ- zyme complex. While much has been learned from the structures ated with the tetramer.
    [Show full text]
  • A Perspective on Mechanisms of Protein Tetramer Formation
    Biophysical Journal Volume 85 December 2003 3587–3599 3587 A Perspective on Mechanisms of Protein Tetramer Formation Evan T. Powers* and David L. Powersy *Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037; and yDepartment of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699 ABSTRACT Homotetrameric proteins can assemble by several different pathways, but have only been observed to use one, in which two monomers associate to form a homodimer, and then two homodimers associate to form a homotetramer. To determine why this pathway should be so uniformly dominant, we have modeled the kinetics of tetramerization for the possible pathways as a function of the rate constants for each step. We have found that competition with the other pathways, in which homotetramers can be formed either by the association of two different types of homodimers or by the successive addition of monomers to homodimers and homotrimers, can cause substantial amounts of protein to be trapped as intermediates of the assembly pathway. We propose that this could lead to undesirable consequences for an organism, and that selective pressure may have caused homotetrameric proteins to evolve to assemble by a single pathway. INTRODUCTION Many proteins must be homotetrameric to be functional. ‘‘MDT’’ stands for monomer-dimer-tetramer and ‘‘a’’ and Prominent examples include transcription factors (e.g., p53) ‘‘b’’ indicate the type of homodimer formed. The pathways (Friedman et al., 1993), transport proteins (e.g., trans- that include monomers, homodimers, homotrimers, and thyretin) (Blake et al., 1974), potassium channels (Deutsch, homotetramers will be denoted MDRT, which stands for 2002; Miller, 2000), water channels (Fujiyoshi et al., 2002), monomer-dimer-trimer-tetramer.
    [Show full text]
  • HOOK™ Maleimide Activated Streptavidin for Conjugation of Streptavidin to Sulfhydryl Groups Containing Proteins, Peptides and Ligands
    G-Biosciences 1-800-628-7730 1-314-991-6034 [email protected] A Geno Technology, Inc. (USA) brand name HOOK™ Maleimide Activated Streptavidin For conjugation of Streptavidin to sulfhydryl groups containing proteins, peptides and ligands (Cat. #786-1653, 786-1654) think proteins! think G-Biosciences www.GBiosciences.com INTRODUCTION ................................................................................................................. 3 ITEMS SUPPLIED ................................................................................................................ 4 STORAGE CONDITIONS ...................................................................................................... 4 ADDITIONAL ITEMS NEEDED .............................................................................................. 4 IMPORTANT INFORMATION .............................................................................................. 4 PROTOCOL ......................................................................................................................... 4 PREPARATION OF PROTEIN FOR CONJUGATION TO MALEIMIDE ACTIVATED PROTEIN 4 CONJUGATION REACTION ............................................................................................. 5 STORAGE OF CONJUGATED ANTIBODIES/PROTEINS ......................................................... 5 RELATED PRODUCTS .......................................................................................................... 5 Page 2 of 6 INTRODUCTION Streptavidin is a non-glycosylated
    [Show full text]
  • Modulation of Function, Structure and Clustering of K Channels by Lipids: Lessons Learnt from Kcsa
    International Journal of Molecular Sciences Review Modulation of Function, Structure and Clustering of K+ Channels by Lipids: Lessons Learnt from KcsA María Lourdes Renart 1 , Ana Marcela Giudici 1, Clara Díaz-García 2 , María Luisa Molina 1 , Andrés Morales 3, José M. González-Ros 1,* and José Antonio Poveda 1,* 1 Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202 Alicante, Spain; [email protected] (M.L.R.); [email protected] (A.M.G.); [email protected] (M.L.M.) 2 iBB-Institute for Bioengineering and Bioscience, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; [email protected] 3 Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03080 Alicante, Spain; [email protected] * Correspondence: [email protected] (J.M.G.-R.); [email protected] (J.A.P.) Received: 5 March 2020; Accepted: 5 April 2020; Published: 7 April 2020 Abstract: KcsA, a prokaryote tetrameric potassium channel, was the first ion channel ever to be structurally solved at high resolution. This, along with the ease of its expression and purification, made KcsA an experimental system of choice to study structure–function relationships in ion channels. In fact, much of our current understanding on how the different channel families operate arises from earlier KcsA information. Being an integral membrane protein, KcsA is also an excellent model to study how lipid–protein and protein–protein interactions within membranes, modulate its activity and structure. In regard to the later, a variety of equilibrium and non-equilibrium methods have been used in a truly multidisciplinary effort to study the effects of lipids on the KcsA channel.
