First Solar Cdte Photovoltaic Technology: Environmental, Health and Safety Assessment Final Reportd October 2013E L

Total Page:16

File Type:pdf, Size:1020Kb

First Solar Cdte Photovoltaic Technology: Environmental, Health and Safety Assessment Final Reportd October 2013E L Collection: Sustainability First Solar CdTe Photovoltaic Technology: Environmental, Health and Safety Assessment Final ReportD October 2013E L I NFORME PHOTOVOLTAIC SOLAR ENERGY DEPARTMENT NATIONAL RENEWABLE ENERGY CENTRE (CENER) ENERGY AND CLIMATE CHANGE AREA FUNDACIÓN CHILE Document Number: SD - 33 Page 1 of 50 Collection: Sustainability INDEX PAGE 1.- EXECUTIVE SUMMARY ......................................................................................................... 4 1.1.- OBJECT ............................................................................................................................... 4 1.2.- SCOPE ................................................................................................................................. 4 1.3.- METHODOLOGY ................................................................................................................. 4 1.4.- CONCLUSIONS ................................................................................................................... 5 2.- TECHNICAL REPORT ............................................................................................................ 7 2.1.- ANALYSIS OF THE CdTe PROCESS TECHNOLOGY FOR PV MODULES ..................... 8 2.1.1.- RAW MATERIALS AND SUPPLIERS ANALYSIS ............................................. 8 2.1.2.- MANUFACTURING PROCESS ....................................................................... 11 2.1.3.- RECYCLING PROCESS .................................................................................. 13 2.1.4.- ENVIRONMENTAL HEALTH AND SAFETY POLICIES .................................. 15 2.1.5.- ANALYSIS OF THE MANUFACTURING BY-PRODUCTS .............................. 18 2.1.5.1.- Air emissions ........................................................................................... 18 2.1.5.2.- Water emissions ...................................................................................... 19 2.1.5.3.- Other solid wastes ................................................................................... 20 2.1.5.4.- Sustainability ........................................................................................... 20 2.2.- LIFE CYCLE ASPECTS OF FIRST SOLAR’S CdTe PV MODULES ................................ 22 2.2.1.- ENERGY PAYBACK TIME (EPBT) .................................................................. 22 2.2.2.- GREENHOUSE GAS (GHG) EMISSIONS ....................................................... 26 2.2.3.- LIFE CYCLE CADMIUM EMISSIONS .............................................................. 29 2.2.4.- TELLURIUM AVAILABILITY ............................................................................. 32 2.2.5.- WATER USE .................................................................................................... 33 2.2.6.- LAND USE AND BIODIVERSITY ..................................................................... 35 2.2.7.- EXTERNAL COSTS ......................................................................................... 37 2.3.- SAFETY DURING CdTe PV MODULES OPERATION ..................................................... 39 2.3.1.- SAFETY AND RELIABILITY CERTIFICATIONS .............................................. 39 2.3.2.- BREAKAGE ...................................................................................................... 40 2.3.3.- HAZARDOUS CIRCUMSTANCES (FIRE) ....................................................... 41 2.3.4.- SLOW DEGRADATION .................................................................................... 43 2.3.5.- END-OF-LIFE ................................................................................................... 45 3.- APPENDICES ........................................................................................................................ 47 3.1.- CHILEAN SIC & SING ELECTRICITY GRID COMPOSITION .......................................... 47 3.2.- DATA FOR OTHER PV SYSTEMS .................................................................................... 49 3.3.- GHG EMISSIONS RATES FOR DIFFERENT ELECTRICTY SOURCES ......................... 50 Document Number: SD - 33 2 Page 2 of 50 Collection: Sustainability FIGURES INDEX .................................................................................................... PAGE Figure 1 Comparative toxicity between Cd and CdTe ................................................................ 10 Figure 2 Schematic representation of First Solar module architecture ...................................... 12 Figure 3 First Solar’s manufacturing process ............................................................................. 13 Figure 4 First Solar’s module recycling technology version 2 .................................................... 14 3 Figure 5 Perrysburg (U.S.) and Kulim (Malaysia) factories average Cd level (µg/m ) ............... 16 3 Figure 6 Personal exposure sampling (µg/m ) by job function performed quarterly .................. 16 Figure 7 Perrysburg (U.S) factory mean Cd levels in blood and urine compared to OSHA biological limit .............................................................................................................................. 17 Figure 8 Kulim (Malaysia) factory mean Cd levels in blood and urine compared to OSHA biological limit .............................................................................................................................. 