The Ising Model

Total Page:16

File Type:pdf, Size:1020Kb

The Ising Model 3 The Ising Model In this chapter, we study the Ising model on Zd , which was introduced informally in Section 1.4.2. We provide both precise definitions of the concepts involved and a detailed analysis of the conditions ensuring the existence or absence of a phase transition in this model, therefore providing full rigorous justification to the discus- sion in Section 1.4.3. Namely, • In Section 3.1, the Ising model on Zd is defined, together with various types of boundary conditions. • In Section 3.2, several concepts of fundamental importance are introduced, including: the thermodynamic limit, the pressure and the magnetization. The latter two quantities are then computed explicitly in the case of the one- dimensional model (Section 3.3). • The notion of infinite-volume Gibbs state is given a precise meaning in Sec- tion 3.4. In Section 3.6, we discuss correlation inequalities, which play a cen- tral role in the analysis of ferromagnetic systems like the Ising model. • In Section 3.7, the phase diagram of the model is analyzed in detail. In par- ticular, several criteria for the presence of first-order phase transitions, based on the magnetization and the pressure of the model, are introduced in Sec- tion 3.7.1. The latter are used to prove the existence of a phase transition when h 0 (Sections 3.7.2 and 3.7.3) and the absence of a phase transition = when h 0 (Section 3.7.4). A summary with a link to the discussion in the 6= Introduction is given in Section 3.7.5. • Finally, in Section 3.10, the reader can find a series of complements to this chapter, in which a number of interesting topics, related to the core of the chapter but usually more advanced or specific, are discussed in a somewhat less precise manner. We emphasize that some of the ideas and concepts introduced in this chapter are not only useful for the Ising model, but are also of central importance for sta- tistical mechanics in general. They are thus fundamental for the understanding of other parts of the book. 79 Revised version, August 22 2017 To be published by Cambridge University Press (2017) © S. Friedli and Y. Velenik www.unige.ch/math/folks/velenik/smbook 80 Chapter 3. The Ising Model 3.1 Finite-volume Gibbs distributions In this section, the Ising model on Zd is defined precisely and some of its basic properties are established. As a careful reader might notice, some of the definitions in this chapter differ slightly from those of Chapter 1. This is done for later conve- nience. I Finite volumes with free boundary condition. The configurations of the Ising d model in a finite volume Λ b Z with free boundary condition are the elements of the set def Ω { 1,1}Λ . Λ = − A configuration ω ΩΛ is thus of the form ω (ωi )i Λ. The basic random variable ∈ = ∈ associated to the model is the spin at a vertex i Zd , which is the random variable def ∈ σ : Ω { 1,1} defined by σ (ω) ω . i Λ → − i = i We will often identify a finite set Λ with the graph that contains all edges formed by nearest-neighbor pairs of vertices of Λ. We denote the latter set of edges by def E {i, j} Λ : i j . Λ = ⊂ ∼ To each configuration ω Ω , we associate© its energyª , given by the Hamiltonian ∈ Λ def H ∅ (ω) β σ (ω)σ (ω) h σ (ω), Λ;β,h = − i j − i {i,j} E i Λ X∈ Λ X∈ where β R 0 is the inverse temperature and h R is the magnetic field. The su- ∈ ≥ ∈ perscript ∅ indicates that this model has free boundary condition: spins in Λ do not interact with other spins located outside of Λ. Definition 3.1. The Gibbs distribution of the Ising model in Λ with free boundary condition, at parameters β and h, is the distribution on ΩΛ defined by def 1 µ∅ (ω) exp H ∅ (ω) . Λ;β,h = ∅ − Λ;β,h ZΛ;β,h ¡ ¢ The normalization constant def Z∅ exp H ∅ (ω) Λ;β,h = − Λ;β,h ω ΩΛ X∈ ¡ ¢ is called the partition function in Λ with free boundary condition. I Finite volumes with periodic boundary condition. We now consider the Ising model on the torus Tn, defined as follows. Its set of vertices is given by def V {0,...,n 1}d , n = − and there is an edge between each pair of vertices i (i1,...,id ), j (j1,..., jd ) such d = = that r 1 (ir jr ) mod n 1; see Figure 3.1 for illustrations in dimensions 1 and = | − per | = 2. We denote by E the set of edges of Tn. P Vn Configurations of the model are now the elements of { 1,1}Vn and have an en- − ergy given by per def HV ;β,h(ω) β σi (ω)σj (ω) h σi (ω). n = − per − {i,j} E i Vn X∈ Vn X∈ Revised version, August 22 2017 To be published by Cambridge University Press (2017) © S. Friedli and Y. Velenik www.unige.ch/math/folks/velenik/smbook 3.1. Finite-volume Gibbs distributions 81 Figure 3.1: Left: the one-dimensional torus T12. Right: the two-dimensional torus T16. Definition 3.2. The Gibbs distribution of the Ising model in Vn with periodic boundary condition, at parameters β and h, is the probability distribution on { 1,1}Vn defined by − per def 1 per µ (ω) per exp H (ω) . Vn ;β,h = − Vn ;β,h ZV ;β,h n ¡ ¢ The normalization constant def Zper exp H per (ω) Vn ;β,h = − Vn ;β,h ω ΩV ∈X n ³ ´ is called the partition function in Vn with periodic boundary condition. I Finite volumes with configurations as boundary condition. It will turn out to be useful to consider the Ising model on the full lattice Zd , but with configurations which are frozen outside a finite set. Let us thus consider configurations of the Ising model on the infinite lattice Zd , that is, elements of def d Ω { 1,1}Z . = − Fixing a finite set Λ Zd and a configuration η Ω, we define a configuration of b ∈ the Ising model in Λ with boundary condition η as an element of the finite set η def Ω ω Ω : ω η , i Λ . Λ = ∈ i = i ∀ 6∈ © η ª The energy of a configuration ω Ω is defined by ∈ Λ def H (ω) β σ (ω)σ (ω) h σ (ω), (3.1) Λ;β,h = − i j − i {i,j} E b i Λ X∈ Λ X∈ where we have introduced b def d E {i, j} Z :{i, j} Λ ∅, i j . (3.2) Λ = ⊂ ∩ 6= ∼ b © ª Note that EΛ differs from EΛ by the addition of all the edges connecting vertices inside Λ to their neighbors outside Λ. Revised version, August 22 2017 To be published by Cambridge University Press (2017) © S. Friedli and Y. Velenik www.unige.ch/math/folks/velenik/smbook 82 Chapter 3. The Ising Model Figure 3.2: The model in a box Λ (shaded) with boundary condition. + Definition 3.3. The Gibbs distribution of the Ising model in Λ with boundary con- η dition η, at parameters β and h, is the probability distribution on ΩΛ defined by η def 1 µ (ω) exp H (ω) . Λ;β,h = η − Λ;β,h ZΛ;β,h ¡ ¢ The normalization constant η def ZΛ;β,h exp HΛ;β,h(ω) = η − ω Ω X∈ Λ ¡ ¢ is called the partition function with η-boundary condition. η It will be seen later (in particular in Chapter 6) why defining µΛ;β,h on configura- tions in infinite volume is convenient (here, we could as well have defined it on ΩΛ and included the effect of the boundary condition in the Hamiltonian). Two boundary conditions play a particularly important role in the analysis of def the Ising model: the boundary condition η+, for which η+i 1 for all i (see + = + def Figure 3.2), and the boundary condition η−, similarly defined by η− 1 for − i = − all i. The corresponding Gibbs distributions will be simply denoted by µΛ+;β,h and µΛ−;β,h; similarly, we will write ΩΛ+,ΩΛ− for the corresponding sets of configurations. On the notations used below. In the following, we will use the symbol # to denote # ∅ per a generic type of boundary condition. For instance, ZΛ;β,h can denote ZΛ;β,h, ZΛ;β,h η or ZΛ;β,h. In the case of periodic boundary condition, Λ will always implicitly be assumed to be a cube (see below). Following the custom in statistical physics, expectation of a function f with re- spect to a probability distribution µ will be denoted by a bracket: f . When the 〈 〉µ distribution is identified by indices, we will apply the same indices to the bracket. Revised version, August 22 2017 To be published by Cambridge University Press (2017) © S. Friedli and Y. Velenik www.unige.ch/math/folks/velenik/smbook 3.2. Thermodynamic limit, pressure and magnetization 83 # For example, expectation of a function f under µΛ;β,h will be denoted by def f # f (ω)µ# (ω). 〈 〉Λ;β,h = Λ;β,h ω Ω# X∈ Λ We will often use # and µ# ( ) interchangeably. 〈·〉Λ;β,h Λ;β,h · 3.2 Thermodynamic limit, pressure and magnetization 3.2.1 Convergence of subsets It is well known that various statements in probability theory, such as the strong law of large numbers or the ergodic theorem, take on a much cleaner form when considering infinite samples.