    [Show full text]
  • Multimerization of Homo Sapiens TRPA1 Ion Channel Cytoplasmic Domains
    bioRxiv preprint doi: https://doi.org/10.1101/466060; this version posted November 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Multimerization of Homo sapiens TRPA1 ion channel cytoplasmic domains 2 Gilbert Q. Martinez, Sharona E. Gordon* 3 Department of Physiology and Biophysics, University of Washington, Seattle, Washington, 4 United States of America 5 6 7 8 9 10 11 12 13 14 15 16 17 *Corresponding author 18 E-mail: [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/466060; this version posted November 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 The transient receptor potential Ankyrin-1 (TRPA1) ion channel is modulated by myriad 22 noxious stimuli that interact with multiple regions of the channel, including cysteine- 23 reactive natural extracts from onion and garlic which modify residues in the cytoplasmic 24 domains. The way in which TRPA1 cytoplasmic domain modification is coupled to opening 25 of the ion-conducting pore has yet to be elucidated. The cryo-EM structure of TRPA1 26 revealed a tetrameric C-terminal coiled-coil surrounded by N-terminal ankyrin repeat 27 domains (ARDs), an architecture shared with the canonical transient receptor potential 28 (TRPC) ion channel family.
    [Show full text]
  • Voltage-Gated Sodium Channel (Nav )
    Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins David Shayaa, Mohamed Kreirb, Rebecca A. Robbinsc, Stephanie Wonga, Justus Hammona, Andrea Brüggemannb, and Daniel L. Minor, Jr.a,c,d,e,f,1 aCardiovascular Research Institute, cDepartments of Biochemistry and Biophysics and dCellular and Molecular Pharmacology, eCalifornia Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158-9001; fPhysical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and bNanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany Edited by Richard W. Aldrich, University of Texas at Austin, Austin, TX, and approved June 14, 2011 (received for review April 30, 2011) Many voltage-gated ion channel (VGIC) superfamily members microscopy studies (19 Å) that have suggested some general contain six-transmembrane segments in which the first four form features of NaVs purified from eel electric organs (11) but that a voltage-sensing domain (VSD) and the last two form the pore lack the resolution for detailed mechanistic insight. Study of bac- domain (PD). Studies of potassium channels from the VGIC super- terial NaVs provides a simplified system for understanding basic family together with identification of voltage-sensor only proteins aspects of both NaV and CaV function and holds promise as a have suggested that the VSD and the PD can fold independently. template for guiding small molecule modulator development (6). Whether such transmembrane modularity is common to other Although there have been ongoing efforts to produce bacterial VGIC superfamily members has remained untested. Here we show, NaV samples that can be used for biochemical and structural using protein dissection, that the Silicibacter pomeroyi voltage- studies (12–14), these have yet to achieve the multi-milli-gram gated sodium channel (NaVSp1) PD forms a stand-alone, ion selec- amounts required for extensive structural studies.
    [Show full text]
  • USE of CALIX>4@ARENES to RECOVER the SELF ASSEMBLY ABILITY of MUTATED P53 TETRAMERIZATION DOMAINS
    ! "#$% $ % # & '() #* &# Memòria presentada per Susana Gordo Villoslada per optar al grau de doctor per la Universitat de Barcelona Revisada per: Prof. Ernest Giralt i Lledó Universitat de Barcelona Director Programa de Química Orgànica Bienni 2003-2005 Barcelona, abril de 2008 '() & + ,- - (. ( /- N 1'-/ . 23 4/ + '() 56 23 4/7 /4 / 4 8 -1/ '() -/- ,/ 9- , Calix4bridge is a ligand designed to bind and stabilize the tetrameric structure of p53TD. Its abilities on stabilizing the tetrameric assembly of mutated proteins, as well as the study of the structure of the complex and the binding mechanisms are presented in this chapter. 5 /- N 1'-/ 23 4/ + '() 55 :.: 23 4/7 -1/ /4 The previous chapter illustrated how mutations in the tetramerization domain of p53 can seriously compromise the stability of the protein. Said destabilization is directly related to the inability of the mutant species to assemble into a compact tetrameric structure. Hence, the tetramerization domain of protein p53 and its mutants with compromised oligomerization properties represent an excellent case for designing ligands able to recognize and stabilize the native state of oligomeric proteins. Taking as a model the structure of the wild-type p53TD, Prof. Javier de Mendoza envisioned a multivalent calix[4]arene ligand able to interact simultaneously with the four units of the tetramer, thereby holding together the whole structure of the protein. The rational binding model is shown in Figure 2.1. The multivalent ligand in question is the 5,11,17,23-tetraguanidinomethyl-25,26-27,28- biscrown-3-calix[4]arene, named calix4bridge for shorter. 23 4/ Calix4bridge presents two biscrown loops in the lower rim of the calix[4]arene platform; they outline an hydrophobic surface that can fit into a hydrophobic pocket on the protein surface, formed by the -helices of the four monomers.