17 Figure 9 Wastewater treatment process flow diagram ............................................................... 19 Figure 10 First Solar CdTe module efficiencies roadmap .......................................................... 21 Figure 11 Energy Payback Time [yr] for different PV technologies. Irradiation standardized at 1700 kWh/m2/yr. ......................................................................................................................... 23 Figure 12 Energy Payback Time [yr] for CdTe PV at different locations and irradiations. ......... 26 Figure 13 GHG emissions for different PV technologies. Irradiation standardized at 1700 [kWh/m2/yr]. ................................................................................................................................ 26 Figure 14 GHG emissions [g CO2-eq./kWh] for different PV technologies and irradiations. ..... 28 Figure 15 GHG emissions [g CO2-eq./kWh] for different electricity sources. ............................ 29 Figure 16 Life cycle atmospheric Cd emissions for different electricity generation options, Southern European conditions. ................................................................................................... 31 Figure 17 Life cycle management strategies for tellurium availability. ....................................... 33 Figure 18 Life cycle water withdrawal for different energy generation options ........................... 34 Figure 19 Example of typical breakage pattern of First Solar modules ...................................... 41 Document Number: SD - 33 3 Page 3 of 50 Collection: Sustainability 1.- EXECUTIVE SUMMARY 1.1.- OBJECT The object of the work is to evaluate, from an independent point of view, the environmental, health and safety (EHS) aspects of CdTe-based PV modules regarding process technology and modules working period in the field, in the context of First Solar’s initiation of operations in Chile and South America. The independent peer review undertook in the present work has been performed by CENER and Fundación Chile in a joint project. 1.2.- SCOPE This report analyzes First Solar’s process technology, beginning with the study of the raw materials, the manufacturing and recycling processes, including the analysis of the process routing, the materials modification steps and the in-line safety controls. A study of treatment and disposal of by-products will be carried out. Also, life cycle aspects of First Solar’s CdTe PV technology will be analyzed, including energy payback time, greenhouse gas emissions, atmospheric Cd emissions, tellurium availability, water use, impacts on biodiversity, land use, and external costs. Finally, an evaluation of safety aspects during the CdTe modules working period will be done, taking into account four main aspects: breakage, fire, slow degradation and end-of-life. 1.3.- METHODOLOGY The methodology applied for working out the present report is based on a careful data mining and general search of information. Articles and reports, published by recognized scientists, international agencies and research and development institutions have been used as well as information provided by First Solar on their specific technology and management systems. This information is then compared and subjected to a critical analysis, based on the experience and know-how regarding PV technology existing within the PV Department of CENER and the Energy and Climate Change Area of Fundación Chile. Document Number: SD - 33 4 Page 4 of 50 Collection: Sustainability 1.4.- CONCLUSIONS After having conducted a detailed analysis of the most recent scientific articles and the specific internal information provided by First Solar related to the CdTe technology for the manufacturing of PV modules the drawn conclusions are summarized in the following paragraphs: EH&S aspects of First Solar CdTe process technology • Cadmium is obtained as a by-product of smelting of zinc, lead and copper, therefore, its production does not depend on the PV market demand. First Solar’s PV modules, by converting the Cadmium
Recommended publications
  • How to Comply with CDC Guidelines
    1101 W. 13th St, Riviera Beach, Florida Phone: 561.848.1826 https://www.rgf.com/rgf-biocontrols How to comply with CDC Guidelines OVERVIEW Sections of text are extracted directly from the Federal Register Vol. 59, No. 208, 10/28194, to compile this pamphlet. This is not meant to be a substitute for the Guidelines, but a general overview of specific sections relevant to RGF BioControls and its products. Click here for a link: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5417a1.htm OUR MISSION We believe, once you understand the new CDC guidelines, you’ll understand why our products offer you the best means of compliance. This is based upon a design philosophy that each piece of equipment is designed to satisfy a particular problem and each problem can be satisfied by an individual or combination of products that complement each other. CDC ON NEGATIVE PRESSURE "To control the direction of airflow between the room and adjacent areas, thereby preventing contaminated air from escaping from the room into other areas of the facility. The direction of air flow is controlled by creating a lower (negative) pressure in the area into which the flow of air is desired. For air to flow from one area to another, the air pressure in the two areas must be different. Air will flow from a higher pressure area to a lower pressure area. " HOW RGF BIOCONTROLS CREATES NEGATIVE PRESSURE Our MICROCON ® ExC7 utilizes HEPA filtration and UV light (option) for various room exhaust options. Wall, window or ceiling mounted, they direct air to either outside, back to return air system or corridor.