Recommended publications
  • The Ising Model
    The Ising Model Today we will switch topics and discuss one of the most studied models in statistical physics the Ising Model • Some applications: – Magnetism (the original application) – Liquid-gas transition – Binary alloys (can be generalized to multiple components) • Onsager solved the 2D square lattice (1D is easy!) • Used to develop renormalization group theory of phase transitions in 1970’s. • Critical slowing down and “cluster methods”. Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000. Atomic Scale Simulation 1 The Model • Consider a lattice with L2 sites and their connectivity (e.g. a square lattice). • Each lattice site has a single spin variable: si = ±1. • With magnetic field h, the energy is: N −β H H = −∑ Jijsis j − ∑ hisi and Z = ∑ e ( i, j ) i=1 • J is the nearest neighbors (i,j) coupling: – J > 0 ferromagnetic. – J < 0 antiferromagnetic. • Picture of spins at the critical temperature Tc. (Note that connected (percolated) clusters.) Atomic Scale Simulation 2 Mapping liquid-gas to Ising • For liquid-gas transition let n(r) be the density at lattice site r and have two values n(r)=(0,1). E = ∑ vijnin j + µ∑ni (i, j) i • Let’s map this into the Ising model spin variables: 1 s = 2n − 1 or n = s + 1 2 ( ) v v + µ H s s ( ) s c = ∑ i j + ∑ i + 4 (i, j) 2 i J = −v / 4 h = −(v + µ) / 2 1 1 1 M = s n = n = M + 1 N ∑ i N ∑ i 2 ( ) i i Atomic Scale Simulation 3 JAVA Ising applet http://physics.weber.edu/schroeder/software/demos/IsingModel.html Dynamically runs using heat bath algorithm.
    [Show full text]
  • Arxiv:1511.03031V2
    submitted to acta physica slovaca 1– 133 A BRIEF ACCOUNT OF THE ISING AND ISING-LIKE MODELS: MEAN-FIELD, EFFECTIVE-FIELD AND EXACT RESULTS Jozef Streckaˇ 1, Michal Jasˇcurˇ 2 Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Saf´arikˇ University, Park Angelinum 9, 040 01 Koˇsice, Slovakia The present article provides a tutorial review on how to treat the Ising and Ising-like models within the mean-field, effective-field and exact methods. The mean-field approach is illus- trated on four particular examples of the lattice-statistical models: the spin-1/2 Ising model in a longitudinal field, the spin-1 Blume-Capel model in a longitudinal field, the mixed-spin Ising model in a longitudinal field and the spin-S Ising model in a transverse field. The mean- field solutions of the spin-1 Blume-Capel model and the mixed-spin Ising model demonstrate a change of continuous phase transitions to discontinuous ones at a tricritical point. A con- tinuous quantum phase transition of the spin-S Ising model driven by a transverse magnetic field is also explored within the mean-field method. The effective-field theory is elaborated within a single- and two-spin cluster approach in order to demonstrate an efficiency of this ap- proximate method, which affords superior approximate results with respect to the mean-field results. The long-standing problem of this method concerned with a self-consistent deter- mination of the free energy is also addressed in detail. More specifically, the effective-field theory is adapted for the spin-1/2 Ising model in a longitudinal field, the spin-S Blume-Capel model in a longitudinal field and the spin-1/2 Ising model in a transverse field.
