Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora Thlaspeos

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora Thlaspeos Journal of Fungi Article Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora thlaspeos Lesley Plücker †, Kristin Bösch †, Lea Geißl, Philipp Hoffmann and Vera Göhre * Institute of Microbiology, Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Building 26.24.01, Universitätsstr.1, 40205 Düsseldorf, Germany; [email protected] (L.P.); [email protected] (K.B.); [email protected] (L.G.); [email protected] (P.H.) * Correspondence: [email protected]; Tel.: +49-211-811-1529 † These authors contribute equally to this work. Abstract: Investigation of plant–microbe interactions greatly benefit from genetically tractable part- ners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host side, maize is limiting with regard to rapid genetic alterations. By contrast, the model plant Arabidopsis thaliana is an excellent model with a vast amount of information and techniques as well as genetic resources. Here, we present a transformation protocol for the Brassicaceae smut fungus Thecaphora thlaspeos. Using the well-established methodology of protoplast transformation, we generated the first reporter strains expressing fluorescent proteins to follow mating. As a proof-of-principle for homologous recombination, we deleted the pheromone receptor pra1. As expected, this mutant cannot mate. Further analysis will contribute to our understanding of the role of mating for infection biology in this novel model fungus. From now on, the genetic manipulation of T. thlaspeos, which is able to colonize the model plant A. thaliana, provides us with a pathosystem in which both partners are genetically amenable to study smut infection biology. Keywords: mating; pheromone receptor; homologous recombination; infection; smut; transforma- tion; protoplast Citation: Plücker, L.; Bösch, K.; Geißl, L.; Hoffmann, P.; Göhre, V. Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora 1. Introduction thlaspeos. J. Fungi 2021, 7, 38. https://doi.org/10.3390/jof7010038 Smut fungi are important pathogens causing economic losses in crops such as barley, wheat, maize, and potato [1]. The dimorphic lifecycle of grass smut fungi is comprised Received: 16 November 2020 of a yeast form [2] that, in contrast to many other biotrophic fungi, can be cultured, and Accepted: 7 January 2021 is amenable to genetic manipulation [3]. In combination with the efficient homologous Published: 9 January 2021 recombination, this has turned Ustilago maydis, the maize smut fungus [4], into an important model organism for fungal and infection biology [5,6]. Publisher’s Note: MDPI stays neu- U. maydis starts the infection by mating, resulting in the morphological switch to tral with regard to jurisdictional clai- the infectious filamentous form. Mating in smut fungi is controlled by two mating loci. ms in published maps and institutio- The a locus encodes for pheromones (mfa) and pheromone receptors (pra) that mediate nal affiliations. recognition of compatible mating partners and trigger cell fusion [7]. The b locus contains two genes (bW, bE) encoding for subunits of a heterodimeric, homeodomain transcription factor. When an active transcription factor is assembled from different alleles in the common cytosol after plasmogamy, filamentous growth is initiated and thereby the fungus switches Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. from saprophytic to pathogenic growth [8]. Notably, the infectious filaments are arrested This article is an open access article in the cell cycle until successful penetration of the host plant [9]. This mating system is distributed under the terms and con- widely conserved in grass smut fungi and allows for genetic exchange between the mating ditions of the Creative Commons At- partners [10]. tribution (CC BY) license (https:// In contrast to the well-characterized grass smut fungi infecting