    [Show full text]
  • ASHRAE Position Document on Filtration and Air Cleaning
    ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
    [Show full text]
  • First Solar Investor Overview
    FIRST SOLAR INVESTOR OVERVIEW IMPORTANT INFORMATION Cautionary Note Regarding Forward Looking Statements This presentation contains forward-looking statements which are made pursuant to safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, statements concerning: effects resulting from certain module manufacturing changes and associated restructuring activities; our business strategy, including anticipated trends and developments in and management plans for our business and the markets in which we operate; future financial results, operating results, revenues, gross margin, operating expenses, products, projected costs (including estimated future module collection and recycling costs), warranties, solar module technology and cost reduction roadmaps, restructuring, product reliability, investments in unconsolidated affiliates, and capital expenditures; our ability to continue to reduce the cost per watt of our solar modules; the impact of public policies, such as tariffs or other trade remedies imposed on solar cells and modules; our ability to expand manufacturing capacity worldwide; our ability to reduce the costs to construct photovoltaic (“PV”) solar power systems; research and development (“R&D”) programs and our ability to improve the conversion efficiency of our solar modules; sales and marketing initiatives; the impact of U.S. tax reform; and competition. These forward-looking statements are often characterized by the use of words such as “estimate,” “expect,” “anticipate,” “project,” “plan,” “intend,” “seek,” “believe,” “forecast,” “foresee,” “likely,” “may,” “should,” “goal,” “target,” “might,” “will,” “could,” “predict,” “continue” and the negative or plural of these words and other comparable terminology. Forward-looking statements are only predictions based on our current expectations and our projections about future events and therefore speak only as of the date of this presentation.
    [Show full text]
  • Fast Facts (PDF)
    FAST FACTS According to the National Fire Protection Association, the leading factor contributing to home heating fires (30%) was mainly due to having a dirty chimney (i.e., creosote buildup). Heating equipment (including wood stoves) is the second leading cause of home fires, and third leading cause of home fire deaths. Most fireplace and chimney fires are caused by creosote buildup, and could be prevented. EPA believes there are approximately 13 million fireplaces, 250,000 hydronic heaters, and 8.5 million wood stoves in use nationwide. Five million (57 percent) of the nation’s wood stoves are older, inefficient devices. EPA estimates that if all of the old wood stoves in the United States were replaced with cleaner- burning hearth appliances, an estimated $56-126 billion in health benefits per year would be realized. Smoke from wood-burning stoves and fireplaces contain a mixture of harmful gases and particle matter (PM2.5). Breathing these small particles can cause asthma attacks and severe bronchitis, aggravate heart and lung disease, and may increase the likelihood of respiratory illnesses. Changing out one old dirty, inefficient wood stove is equivalent to the PM2.5 reduction of taking five old diesel trucks off the road. The benefits of replacing old wood stoves and fireplaces: • Saves money, fuel, time, and resources • Up to 50 percent more energy efficient, uses 1/3 less wood • Cuts creosote build-up in chimneys that helps reduce the risk of fire • Reduces PM2.5 indoors and out After start-up, a properly installed, correctly used EPA-certified wood stove should be smoke free.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (Also Referred to As Extended Media
