The Microbial Ecology of Listeria Monocytogenes As Impacted by Three Environments: a Cheese Microbial Community; a Farm Environment; and a Soil Microbial Community
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inhibitory Activity of Lactobacillus Plantarum LMG P-26358 Against
Mills et al. Microbial Cell Factories 2011, 10(Suppl 1):S7 http://www.microbialcellfactories.com/content/10/S1/S7 PROCEEDINGS Open Access Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese Susan Mills1,3, L Mariela Serrano3, Carmel Griffin1,3, Paula M O’Connor1, Gwenda Schaad3, Chris Bruining3, Colin Hill2,4, R Paul Ross1,2*, Wilco C Meijer3 From 10th Symposium on Lactic Acid Bacterium Egmond aan Zee, the Netherlands. 28 August - 1 September 2011 Abstract Lactobacillus plantarum LMG P-26358 isolated from a soft French artisanal cheese produces a potent class IIa bacteriocin with 100% homology to plantaricin 423 and bacteriocidal activity against Listeria innocua and Listeria monocytogenes. The bacteriocin was found to be highly stable at temperatures as high as 100°C and pH ranges from 1-10. While this relatively narrow spectrum bacteriocin also exhibited antimicrobial activity against species of enterococci, it did not inhibit dairy starters including lactococci and lactobacilli when tested by well diffusion assay (WDA). In order to test the suitability of Lb. plantarum LMG P-26358 as an anti-listerial adjunct with nisin-producing lactococci, laboratory-scale cheeses were manufactured. Results indicated that combining Lb. plantarum LMG P- 26358 (at 108 colony forming units (cfu)/ml) with a nisin producer is an effective strategy to eliminate the biological indicator strain, L. innocua. Moreover, industrial-scale cheeses also demonstrated that Lb. plantarum LMG P-26358 was much more effective than the nisin producer alone for protection against the indicator. MALDI-TOF mass spectrometry confirmed the presence of plantaricin 423 and nisin in the appropriate cheeses over an 18 week ripening period. -
Sanitation Assessment of Food Contact Surfaces and Lethality Of
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Sanitation Assessment of Food Contact Surfaces and Lethality of Moist Heat and a Disinfectant Against Listeria Strains Inoculated on Deli Slicer Components Sabelo Muzikayise Masuku University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Food Microbiology Commons Recommended Citation Masuku, Sabelo Muzikayise, "Sanitation Assessment of Food Contact Surfaces and Lethality of Moist Heat and a Disinfectant Against Listeria Strains Inoculated on Deli Slicer Components" (2012). Theses and Dissertations. 355. http://scholarworks.uark.edu/etd/355 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. SANITATION ASSESSMENT OF FOOD CONTACT SURFACES AND LETHALITY OF MOIST HEAT AND A DISINFECTANT AGAINST LISTERIA STRAINS INOCULATED ON DELI SLICER COMPONENTS SANITATION ASSESSMENT OF FOOD CONTACT SURFACES AND LETHALITY OF MOIST HEAT AND A DISINFECTANT AGAINST LISTERIA STRAINS INOCULATED ON DELI SLICER COMPONENTS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science By Sabelo Muzikayise Masuku Tshwane University of Technology Bachelor of Technology in Environmental Health, 2000 Curtin University Master of Public Health, 2005 May 2012 University of Arkansas ABSTRACT The overall objectives of this study were to: evaluate the efficacy of different cleaning cloth types and cloth-disinfectant combinations in reducing food contact surface contamination to acceptable levels; determine the optimum moist heat and moist heat + sanitizer treatments that can significantly reduce the number of Listeria strains on deli slicer components; and investigate if the moist heat treatment used in this study induced the viable-but-non-culturable (VBNC) state in Listeria cells. -
Nama from Listeria Monocytogenes
