Implementing Integrated Pest Management in Commercial Lawn

Total Page:16

File Type:pdf, Size:1020Kb

Implementing Integrated Pest Management in Commercial Lawn URBAN LAWN MANAGEMENT: ADDRESSING THE ENTOMOLOGICAL, AGRONOMIC, ECONOMIC, AND SOCIAL DRIVERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ALFRED ALUMAI, B.S., M.S. ***** The Ohio State University 2008 Dissertation Committee: Dr. Parwinder S. Grewal, Advisor Dr. David J. Shetlar Dr. David S. Gardner Dr. Joseph Kovach Approved by _____________________________ Advisor Graduate Program in Entomology i Copyright by Alfred Alumai 2008 i ABSTRACT Turfgrass lawns are an integral part of urban areas across the United States. Lawn management is, however, often viewed as an input intensive system, with growing concerns over potential health and environmental hazards from fertilizers and pesticides. Use of these inputs may be reduced by using environmentally-friendly alternatives and following integrated pest management (IPM) approaches. Unfortunately, alternatives have not been widely adopted because of limited information regarding their effectiveness and the perception that they are expensive. This study was conducted to: 1) examine the role of endophytes, mowing height and mowing frequency on competition between turfgrasses and weeds, 2) compare aesthetic (lawn quality), biological (weed and insect), and economic (lawn management cost) attributes of commercial, consumer, IPM, organic, and untreated lawn management programs, and 3) implement IPM in professional lawn care by comparing biological, ii aesthetic, and economic parameters of standard program and IPM programs managed by a professional lawn care operator. My results show that perennial ryegrass (PR) plots had significantly higher weed cover than tall fescue (TF) plots. Turfgrass plots with high levels of endophytes had significantly lower weed cover than plots with low levels of endophytes. However, plots high levels of endophytes had significantly higher dandelion cover than those with low levels of endophytes. Mowing height had a significant impact on weed cover. In general, plots mowed at 5 cm had significantly higher weed cover than plots mowed at 8.9 cm. I also found that weed cover was lowest in the commercial program followed by IPM, organic, and consumer programs. The commercial program had lower white grub density than all other programs, while the organic program had lower white grub density than the untreated program. The commercial program had the highest lawn quality while the untreated program had the lowest. The IPM and organic programs did not differ significantly in lawn quality, but both rated significantly higher than the consumer program. Annual costs were highest in the commercial ($382) followed by organic iii ($305), IPM ($252), and consumer program ($127), respectively. My results also show that the IPM program had significantly more lawns with weeds than the standard program in 2005 and 2006. However, 21% and 0% of IPM lawns required herbicide applications in 2005 and 2006, respectively. The IPM program also had significantly more lawns with insect damage than the standard program in June 2005 and August 2005, but not September 2005 and throughout 2006. Only 28% and 0% of IPM lawns required insecticide applications in 2005 and 2006, respectively. All standard program lawns received herbicide and insecticide application in both years. Lawn quality was significantly higher for standard program than for IPM program lawns in 2005, and June 2006 and September 2006, but not August 2006. Annual cost was lower for the IPM program ($282) than the standard program ($458). Thirty one percent of the IPM program customers cited satisfaction for continuing with the program in 2006. Among those who did not continue with the program in 2006, 33% cited weed or insect problems, while 33% expected better results. These results provide useful information for the development of lawn management programs in urban landscapes. iv This dissertation is dedicated to family: Aurelia, Emilio, Elizabeth, Denis, Harriet, Ivan, Alex, Anne, Saviour, Carol, and Felix, for all their support and advice while in pursuit of this degree. Thank you all. v ACKNOWLEDGMENTS I would like to thank all the people who were instrumental in helping me achieve the objectives of this dissertation. First and foremost, I wish to thank my adviser, Dr. Parwinder S. Grewal for his encouragement and intellectual support, which made this dissertation possible. I am grateful to my advisory committee members; Dr. David J. Shetlar, Dr. David S. Gardner, and Dr. Joseph Kovach for invaluable suggestions, guidance, time and patience that helped improve this dissertation. I thank Mr. Mark Grunkemeyer of Buckeye Ecocare for giving me the opportunity to work with him. I also thank the staff at Buckeye Ecocare for all the help and courtesy they provided me during part of my studies. I am indebted to Dr. Seppo O. Salminen, Dr. Douglas S. Richmond, and Dr. John Cardina, for all their technical support throughout the course of my studies. vi I wish to thank all the members in Dr. Grewal’s laboratory who supported me in one way or another during the course of my studies, especially Kevin T. Power, Dr. Ganpati Jagdale, Dr. Zhiqiang Cheng, Dr. Jay Saimandir, Dr. Xiaodong Bai, Dr. Ruisheng An, Lisa Miller, Elizabeth Erin Morris, Hanbae Yang, Sunjeong Park, Priyanka Yadav, Harit Kaur Bal, and Patchareewan Maneesakorn. I also wish to express my gratitude to all faculty and staff of the Department of Entomology at the Ohio State University for all the assistance they offered me during my time at the Ohio State University. vii VITA August 8, 1973 ...................................Born – Moyo, Uganda. 2000....................................................B.S. Agriculture, Makerere University, Uganda. Makerere University, Kampala, Uganda 2004....................................................M.S. The Ohio State University, Columbus, Ohio, USA 2005-present .......................................Graduate Research and Teaching Associate, The Ohio State University, Columbus, Ohio, USA PUBLICATIONS Research Publications Alumai, A., Salminen, S.O., Richmond, D.S., Cardina, J. and Grewal, P.S. 2008. Comparative evaluation of aesthetic, biological, and economic effectiveness of different lawn management programs. Urban Ecosystems. Alumai, A., Grewal, P.S., Hoy, C.W. and Willoughby, D.A. 2006. Factors affecting the natural occurrence of entomopathogenic nematodes in turfgrass. Biological Control 36, 368-374. Kaya, H.K, M.M. Aguillera, M.M, Alumai, A. et. al. 