important monocot creativecommons.org/licenses/by/ crop plants with U. maydis at the forefront, little is known about smut fungi infecting 4.0/). dicot plants. A reemerging example is Microbotryum that is regaining attention today [11]. J. Fungi 2021, 7, 38. https://doi.org/10.3390/jof7010038 https://www.mdpi.com/journal/jof J. Fungi 2021, 7, 38 2 of 14 By contrast, the Thecaphora-clade [12], with agronomically relevant members such as T. solani [13] or T. frezii [14] infecting potato and peanut, respectively, remains largely elusive. One member, the Brassicaceae smut fungus T. thlaspeos, infects several Arabis species [12] and can colonize Arabidopsis thaliana [15], making it a good system to study smut infection in model plants. Interestingly, germinating teliospores of T. thlaspeos directly give rise to an infectious filament, and no saprophytic phase is known. However, prolonged cultivation leads to fungal proliferation as filamentous, haploid cultures. From such cultures, two filamentous haploid T. thlaspeos strains of compatible mating types, LF1 and LF2, could be isolated [15]. The unique germination pattern and the emergence of haploid filaments in culture raise questions about mating and meiosis in T. thlaspeos. The genome of T. thlaspeos was recently sequenced and annotated. With 20.5 Mb, 6239 gene models, and a low repeat content, it is a typical smut fungal genome [16]. Notably, we could identify the mating loci a and b in this genome. In comparison to the grass smut fungi, the a locus of T. thlaspeos is strongly rearranged, and aligns well to the biocontrol yeast Anthracocystis flocculosa (formerly Pseudozyma flocculosa). It still contains one copy of the pheromone receptor pra1 and pheromone mfa1, or pra2 and mfa2 in T. thlaspeos LF1 and LF2, respectively [16]. The b locus is conserved with a bi-directional promoter in between the two genes, and we have previously shown that the heterodimer formation of bE and bW isconserved in T. thlaspeos [15]. Conservation of the mating genes throughout evolution suggests that T. thlaspeos still uses mating, e.g., for exchange of genetic material. However, the infectious lifecycle so far has not revealed a stage where mating is required. Therefore, we aimed for a more detailed understanding of the role of the T. thlaspeos mating genes. To study the mating process in T. thlaspeos, genetic manipulation is essential. For example, reporter lines enable life-cell imaging, and deletion mutants can give insight into mutant phenotypes. Several transformation methods have been developed for smut fungi. Protoplast-mediated transformation is used for the grass smuts U. maydis [17], Sporisorium reilianum [18], U. hordei [19], U. esculenta [20], and U. bromivora [21], as well as the filamentous Basidiomycete Serendipita indica (formerly Piriformospora indica)[22], and the biocontrol yeast An. flocculosa [23]. Agrobacterium-mediated transformation is used for S. scitamineum in combination with a CRISPR-Cas9 system [24], and also for bringing larger fragments into U. hordei [25] and for gene tagging in U. maydis [26]. Here, we have established a protoplast-based PEG-mediated transformation system and generated targeted deletion mutants to investigate the mating process in T. thlaspeos. 2. Materials and Methods 2.1. Fungal Culture Conditions T. thlaspeos LF1 and LF2 haploid strains [15] from our own collection were used in this study. Both were grown in YEPS light liquid medium (1% yeast extract w/v, 0.4% w/v Bacto TM-Peptone, and 0.4% w/v sucrose) or YEPS light solid medium with 0.6% w/v plant agar or 1% w/v phytagel at 18 ◦C. Cryostocks of T. thlaspeos were generated by mixing exponentially growing cultures with 30% glycerol in growth medium followed by immediate freezing at −80 ◦C. Filamentous cultures were started by resuspending the glycerol stock in growth medium or plating the cells on solid medium as described above. 