Identification and Characterisation of an Old Yellow Enzyme (OYE) - NamA from Listeria monocytogenes by Majid Abdullah Bamaga A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier University, for the award of Doctor of Philosophy September, 2014 Abstract The food-borne pathogene Listeria monocytogenes has been considered a significant threat to human health worldwide. It mainly infects individuals suffering insuffecint immunity such as pregnant women. During pregnancy, L. monocytogenes is capable of causing a serious damage to the mother and the fetus. It can spread to different organs including the placenta via adaptation to interacellular lifestyle. To maintain pregnancy, the levels of the hormones progesterone and β-estradiol increase and reduction in hormone levels was proposed to be associated with fetal death and abortion. The objectives of this project therefore were to investigate the role of pregnancy hormones on the growth and virulence of L. monocytogenes, and to identify bacterial genes with possible roles in binding to pregnancy hormones. It was obsereved that the growth of L. monocytogenes in the presence of progesterone under anaerobic condition was affected by the action of the hormone and the effect was dose/time-dependent of exposure as increasing concentrations showed greater effect on the bacterial growth. Interestingly, bacterial growth was restored within 24 h of exposure to the hormone. In parallel, a Tn917-LTV3 insertion library was constructed and a number of mutants isolated that had reduced growth in the presence of β-estradiol were identified. However, reduction in growth was not microbiologically significant. Furthermore, bioinformatics analysis was performed to identify listerial genes with possible role in hormones degradation. -
Cross-Resistance to Phage Infection in Listeria Monocytogenes Serotype 1/2A Mutants and Preliminary Analysis of Their Wall Teichoic Acids
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2019 Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids Danielle Marie Trudelle University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Trudelle, Danielle Marie, "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5512 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Danielle Marie Trudelle entitled "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Food Science. Thomas G. Denes, Major Professor We have read this thesis and recommend its acceptance: -
Identification, Properties, and Application of Enterocins Produced by Enterococcal Isolates from Foods
IDENTIFICATION, PROPERTIES, AND APPLICATION OF ENTEROCINS PRODUCED BY ENTEROCOCCAL ISOLATES FROM FOODS THESIS Presented in Partial Fulfillment of the Requirement for the Degree Master of Science in the Graduate School of The Ohio State University By Xueying Zhang, B.S. ***** The Ohio State University 2008 Master Committee: Approved by Professor Ahmed E. Yousef, Advisor Professor Hua Wang __________________________ Professor Luis Rodriguez-Saona Advisor Food Science and Nutrition ABSTRACT Bacteriocins produced by lactic acid bacteria have gained great attention because they have potentials for use as natural preservatives to improve food safety and stability. The objectives of the present study were to (1) screen foods and food products for lactic acid bacteria with antimicrobial activity against Gram-positive bacteria, (2) investigate virulence factors and antibiotic resistance among bacteriocin-producing enterooccal isolates, (3) characterize the antimicrobial agents and their structural gene, and (4) explore the feasibility of using these bacteriocins as food preservatives. In search for food-grade bacteriocin-producing bacteria that are active against spoilage and pathogenic microorganisms, various commercial food products were screened and fifty-one promising Gram-positive isolates were studied. Among them, fourteen food isolates with antimicrobial activity against food-borne pathogenic bacteria, Listeria monocytogenes and Bacillus cereus, were chosen for further study. Based on 16S ribosomal RNA gene sequence analysis, fourteen food isolates were identified as Enterococcus faecalis, and these enterococcal isolates were investigated for the presence of virulence factors and antibiotic resistance through genotypic and phenotypic screening. Results indicated that isolates encoded some combination of virulence factors. The esp gene, encoding extracellular surface protein, was not detected in any of the isolates. -
Thesis Listeria Monocytogenes and Other