    [Show full text]
  • TETRALEC, Artificial Tetrameric Lectins
    International Journal of Molecular Sciences Article TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions 1, 2, 3 2 Silvia Achilli y, João T. Monteiro z , Sonia Serna , Sabine Mayer-Lambertz , Michel Thépaut 1, Aline Le Roy 1, Christine Ebel 1, Niels-Christian Reichardt 3, Bernd Lepenies 2, Franck Fieschi 1 and Corinne Vivès 1,* 1 Institut de Biologie Structurale, CEA, CNRS, University of Grenoble Alpes, F-38000 Grenoble, France; [email protected] (S.A.); [email protected] (M.T.); [email protected] (A.L.R.); [email protected] (C.E.); franck.fi[email protected] (F.F.) 2 Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; [email protected] (J.T.M.); [email protected] (S.M.-L.); [email protected] (B.L.) 3 Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), CIBER-BBN, Paseo Miramón 182, 20014 San Sebastian, Spain; [email protected] (S.S.); [email protected] (N.-C.R.) * Correspondence: [email protected]; Tel.: +33-457428541 Present address: Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes, BP 53, y 38041 Grenoble, France. Present address: Department of Pediatric Pneumology, Allergology and Neonatology and Cluster of z Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany. Received: 3 July 2020; Accepted: 23 July 2020; Published: 25 July 2020 Abstract: C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface.
    [Show full text]
  • Effects of Polymorphic Variation on the Thermostability of Heterogenous
    www.nature.com/scientificreports OPEN Efects of polymorphic variation on the thermostability of heterogenous populations of Received: 20 April 2018 Accepted: 23 July 2018 CYP3A4 and CYP2C9 enzymes in Published: xx xx xxxx solution Lauren B. Arendse & Jonathan M. Blackburn The efect of non-synonymous single nucleotide polymorphisms (SNPs) on cytochrome P450 (CYP450) drug metabolism is currently poorly understood due to the large number of polymorphisms, the diversity of potential substrates and the complexity of CYP450 function. Previously we carried out in silico studies to explore the efect of SNPs on CYP450 function, using in silico calculations to predict the efect of mutations on protein stability. Here we have determined the efect of eight CYP3A4 and seven CYP2C9 SNPs on the thermostability of proteins in solution to test these predictions. Thermostability assays revealed distinct CYP450 sub-populations with only 65–70% of wild-type CYP3A4 and CYP2C9 susceptible to rapid heat-induced P450 to P420 conversion. CYP3A4 mutations G56D, P218R, S222P, I223R, L373F and M445T and CYP2C9 mutations V76M, I359L and I359T were destabilising, increasing the proportion of protein sensitive to the rapid heat-induced P450 to P420 conversion and/ or reducing the half-life of this conversion. CYP2C9 Q214L was the only stabilising mutation. These results corresponded well with the in silico protein stability calculations, confrming the value of these predictions and together suggest that the changes in thermostability result from destabilisation/ stabilisation of the protein fold, changes in the haem-binding environment or efects on oligomer formation/conformation. Cytochrome P450 (CYP450) enzymes, arguably nature’s most versatile catalysts, are a superfamily of haem-thiolate proteins found across all lineages of life1.