2.2. Plasmid Construction All plasmids used in this study were generated with the Golden Gate Cloning tech- nique (Protocol S1) as described [27]. The hpt-egfp and hpt-mcherry sequences were codon- optimized for U. maydis. Promoter and terminator sequences from T. thlaspeos or U. maydis were amplified via PCR from genomic DNA. 2.3. Protoplasting T. thlaspeos cultures were grown in YEPS light medium to an OD600 of 0.5–0.8 for 3 to 4 days. Fungal mycelium was collected using cell strainers with 40 µm mesh size (VWR TM Darmstadt, Germany) and washed with protoplasting buffer (0.1 M sodium citrate, 0.01 M J. Fungi 2021, 7, 38 3 of 14 EDTA 1.2 M MgSO4, and pH 5.8) to remove residual culture medium. T. thlaspeos tissue was resuspended in 9 mL protoplasting buffer, supplemented with 10 mg/mL Yatalase (Takara Bio, Kusatsu, Japan) and 20 mg/mL Glucanex (Sigma-Aldrich, St. Luis, MI, USA) per 100 mL cell culture, and incubated for 30–60 min at room temperature. Protoplast formation was controlled microscopically. When protoplasting was finished, protoplasting buffer was added to a total volume of 24 mL. Aliquots of 6 mL crude protoplast solution were overlayed with 5 mL trapping buffer (0.6 M sorbitol, 0.1 M Tris/HCl pH 7.0) and centrifuged at 4863× g (5000 rpm) in a swing out rotor at 4 ◦C for 15 min. The interphase was collected from all tubes and diluted with 2 volumes of ice-cold STC buffer (0.01 M Tris/HCl pH 7.5, 0.1 M CaCl2, and 1.0 M sorbitol). Protoplasts were pelleted at 4863× g (5000 rpm) in a swing out rotor at 4 ◦C for 10 min and resuspended in 500 µL ice-cold STC buffer. 100 µL protoplast aliquots were used for transformation immediately. A bullet point version of the protocol is available with the supplementary files (Protocol S1). 2.4. Transformation Transformation of T. thlaspeos protoplasts were carried out as described for U. may- dis [28] with slight modifications. Transformation reactions were spread on YMPG-Reg (0.3% w/v Yeast extract, 0.3% w/v malt extract, 0.5% w/v Bacto-Peptone, 1% w/v glucose, 1 M sucrose, 0.6% w/v plant agar, Duchefa Biochemie, Haarlem, Netherlands) medium and incubated at 18 ◦C until colonies appeared (1–2 months).
Recommended publications
  • Four Master Teachers Who Fostered American Turn-Of-The-(20<Sup>TH
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021 January–March 2021—Volume 136, pp. 1–58 https://doi.org/10.5248/136.1 Four master teachers who fostered American turn-of-the-(20TH)-century mycology and plant pathology Ronald H. Petersen Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, TN 37919-1100 Correspondence to: [email protected] Abstract—The Morrill Act of 1862 afforded the US states the opportunity to found state colleges with agriculture as part of their mission—the so-called “land-grant colleges.” The Hatch Act of 1887 gave the same opportunity for agricultural experiment stations as functions of the land-grant colleges, and the “third Morrill Act” (the Smith-Lever Act) of 1914 added an extension dimension to the experiment stations. Overall, the end of the 19th century and the first quarter of the 20th was a time for growing appreciation for, and growth of institutional education in the natural sciences, especially botany and its specialties, mycology, and phytopathology. This paper outlines a particular genealogy of mycologists and plant pathologists representative of this era. Professor Albert Nelson Prentiss, first of Michigan State then of Cornell, Professor William Russel Dudley of Cornell and Stanford, Professor Mason Blanchard Thomas of Wabash College, and Professor Herbert Hice Whetzel of Cornell Plant Pathology were major players in the scenario. The supporting cast, the students selected, trained, and guided by these men, was legion, a few of whom are briefly traced here. Key words—“New Botany,” European influence, agrarian roots Chapter 1. Introduction When Dr. Lexemual R.
    [Show full text]
  • Corn Smuts, RPD No
    report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent.