    EPA-452/F-03-023 Air Pollution Cocntrol Technology Fact Sheet Name of Technology: Paper/Nonwoven Filter - High Efficiency Particle Air (HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (also referred to as Extended Media) Type of Technology: Control Device - Capture/Disposal Applicable Pollutants: Submicron Particulate Matter (PM) greater than or equal to 0.3 micrometer (µm) in aerodynamic diameter, and PM greater than or equal to 0.12 µm in aerodynamic diameter that is chemically, biologically, or radioactively toxic; hazardous air pollutants (HAPs) that are in particulate form, such as most metals (mercury is the notable exception, as a significant portion of emissions are in the form of elemental vapor). Achievable Emission Limits/Reductions: HEPA and ULPA filters are classified by their minimum collection efficiency. Many international standards and classes currently exist for high efficiency filters (Osborn, 1989). In general, HEPA and ULPA filters are defined as having the following minimum efficiency rating (Heumann, 1997): HEPA: 99.97% efficiency for the removal of 0.3 µm diameter or larger PM, ULPA: 99.9995% efficiency for the removal of 0.12 µm diameter or larger PM. Some extended media filters are capable of much higher efficiencies. Commercially available filters can control PM with 0.01 µm diameter at efficiencies of 99.99+% and PM with 0.1 µm diameter at efficiencies of 99.9999+% (Gaddish, 1989; Osborn, 1989). Several factors determine HEPA and ULPA filter collection efficiency. These include gas filtration, velocity, particle characteristics, and filter media characteristics. In general, the collection efficiency increases with increasing filtration velocity and particle size.
    [Show full text]
  • A Hybrid Air Purifier and Dehumidifier for the Best Possible Indoor Air
    AD20 Hybrid / Air purifier & Dehumidifier A hybrid air purifier and dehumidifier for the best possible indoor air. & ER D AN EH Wood´s AD20 hybrid is a revolutionary innovation that LE UM C ID IF I R E I R E A CL AN E R A R I R I R E I A F combines Wood´s high standards for energy-effecient I D I C M L E U A H N E E D R & and reliable dehumidification, with Wood´s unique & R E N A E D L SWEDISH TECHNIQUE E C N U M I R D I I A F I E R Swedish filtration system and give you the best possible indoor air. Thanks to the patented filter system Active ION HEPA, manufactured in Sweden, AD20 Hybrid gives you an effective air cleaning-without compromising on power consumption or noise levels. Wood’s AD-20 Hybrid Specifications dehumidification AD20 Hybrid is reliable, efficient and energy-saving. Max. working area 100 m² Recommended area 2 - 60 m² AD20 Hybrid protects against moisture and mold dam- Capacity at 20ºC & 70% RF 10,6 litres/day age and also serve you with an air purifier in the same Capacity at 35ºC & 80% RF 20 litres/day Power at 27ºC & 60% RF 260 W machine. AD20 Hybrid is one of the smartest hybrid Power at 30ºC & 80% RF 310 W dehumidifiers / air purifiers on the market. Fan speeds 4 Airflow 100-200 m³/h Speed 1 100 m³/h Speed 2 130 m³/h Advantages: Speed 3 160 m³/h Speed 4 200 m³/h • Powerful and energy efficient dehumidification.
    [Show full text]
  • Cabin Air Quality Brief
    Briefing paper Cabin air quality – Risk of communicable diseases transmission The overall risk of contracting a disease from an ill person onboard an airplane is similar to that in other confined areas with high occupant density, such as a bus, a subway, or movie theatre for a similar time of exposure. anywhere where a person is in close contact with others. That said, the risk on airplanes is probably lower than in many confined spaces because modern airplanes have cabin air filtration systems equipped with HEPA filters. HEPA or high efficiency particulate air filters have similar performance to those used to keep the air clean in hospital operating rooms and industrial clean rooms. These filters are very effective at trapping microscopic particles as small as bacteria and viruses. HEPA filters are effective at capturing greater than 99 percent of the airborne microbes in the filtered air. Filtered, recirculated air provides higher cabin humidity levels and lower particulate levels than 100% outside air systems. The cabin air system is designed to operate most efficiently by delivering approximately 50 percent outside air and 50 percent filtered, recirculated air. This normally provides between 15 to 20 cubic feet of total air supply per minute per person in economy class. The total air supply is essentially sterile and particle-free. Cabin air circulation is continuous. Air is always flowing into and out of the cabin. Total airflow to the cabin is supplied at a bulk flow rate equivalent to 20 to 30 air changes per hour. This provides temperature control and minimizes temperature gradients within the cabin.