THESIS LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN SMALL AND VERY SMALL READY-TO-EAT MEAT PROCESSING PLANTS Submitted by Shanna K. Williams Department of Animal Sciences In partial fulfillment of the requirements for the degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2010 Master’s Committee: Department Chair: William Wailes Advisor: Kendra Nightingale John N. Sofos Doreene Hyatt ABSTRACT OF THESIS DETECTION AND MOLECULAR CHARACTERIZATION OF LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN THE PROCESSING PLANT ENVIRONMENT Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne disease associated with a high case fatality rate. To prevent product contamination with L. monocytogenes, it is crucial to understand Listeria contamination patterns in the food processing plant environment. The aim of this study was to monitor Listeria contamination patterns for two years in six small or very small ready-to-eat (RTE) meat processing plants using a routine combined cultural and molecular typing program. Each of the six plants enrolled in the study were visited on a bi-monthly basis for a two-year period where samples were collected, microbiologically analyzed for Listeria and isolates from positive samples were characterized by molecular subtyping. Year one of the project focused only on non-food contact environmental samples within each plant, and year two focused again on non-food contact environmental samples as well as food contact surfaces and finished RTE meat product samples from participating plants. Between year one and year two of sampling, we conducted an in-plant training session ii involving all employees at each plant. -
Detección De Listeria Monocytogenes En Bovinos Y Ambientes De Predios
UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados DETECCIÓN DE LISTERIA MONOCYTOGENES EN BOVINOS Y AMBIENTE DE PREDIOS LECHEROS Estudio En Establecimientos Del Departamento De Paysandú Y En Un Caso Confirmado de Listeriosis Nerviosa CAROLINA MATTO ROMERO TESIS DE MAESTRÍA EN SALUD ANIMAL URUGUAY 2016 UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA Programa de Posgrados DETECCIÓN DE LISTERIA MONOCYTOGENES EN BOVINOS Y AMBIENTE DE PREDIOS LECHEROS Estudio En Establecimientos Del Departamento De Paysandú Y En Un Caso Confirmado de Listeriosis Nerviosa CAROLINA MATTO ROMERO R. Rivero DMV, MSc G. Varela MD, MSc, PhD R. Gianneechini, DMTV, MSc Director de Tesis Co-director Co-director 2016 INTEGRACIÓN DEL TRIBUNAL DE DEFENSA DE TESIS Pablo Zunino; DMV, MS, PhD Instituto de Investigaciones Biológicas “Clemente Estable” Ministerio de Educación y Cultura – Uruguay Franklin Riet-Correa; DMV, MS, PhD Instituto Nacional de Investigación Agropecuaria – Uruguay José Piaggio; DMTV, MS Facultad de Veterinaria Universidad de la República - Uruguay 2016 ACTA DE DEFENSA DE TESIS INFORME DEL TRIBUNAL AGRADECIMIENTOS En primer lugar, quiero expresar mi gratitud a mis Tutores: Rodolfo Rivero, Edgardo Gianneechini y Gustavo Varela por su constante apoyo, consejos, enseñanzas y tiempo brindado a lo largo del trabajo. A la Facultad de Veterinaria de la Universidad de la República, por el financiamiento del trabajo de investigación a través de la beca CSIC-PLANISA “Programa de Fortalecimiento de la Investigación de Calidad en Salud Animal”. Al Laboratorio de Bacteriología y Virología del Instituto de Higiene “Profesor Arnoldo Berta” de la Facultad de Medicina, Universidad de la República, por el apoyo al trabajo de laboratorio. -
UK Standards for Microbiology Investigations
UK Standards for Microbiology Investigations Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 3 | Issue no: 3.1 | Issue date: 29.10.14 | Page: 1 of 29 © Crown copyright 2014 Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- -
Listeria Costaricensis Sp. Nov. Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, Javier Pizarro-Cerdá, Marc Lecuit
Listeria costaricensis sp. nov. Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, Javier Pizarro-Cerdá, Marc Lecuit To cite this version: Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, et al.. Listeria costaricensis sp. nov.. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2018, 68 (3), pp.844-850. 10.1099/ijsem.0.002596. pasteur-02320001 HAL Id: pasteur-02320001 https://hal-pasteur.archives-ouvertes.fr/pasteur-02320001 Submitted on 18 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Listeria costaricensis sp. nov. Kattia Núñez-Montero1,*, Alexandre Leclercq2,3,4*, Alexandra Moura2,3,4*, Guillaume Vales2,3,4, Johnny Peraza1, Javier Pizarro-Cerdá5,6,7#, Marc Lecuit2,3,4,8# 1 Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica 2 Institut Pasteur, -
Listeria Monocytogenes Numa Queijaria