    [Show full text]
  • CONTROL of SMUT in WHEAT and OTHER SMALL GRAINS by H
    Bulletin No. 116 June, 1931 Montana State College, Extension Service, J. C. Taylor, Director, Cooperative Extension Work in Agriculture and Home Economics. Montana State College and Uni~ed States Department of Agriculture, co-operating. Distributed in furtherance of the Acts of Congress ~ay 8 and June 30, 1.914. ~ CONTROL OF SMUT IN WHEAT AND OTHER SMALL GRAINS By H. E. Morris, Extension Plant Pathologist Waldo Kidder, Extension Agronomist Smuts cost the farmers of Montana many thousands of dollars each year. In 1930, stinking smut of wheat alone caused a loss of approximately $750;000, due to decreased yields and to a lower price per bushel. This loss and also that due to the smuts {..:Fig. 1. Smutted and normal heads of wheat. The head at the left ,is a typi:cal head affected with covered or stinking smut, The next, head IS a he'althy head. The two heads on the right show two stages of the loose smut in wheat. (-Courtesy,D. S. Dept. of Agr.) . ,( 2 MONTANA EXTENSION SERVICE of oats, barley and rye may be largely prevented by adopting the methods of seed treatment described in this bulletin. What Is Smut Smut is produced by a small parasitic plant, mould-like in appearance, belonging to a group called fungi (Fig. 2). Smut lives most of its life within and at the expense of the wheat plant. The smut powder, so familiar to all, is composed of myriads of spores which correspond to seeds in the higher plants. In the process of harvesting and threshing, these spores are dis· I Fig'.
    [Show full text]
  • A Novel Arabidopsis Pathosystem Reveals Cooperation of Multiple
    www.nature.com/scientificreports OPEN A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina Mercedes M. Schroeder1, Yan Lai1,2, Miwa Shirai1, Natalie Alsalek1,3, Tokuji Tsuchiya 4, Philip Roberts5 & Thomas Eulgem 1* Dubbed as a “global destroyer of crops”, the soil-borne fungus Macrophomina phaseolina (Mp) infects more than 500 plant species including many economically important cash crops. Host defenses against infection by this pathogen are poorly understood. We established interactions between Mp and Arabidopsis thaliana (Arabidopsis) as a model system to quantitatively assess host factors afecting the outcome of Mp infections. Using agar plate-based infection assays with diferent Arabidopsis genotypes, we found signaling mechanisms dependent on the plant hormones ethylene, jasmonic acid and salicylic acid to control host defense against this pathogen. By profling host transcripts in Mp-infected roots of the wild-type Arabidopsis accession Col-0 and ein2/jar1, an ethylene/jasmonic acid-signaling defcient mutant that exhibits enhanced susceptibility to this pathogen, we identifed hundreds of genes potentially contributing to a diverse array of defense responses, which seem coordinated by complex interplay between multiple hormonal response-pathways. Our results establish Mp/Arabidopsis interactions as a useful model pathosystem, allowing for application of the vast genomics-related resources of this versatile model plant to the systematic investigation of previously understudied host defenses against a major crop plant pathogen. Te broad host-spectrum pathogen Macrophomina phaseolina (Mp) is a devastating soil-borne fungus that infects more than 500 plant species1–5. Many of these hosts are economically important crop plants including maize, soybean, canola, cotton, peanut, sunfower and sugar cane5–10.
    [Show full text]
  • The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis Thaliana
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana Michelle Ann Boercker University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Ecology and Evolutionary Biology Commons Recommended Citation Boercker, Michelle Ann, "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1506 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled "The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. James Fordyce, Major Professor We have read this thesis and recommend its acceptance: Nathan Sanders, Joe Williams Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Michelle Ann Boercker entitled “The Effects of Pathogen Infection on Nitrogen Remobilization in Arabidopsis thaliana.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • Molecular Phylogeny of Ustilago and Sporisorium Species (Basidiomycota, Ustilaginales) Based on Internal Transcribed Spacer (ITS) Sequences1
    Color profile: Disabled Composite Default screen 976 Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences1 Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler Abstract: DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological char- acters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae. Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi. Résumé : Afin de déterminer la relation phylogénétique des genres Ustilago et Sporisorium (Ustilaginales), responsa- bles du charbon chez les graminées, les auteurs ont utilisé les données de séquence de la région espaceur transcrit interne (ITS) des gènes nucléiques ADNr. Ils ont analysé 53 membres de ces genres, ainsi que trois genres apparentés. Les liens avec les voisins et l’inférence bayésienne de la phylogénie indiquent la monophylie d’un genre Sporisorium bipartite et la monophylie d’un clade Ustilago central.