    [Show full text]
  • Statistical Field Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html.
    [Show full text]
  • Lecture 8: the Ising Model Introduction
    Lecture 8: The Ising model Introduction I Up to now: Toy systems with interesting properties (random walkers, cluster growth, percolation) I Common to them: No interactions I Add interactions now, with significant role I Immediate consequence: much richer structure in model, in particular: phase transitions I Simulate interactions with RNG (Monte Carlo method) I Include the impact of temperature: ideas from thermodynamics and statistical mechanics important I Simple system as example: coupled spins (see below), will use the canonical ensemble for its description The Ising model I A very interesting model for understanding some properties of magnetic materials, especially the phase transition ferromagnetic ! paramagnetic I Intrinsically, magnetism is a quantum effect, triggered by the spins of particles aligning with each other I Ising model a superb toy model to understand this dynamics I Has been invented in the 1920's by E.Ising I Ever since treated as a first, paradigmatic model The model (in 2 dimensions) I Consider a square lattice with spins at each lattice site I Spins can have two values: si = ±1 I Take into account only nearest neighbour interactions (good approximation, dipole strength falls off as 1=r 3) I Energy of the system: P E = −J si sj hiji I Here: exchange constant J > 0 (for ferromagnets), and hiji denotes pairs of nearest neighbours. I (Micro-)states α characterised by the configuration of each spin, the more aligned the spins in a state α, the smaller the respective energy Eα. I Emergence of spontaneous magnetisation (without external field): sufficiently many spins parallel Adding temperature I Without temperature T : Story over.
    [Show full text]
  • Arxiv:1504.02898V2 [Cond-Mat.Stat-Mech] 7 Jun 2015 Keywords: Percolation, Explosive Percolation, SLE, Ising Model, Earth Topography
    Recent advances in percolation theory and its applications Abbas Ali Saberi aDepartment of Physics, University of Tehran, P.O. Box 14395-547,Tehran, Iran bSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531, Tehran, Iran Abstract Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, di- mensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive per- colation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic L¨ownerevolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals.
    [Show full text]
  • Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales
    Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales Michel Bauer a, Denis Bernard a 1, Kalle Kyt¨ol¨a b [email protected]; [email protected]; [email protected] a Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´ede recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France. b Department of Mathematics, P.O. Box 68 FIN-00014 University of Helsinki, Finland. Abstract A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at critical- ity. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general arXiv:math-ph/0503024v2 21 Mar 2005 ideas on concrete computations, with applications to percolation and the Ising model. 1Member of C.N.R.S 1 Contents 1 Introduction 3 2 Basics of Schramm-L¨owner evolutions: Chordal SLE 6 3 A proposal for multiple SLEs 7 3.1 Thebasicequations ....................... 7 3.2 Archprobabilities......................... 8 4 First comments 10 4.1 Statistical mechanics interpretation . 10 4.2 SLEasaspecialcaseof2SLE. 10 4.3 Makingsense ........................... 12 4.4 A few martingales for nSLEs .................. 13 4.5 Classicallimit........................... 14 4.6 Relations with other work . 15 5 CFT background 16 6 Martingales from statistical mechanics 19 6.1 Tautological martingales .
    [Show full text]
  • Markov Random Fields and Stochastic Image Models
    Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i.