    [Show full text]
  • Assessment of the Risks Associated with Thin Film Solar Panel Technology
    Assessment of the Risks Associated with Thin Film Solar Panel Technology Submitted to First Solar by The Virginia Center for Coal and Energy Research Virginia Tech 8 March 2019 Blacksburg, Virginia, USA VIRGINIA CENTER FOR COAL AND ENERGY RESEARCH www.energy.vt.edu The Virginia Center for Coal and Energy Research (VCCER) was created by an Act of the Virginia General Assembly on March 30, 1977, as an interdisciplinary study, research, information and resource facility for the Commonwealth of Virginia. In July of that year, a directive approved by the Virginia Polytechnic Institute and State University (Virginia Tech) Board of Visitors placed the VCCER under the University Provost because of its intercollegiate character, and because the Center's mandate encompasses the three missions of the University: instruction, research and extension. Derived from its legislative mandate and years of experience, the mission of the VCCER involves five primary functions: • Research in interdisciplinary energy and coal-related issues of interest to the Commonwealth • Coordination of coal and energy research at Virginia Tech • Dissemination of coal and energy research information and data to users in the Commonwealth • Examination of socio-economic implications related to energy and coal development and associated environmental impacts • Assistance to the Commonwealth of Virginia in implementing the Commonwealth's energy plan Virginia Center for Coal and Energy Research (MC 0411) Randolph Hall, Room 133 460 Old Turner Street Virginia Tech Blacksburg, Virginia 24061 Phone: 540-231-5038 Fax: 540-231-4078 Report Authors The primary author for this report is William Reynolds, Jr., Professor, Department of Mate- rials Science and Engineering, Virginia Tech; contributing author is Michael Karmis, Stonie Barker Professor, Department of Mining and Minerals Engineering & Director, Virginia Center for Coal and Energy Research (VCCER), Virginia Tech.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • Demonstration of Essential Reliability Services by a 300-MW Solar
    Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant Clyde Loutan, Peter Klauer, Sirajul Chowdhury, and Stephen Hall California Independent System Operator Mahesh Morjaria, Vladimir Chadliev, Nick Milam, and Christopher Milan First Solar Vahan Gevorgian National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-67799 March 2017 Contract No. DE-AC36-08GO28308 Demonstration of Essential Reliability Services by a 300- MW Solar Photovoltaic Power Plant Clyde Loutan, Peter Klauer, Sirajul Chowdhury, and Stephen Hall California Independent System Operator Mahesh Morjaria, Vladimir Chadliev, Nick Milam, and Christopher Milan First Solar Vahan Gevorgian National Renewable Energy Laboratory Prepared under Task No. ST6S.1010 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-67799 Golden, CO 80401 March 2017 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • 13-08 the Wild Center Renewable Heating Demonstration
    New York State Energy Research and Development Authority The Wild Center Renewable Heating Demonstration: High-Efficiency, Commercial-Scale, Wood-Pellet Boiler Integrated with a Solar Thermal System Final Report March 2013 NYSERDA Report 13-08 NYSERDA’s Promise to New Yorkers: NYSERDA provides resources, expertise, and objective information so New Yorkers can make confident, informed energy decisions. Our Mission: Advance innovative energy solutions in ways that improve New York’s economy and environment. Our Vision: Serve as a catalyst—advancing energy innovation and technology, transforming New York’s economy, empowering people to choose clean and efficient energy as part of their everyday lives. Our Core Values: Objectivity, integrity, public service, partnership, and innovation. Our Portfolios NYSERDA programs are organized into five portfolios, each representing a complementary group of offerings with common areas of energy-related focus and objectives. Energy Efficiency and Renewable Energy Deployment Energy and the Environment Helping New York State to achieve its aggressive energy efficiency Helping to assess and mitigate the environmental impacts and renewable energy goals – including programs to motivate of energy production and use in New York State– including increased efficiency in energy consumption by consumers (residential, environmental research and development, regional initiatives commercial, municipal, institutional, industrial, and transportation), to improve environmental sustainability, and West Valley to increase
    [Show full text]