    [Show full text]
  • Rice Hoja Blanca: a Complex Plant–Virus–Vector Pathosystem F.J
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2010 5, No. 043 Review Rice hoja blanca: a complex plant–virus–vector pathosystem F.J. Morales* and P.R. Jennings Address: International Centre for Tropical Agriculture, AA 6713, Cali, Colombia. *Correspondence: F.J. Morales. E-mail: [email protected] Received: 30 April 2010 Accepted: 24 June 2010 doi: 10.1079/PAVSNNR20105043 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Rice hoja blanca (RHB; white leaf) devastated rice (Oryza sativa) plantings in tropical America for half a century, before scientists could either identify its causal agent or understand the nature of its cyclical epidemics. The association of the planthopper Tagosodes orizicolus with RHB outbreaks, 20 years after its emergence in South America, suggested the existence of a viral pathogen. However, T. orizicolus could also cause severe direct feeding damage (hopperburn) to rice in the absence of hoja blanca, and breeders promptly realized that the genetic basis of resistance to these problems was different. Furthermore, it was observed that the causal agent of RHB could only be trans- mitted by a relatively low proportion of the individuals in any given population of T. orizicolus and that the pathogen was transovarially transmitted to the progeny of the planthopper vectors, affecting their normal biology. An international rice germplasm screening effort was initiated in the late 1950s to identify sources of resistance against RHB and the direct feeding damage caused by T.
    [Show full text]
  • Genetic Characterization of Mating System and Population Diversity In
    AMC 2019 Keynote Lecture 2 KL2 Genetic characterization of mating system and population diversity in Ustilago esculenta, a smut fungus associated with an oriental vegetable Wei-Chiang Shen1,2) 1)Department of Plant Pathology and Microbiology, National Taiwan University, Taiwan 2)Mycological Society of Taiwan Zizania latifolia is a perennial aquatic plant that belongs to the family Poaceae. On infection with the smut fungus Ustilago esculenta, swollen gall is developed at the basal part of the plant and becomes a favorable vegetable known as “water bamboo, water oat, or jiaobai". Development of edible galls is affected significantly by U. esculenta; however, studies related to its genetic features and infection- related processes are limited. To reveal the mating and population features of U. esculenta, we have extensively isolated strains from the field matierals in Taiwan and Japan. By conducting molecular and genomic studies, we identified three idiomorphs of the mating type locus among collected strains. Screening of meiotic offspring and field strains by multiplex PCR and mating assay, we confirmed the bipolar heterothallic mating system in U. esculenta. The MAT-1 locus of U. esculenta is 552,895 bp, the largest mating type locus reported so far in fungi, and contains 44% repeated sequences. Sequence comparison revealed that U. esculenta MAT-1 shares great gene synteny with other smut fungi and may evolve from a common ancestor with S. reilianum due to the chromosomal translocation of P/R and HD loci with an identified intermediate. To further reveal the genetic diversity of U. esculenta population, 13 simple sequence repeat markers have been developed to screen for field strains.
    [Show full text]
  • <I>Ustilago-Sporisorium-Macalpinomyces</I>
    Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U.
    [Show full text]
  • Corn Smuts S
    A Pacific Northwest Extension Publication Oregon State University • University of Idaho • Washington State University PNW 647 • July 2013 Corn Smuts S. K. Mohan, P. B. Hamm, G. H. Clough, and L. J. du Toit orn smuts are widely distributed throughout the world. The incidence of corn smuts in the Pacific Northwest (PNW) varies Cby location and is usually low. Nonetheless, these diseases occasionally cause significant economic losses when susceptible cultivars are grown under conditions favorable for disease development. Smut diseases of corn are, in general, more destructive to sweet corn than to field corn. The term smut is derived from the powdery, dark brown to black, soot-like mass of spores produced in galls. These galls can form on various plant parts. Three types of smut infect corn—common smut, caused by Ustilago maydis (= Ustilago zeae); head smut, caused by Sphacelotheca reiliana; and false smut, caused by Ustilaginoidea virens. False smut is not a concern in the PNW, so this publication deals University S. Krishna by State Mohan,Photo © Oregon only with common and head smuts. Figure 1. Common smut galls on an ear of sweet corn. Each gall represents a single kernel infected by the common Common smut smut fungus. Common smut is caused by the fungal pathogen U. maydis and is also known as boil smut or blister smut (Figure 1). Common smut occurs throughout PNW corn production areas, although it is less common in western Oregon and western Washington than east of the Cascade Mountains. Infection in commercial plantings may result in considerable damage and yield loss in some older sweet corn cultivars, but yield loss in some of the newer, less susceptible cultivars is rarely significant.