Estudo das vias de contaminação de Listeria monocytogenes numa queijaria PFGE, serotipagem, WGS e resistência a desinfetantes Mestrado em Inovação e Qualidade na Produção Alimentar Ana Rita Simões Ferraz Orientadores Cristina Maria Baptista Santos Pintado Carla Maria Heliodoro Maia Relatório de estágio apresentado à Escola Superior Agrária do Instituto Politécnico de Castelo Branco e ao Instituto Nacional de Saúde Doutor Ricardo Jorge para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Inovação e Qualidade na Produção Alimentar, realizada sob a orientação científica da Doutora Cristina Maria Baptista Santos Pintado, Professora Adjunta da Escola Superior Agrária do Instituto Politécnico de Castelo Branco e da Mestre Carla Maria Heliodoro Maia Técnica Superior do Laboratório de Microbiologia, Departamento de Alimentação e Nutrição do Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P.-Lisboa Junho 2017 II Composição do júri Presidente do júri Doutor, Celestino António Morais de Almeida, Professor Coordenador da Escola Superior Agrária de Castelo Branco Vogais Orientadores: Doutora, Cristina Maria Baptista Santos Pintado, Professora Adjunta da Escola Superior Agrária de Castelo Branco. Mestre, Carla Maria Heliodoro Maia, Técnica Superior no Instituto Nacional de Saúde Doutor Ricardo Jorge. Arguentes: Doutor, João Pedro Martins da Luz, Professor Coordenador da Escola Superior Agrária de Castelo Branco. Doutor, Manuel Vicente de Freitas Martins, Professor Coordenador da Escola Superior Agrária de Castelo Branco. III IV Dedicatória Eu, Ana Rita Simões Ferraz dedico o presente trabalho aos meus pais por todo o trabalho, dedicação, carinho e amor com que me educaram e fizeram de mim a pessoa que sou hoje. Em especial à minha mãe, por ser a enorme Mulher que é, que me faz crescer e lutar pelos meus sonhos. -
Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities
microorganisms Article Predominance of Distinct Listeria Innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities Irene Kaszoni-Rückerl 1,2, Azra Mustedanagic 3, Sonja Muri-Klinger 1, Katharina Brugger 4, Karl-Heinz Wagner 2, Martin Wagner 1,3 and Beatrix Stessl 1,* 1 Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; [email protected] (I.K.-R.); [email protected] (S.M.-K.); [email protected] (M.W.) 2 Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; [email protected] 3 Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFOQSI), Technopark C, 3430 Tulln, Austria; azra.mustedanagic@ffoqsi.at 4 Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-1-250-773-502 Received: 18 November 2019; Accepted: 6 February 2020; Published: 10 February 2020 Abstract: The genus Listeria now comprises up to now 21 recognized species and six subspecies, with L. monocytogenes and L. innocua as the most prevalent sensu stricto associated species. Reports focusing on the challenges in Listeria detection and confirmation are available, especially from food-associated environmental samples. -
A Critical Review on Listeria Monocytogenes
International Journal of Innovations in Biological and Chemical Sciences, Volume 13, 2020, 95-103 A Critical Review on Listeria monocytogenes Vedavati Goudar and Nagalambika Prasad* *Department of Microbiology, Faculty of Life Science, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, Pin code: 570015, India ABSTRACT Listeria monocytogenes is an omnipresent gram +ve, rod shaped, facultative, and motile bacteria. It is an opportunistic intracellular pathogenic microorganism that has become crucial reason for human food borne infections worldwide. It causes Listeriosis, the disease that can be serious and fatal to human and animals. Listeria outbreaks are often linked to dairy products, raw vegetables, raw meat and smoked fish, raw milk. The most effected country by Listeriosis is United States. CDC estimated that 1600 people get Listeriosis annually and regarding 260 die. It additionally contributes to negative economic impact because of the value of surveillance, investigation, treatment and prevention of sickness. The analysis of food products for presence of pathogenic microorganisms is one among the fundamental steps to regulate safety of food. This article intends to review the status of its introduction, characteristics, outbreaks, symptoms, prevention and treatment, more importantly to controlling the Listeriosis and its safety measures. Keywords: Listeria monocytogenes, Listeriosis, Food borne pathogens, Contamination INTRODUCTION Food borne health problem is outlined by the World Health Organization as “diseases, generally occurs by either infectious or hepatotoxic in nature, caused by the agents that enter the body through the activity of food WHO 2015 [1]. Causes of food borne health problem include bacteria, parasites, viruses, toxins, metals, and prions [2].