    [Show full text]
  • The FKG Inequality for Partially Ordered Algebras
    J Theor Probab (2008) 21: 449–458 DOI 10.1007/s10959-007-0117-7 The FKG Inequality for Partially Ordered Algebras Siddhartha Sahi Received: 20 December 2006 / Revised: 14 June 2007 / Published online: 24 August 2007 © Springer Science+Business Media, LLC 2007 Abstract The FKG inequality asserts that for a distributive lattice with log- supermodular probability measure, any two increasing functions are positively corre- lated. In this paper we extend this result to functions with values in partially ordered algebras, such as algebras of matrices and polynomials. Keywords FKG inequality · Distributive lattice · Ahlswede-Daykin inequality · Correlation inequality · Partially ordered algebras 1 Introduction Let 2S be the lattice of all subsets of a finite set S, partially ordered by set inclusion. A function f : 2S → R is said to be increasing if f(α)− f(β) is positive for all β ⊆ α. (Here and elsewhere by a positive number we mean one which is ≥0.) Given a probability measure μ on 2S we define the expectation and covariance of functions by Eμ(f ) := μ(α)f (α), α∈2S Cμ(f, g) := Eμ(fg) − Eμ(f )Eμ(g). The FKG inequality [8]assertsiff,g are increasing, and μ satisfies μ(α ∪ β)μ(α ∩ β) ≥ μ(α)μ(β) for all α, β ⊆ S. (1) then one has Cμ(f, g) ≥ 0. This research was supported by an NSF grant. S. Sahi () Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA e-mail: [email protected] 450 J Theor Probab (2008) 21: 449–458 A special case of this inequality was previously discovered by Harris [11] and used by him to establish lower bounds for the critical probability for percolation.
    [Show full text]
  • Percolation Theory Applied to Financial Markets: a Cluster Description of Herding Behavior Leading to Bubbles and Crashes
    Percolation Theory Applied to Financial Markets: A Cluster Description of Herding Behavior Leading to Bubbles and Crashes Master's Thesis Maximilian G. A. Seyrich February 20, 2015 Advisor: Professor Didier Sornette Chair of Entrepreneurial Risk Department of Physics Department MTEC ETH Zurich Abstract In this thesis, we clarify the herding effect due to cluster dynamics of traders. We provide a framework which is able to derive the crash hazard rate of the Johannsen-Ledoit-Sornette model (JLS) as a power law diverging function of the percolation scaling parameter. Using this framework, we are able to create reasonable bubbles and crashes in price time series. We present a variety of different kinds of bubbles and crashes and provide insights into the dynamics of financial mar- kets. Our simulations show that most of the time, a crash is preceded by a bubble. Yet, a bubble must not end with a crash. The time of a crash is a random variable, being simulated by a Poisson process. The crash hazard rate plays the role of the intensity function. The headstone of this thesis is a new description of the crash hazard rate. Recently dis- covered super-linear relations between groups sizes and group activi- ties, as well as percolation theory, are applied to the Cont-Bouchaud cluster dynamics model. i Contents Contents iii 1 Motivation1 2 Models & Methods3 2.1 The Johanson-Ledoit-Sornette (JLS) Model........... 3 2.2 Percolation theory.......................... 6 2.2.1 Introduction......................... 6 2.2.2 Percolation Point and Cluster Number......... 7 2.2.3 Finite Size Effects...................... 8 2.3 Ising Model ............................
    [Show full text]
  • 8 Blocks, Markov Chains, Ising Model
    Tel Aviv University, 2007 Large deviations 60 8 Blocks, Markov chains, Ising model 8a Introductory remarks . 60 8b Pair frequencies: combinatorial approach . 63 8c Markovchains .................... 66 8d Ising model (one-dimensional) . 68 8e Pair frequencies: linear algebra approach . 69 8f Dimension two . 70 8a Introductory remarks The following three questions are related more closely than it may seem. 8a1 Question. 100 children stay in a ring, 40 boys and 60 girls. Among the 100 pairs of neighbors, 20 pairs are heterosexual (a girl and a boy); others are not. What about the number of all such configurations? 8a2 Question. A Markov chain with two states (0 and 1) is given via its 2 2-matrix of transition probabilities. What about the probability that the × state 1 occurs 60 times among the first 100? 8a3 Question. (Ising model) A one-dimensional array of n spin-1/2 par- ticles is described by the configuration space 1, 1 n. Each configuration (s ,...,s ) 1, 1 n has its energy {− } 1 n ∈ {− } 1 H (s ,...,s )= (s s + + s s ) h(s + + s ) ; n 1 n −2 1 2 ··· n−1 n − 1 ··· n here h R is a parameter. (It is the strength of an external magnetic field, ∈ while the strength of the nearest neighbor coupling is set to 1.) What about the dependence of the energy and the mean spin (s + + s )/n on h and 1 ··· n the temperature? Tossing a fair coin n times we get a random element (β ,...,β ) of 0, 1 n, 1 n { } and may consider the n 1 pairs (β1, β2), (β2, β3),..., (βn−1, βn).