    [Show full text]
  • Breeding Poplars for Disease Resistance
    Breeding poplars , ' for 56 disease resistance . , ," . { " , .' ,./' -. .~. , FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Breeding poplars for disease resistance The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organilation of the United Nations concerning the legal status of any country. territory. city or area or of its authorities. or concerning the delimitation of its frontiers or boundaries. M-32 ISBN 92-5-102214-3 All rights reserved. No part of this publication may be reproduced. stored in a retrieval system. or transmitted in any form or by any means, electronic. mechanical, photocopying or otherwise, without the prior permission of the copyright ·owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. - iii - FOREWORD Poplars are amongst the oldest contemporary angiosperm genera with over 125 species recorded as fossils and 30 to 40 species ~xisting today.They are dioecious and are more frequently propagated from cuttings than seed, Lending themseLves to the creation of cLones and the cuLtivation of recognizabLe and cLonally reproducible hybrids. They have Long been cuLtivated in Asia as welL as in Europe but their more recent deveLopment dates from the 18th century when North American poplars were imported to form hybrids with European species, a trend which is now extending to West and East Asia. Their utiLity lies in ~he frequently rapid growth potentiaL of species, their hybrids and certain clones as weLL as the wide use to which popLars can be put to provide industriaL wood, fodder for animaLs, sheLter, energy and timber for domestic and farm use.
    [Show full text]
  • Concepts in Plant Disease Resistance
    REVISÃO / REVIEW CONCEPTS IN PLANT DISEASE RESISTANCE FRANCISCO XAVIER RIBEIRO DO VALE1, J. E. PARLEVLIET2 & LAÉRCIO ZAMBOLIM1 1Departamento de Fitopatologia, Universidade Federal de Viçosa, CEP 36571-000, Viçosa, MG, Brasil, e-mail: [email protected]; 2Department of Plant Breeding (IVP), Wageningen Agricultural University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands (Aceito para publicação em 13/08/2001) Autor para correspondência: Francisco Xavier Ribeiro do Vale RIBEIRO DO VALE, F.X., PARLEVLIET, J.E. & ZAMBOLIM, L. Concepts in plant disease resistance. Fitopatologia Brasileira 26:577- 589. 2001. ABSTRACT Resistance to nearly all pathogens occurs abundantly Race-specificity is not the cause of elusive resistance but the in our crops. Much of the resistance exploited by breeders is consequence of it. Understanding acquired resistance may of the major gene type. Polygenic resistance, although used open interesting approaches to control pathogens. This is even much less, is even more abundantly available. Many types of truer for molecular techniques, which already represent an resistance are highly elusive, the pathogen apparently adapting enourmously wide range of possibilities. Resistance obtained very easily them. Other types of resistance, the so-called through transformation is often of the quantitative type and durable resistance, remain effective much longer. The elusive may be durable in most cases. resistance is invariably of the monogenic type and usually of Key words: types of resistance; genetics of resistance; the hypersensitive type directed against specialised pathogens. acquired resistance. RESUMO Conceitos em resistência de plantas a doenças Na natureza a resistência à maioria das doenças ocorre tência durável. A resistência temporária é invariavelmente nas culturas.
    [Show full text]