    [Show full text]
  • Beta-Galactosidase Antibody Cat
    beta-Galactosidase Antibody Cat. No.: 5155 Western blot analysis of (A) 5 and (B) 25 ng of b-gal with b-gal antibody at 1 μg/mL. Specifications HOST SPECIES: Chicken SPECIES REACTIVITY: Bacteria beta-gal antibody was raised against a 17 amino acid synthetic peptide from near the amino terminus of E. coli beta-gal. IMMUNOGEN: The immunogen is located within amino acids 20 - 70 of beta-Galactosidase. TESTED APPLICATIONS: ELISA, WB APPLICATIONS: beta-gal antibody can be used for detection of beta-gal by Western blot at 1 μg/mL. Properties PURIFICATION: beta-Galactosidase Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgY CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: beta-Galactosidase Antibody is supplied in PBS containing 0.02% sodium azide. September 24, 2021 1 https://www.prosci-inc.com/beta-galactosidase-antibody-5155.html CONCENTRATION: 1 mg/mL beta-Galactosidase antibody can be stored at 4˚C for three months and -20˚C, stable for STORAGE CONDITIONS: up to one year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: lacZ ALTERNATE NAMES: beta-Galactosidase Antibody: Beta-galactosidase, Lactase, Beta-gal ACCESSION NO.: NP_752394 PROTEIN GI NO.: 26246355 GENE ID: 1036228 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References beta-Galactosidase Antibody: Beta-galactosidase (beta-gal), an inducible enzyme that catalyses the hydrolysis of lactose and other beta-galactosides into monosaccharides, is a BACKGROUND: product of the LacZ operon, and is a homo-tetrameric protein consisting of four identical subunits of approximately 114 kDa each.
    [Show full text]
  • 5. Directed Evolution of Artificial Metalloenzymes: Bridging Synthetic Chemistry and Biology Ruijie K
    1 5. Directed evolution of artificial metalloenzymes: bridging synthetic chemistry and biology Ruijie K. Zhang1, David K. Romney1, S. B. Jennifer Kan1, Frances H. Arnold1 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. Abstract: Directed evolution is a powerful algorithm for engineering proteins to have novel and useful properties. However, we do not yet fully understand the characteristics of an evolvable system. In this chapter, we present examples where directed evolution has been used to enhance the performance of metalloenzymes, focusing first on ‘classical’ cases such as improving enzyme stability or expanding the scope of natural reactivity. We then discuss how directed evolution has been extended to artificial systems, in which a metalloprotein catalyzes reactions using abiological reagents or in which the protein utilizes a non-natural cofactor for catalysis. These examples demonstrate that directed evolution can also be applied to artificial systems to improve catalytic properties, such as activity and enantioselectivity, and to favor a different product than that favored by small-molecule catalysts. Future work will help define the extent to which artificial metalloenzymes can be altered and optimized by directed evolution and the best approaches for doing so. Keywords: directed evolution, fitness landscape, non-natural reactivity, artificial metalloenzyme 5.1. Evolution enables chemical innovation Nature is expert at taking one enzyme framework and repurposing it to perform a multitude of chemical transformations. For example, the P450 superfamily consists of structurally similar heme-containing proteins that catalyze C–H oxygenation, alkene epoxidation, oxidative cyclization (1), aryl-aryl coupling (2), and nitration (3), among others (4).
    [Show full text]
  • A Translation-Independent Function of Phers Activates Growth and Proliferation in Drosophila Manh Tin Ho*,§, Jiongming Lu‡,§, Dominique Brunßen and Beat Suter¶
    © 2021. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2021) 14, dmm048132. doi:10.1242/dmm.048132 RESEARCH ARTICLE A translation-independent function of PheRS activates growth and proliferation in Drosophila Manh Tin Ho*,§, Jiongming Lu‡,§, Dominique Brunßen and Beat Suter¶ ABSTRACT not been studied. This might have been due to the assumption that Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) not only load higher PheRS levels could simply reflect the demand of tumorigenic the appropriate amino acid onto their cognate tRNAs, but many of cells for higher levels of translation, or it could have to do with the them also perform additional functions that are not necessarily related difficulty of studying the moonlighting function of a protein that is to their canonical activities. Phenylalanyl tRNA synthetase (PheRS/ essential in every cell for basic cellular functions such as translation. FARS) levels are elevated in multiple cancers compared to their Aminoacyl tRNA synthetases (aaRSs) are important enzymes normal cell counterparts. Our results show that downregulation of that act by charging tRNAs with their cognate amino acid, a key PheRS, or only its α-PheRS subunit, reduces organ size, whereas process for protein translation. This activity makes them essential elevated expression of the α-PheRS subunit stimulates cell growth for accurately translating the genetic information into a polypeptide and proliferation. In the wing disc system, this can lead to a 67% chain (Schimmel and Söll, 1979). Besides their well-known role in increase in cells that stain for a mitotic marker. Clonal analysis of twin translation, an increasing number of aaRSs have been found to spots in the follicle cells of the ovary revealed that elevated perform additional functions in the cytoplasm, the nucleus and even expression of the α-PheRS subunit causes cells to grow and outside the cell (Guo and Schimmel, 2013; Nathanson and proliferate ∼25% faster than their normal twin cells.
    [Show full text]