    [Show full text]
  • A Course in Interacting Particle Systems
    A Course in Interacting Particle Systems J.M. Swart January 14, 2020 arXiv:1703.10007v2 [math.PR] 13 Jan 2020 2 Contents 1 Introduction 7 1.1 General set-up . .7 1.2 The voter model . .9 1.3 The contact process . 11 1.4 Ising and Potts models . 14 1.5 Phase transitions . 17 1.6 Variations on the voter model . 20 1.7 Further models . 22 2 Continuous-time Markov chains 27 2.1 Poisson point sets . 27 2.2 Transition probabilities and generators . 30 2.3 Poisson construction of Markov processes . 31 2.4 Examples of Poisson representations . 33 3 The mean-field limit 35 3.1 Processes on the complete graph . 35 3.2 The mean-field limit of the Ising model . 36 3.3 Analysis of the mean-field model . 38 3.4 Functions of Markov processes . 42 3.5 The mean-field contact process . 47 3.6 The mean-field voter model . 49 3.7 Exercises . 51 4 Construction and ergodicity 53 4.1 Introduction . 53 4.2 Feller processes . 54 4.3 Poisson construction . 63 4.4 Generator construction . 72 4.5 Ergodicity . 79 4.6 Application to the Ising model . 81 4.7 Further results . 85 5 Monotonicity 89 5.1 The stochastic order . 89 5.2 The upper and lower invariant laws . 94 5.3 The contact process . 97 5.4 Other examples . 100 3 4 CONTENTS 5.5 Exercises . 101 6 Duality 105 6.1 Introduction . 105 6.2 Additive systems duality . 106 6.3 Cancellative systems duality . 113 6.4 Other dualities .
    [Show full text]
  • Negative Dependence Via the FKG Inequality
    Negative Dependence via the FKG Inequality Devdatt Dubhashi Department of Computer Science and Engineering Chalmers University SE 412 96, G¨oteborg, SWEDEN [email protected] Abstract We show how the FKG Inequality can be used to prove negative dependence properties. 1 Introduction Pemantle[21] points out that there is a need for a theory of negatively dependent events anal- ogous to the existing natural and useful theory of positively dependent events. Informally speaking, random variables are said to be negatively dependent, if they have the following property: if any one subset of the variables is \high", then other (disjoint) subsets of the vari- ables are \low". He gives a survey of various notions of negative dependence, two of which are reviewed below, and points out several applications of consequences of one of these concepts: negative association. These examples include natural stochastic processes and structures such as the uniform random spanning tree[16], the simple exclusion process[15], the random clus- ter model and occupancy numbers of competing bins[6]. Such variables arise frequently in the analysis of algorithms where a stream of random bits influences either the input or the execution of the algorithm. Negative dependence may also be used to obtain information on the distribution of functionals such as the sum of the variables involved (or more generally, a non-decreasing function). Newman[19] shows that under negative dependence, one obtains a Central Limit Theorem (CLT) for stationary sequences of random variables. Dubhashi and Ranjan[6] show that under negative dependence conditions, one can employ classical tools of concentration of measure such as the Chernoff-Hoeffding (CH) bounds and related martingale inequalities (see also [20, 23, 4, 14]).
    [Show full text]