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control 38, 134–155. viii Alumai, A. and Grewal, P.S., 2004. Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Science and Technology 14, 725-730. FIELDS OF STUDY Major Field: Entomology ix TABLE OF CONTENTS Page Abstract ............................................................................................................................... ii Dedication ............................................................................................................................v Acknowledgments.............................................................................................................. vi Vita ................................................................................................................................... viii List of Tables ................................................................................................................... xiv List of Figures ................................................................................................................ xviii Chapters: 1. Introduction ..............................................................................................................1 1.1 Turfgrass and its importance ..............................................................................1 1.2 Management of turfgrass lawns .........................................................................5 1.3 Study significance and objectives ......................................................................9 1.4 References ........................................................................................................13 x 2. Competition between Turfgrasses and Weeds: The Role of Endophytes, Mowing Height and Mowing Frequency .............................................................................17 Abstract ..................................................................................................................17 2.1 Introduction ......................................................................................................19 2.2 Materials and methods .....................................................................................23 2.2.1 Pre-establishment seed treatment ......................................................23 2.2.2 Site description and field layout .......................................................24 2.2.3 Data collection and analysis ..............................................................26 2.3 Results ..............................................................................................................27 2.4 Discussion ........................................................................................................32 2.5 Acknowledgements ..........................................................................................36
Recommended publications
  • Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses Brachiaria Spp
    University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses Brachiaria spp. in Kenya Sita R. Ghimire International Livestock Research Institute, Kenya Joyce Njuguna International Livestock Research Institute, Kenya Leah Kago International Livestock Research Institute, Kenya Monday Ahonsi International Livestock Research Institute, Kenya Donald Njarui Kenya Agricultural & Livestock Research Organization, Kenya Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/2-2-1/6 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Paper ID: 435 Theme: 2. Grassland production and utilization Sub-theme: 2.2. Integration of plant protection to optimise production
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Cytogeography of Glechoma Hederacea Subsp. Grandis (Labiatae) in Japan
    © 2010 The Japan Mendel Society Cytologia 75(3): 255–260, 2010 Cytogeography of Glechoma hederacea subsp. grandis (Labiatae) in Japan Norihito Miura and Yoshikane Iwatsubo* Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930–8555, Japan Received February 26, 2010; accepted August 28, 2010 Summary In this study, we examined the chromosomal number for Glechoma hederacea subsp. grandis in a total of 1,030 specimens collected from different distribution areas in Japan. We found that G. hederacea subsp. grandis could be categorized into 3 cytotypes with 2nϭ36 (tetraploid), 2nϭ45 (pentaploid) and 2nϭ54 (hexaploid) chromosomes. Tetraploid plants were found throughout different areas in Japan; however, hexaploid plants were mainly distributed in central Honshu, Shikoku and Kyushu. Likewise, pentaploid plant distribution was found to overlap with hexaploid plant distribution areas. The pentaploid plant group appeared only in regions common to both tetraploid and hexaploid plants. All 3 cytotypes were found to have karyotypes which could be represented by the following equations: A) 6Mϩ4mϩ18smϩ8st for tetraploids, B) 6Mϩ15mϩ19smϩ5st for pentaploids, and C) 6Mϩ26mϩ20smϩ2st for hexaploids. Pentaploid specimen karyotypes had half the tetraploid and half the hexaploid chromosomal set, indicating that this specimen was a hybrid between tetraploid and hexaploid plants. Key words Geographic distribution, Glechoma hederacea subsp. grandis, Hybrid, Karyotype, Polyploidy. Glechoma L. (Labiatae), distributed across north temperate zones in Eurasia, is a small genus with 4 to 8 species (Budantsev 2004). One of its species, G. hederacea L., has a wide distribution range occurring spontaneously throughout Eurasia. Furthermore, this species can be divided into subsp. hederacea distributed in Europe, and subsp.
    [Show full text]
  • Antibacterial Activities of Crude Secondary Metabolite Extracts From
    International Journal of Environmental Research and Public Health Article Antibacterial Activities of Crude Secondary Metabolite Extracts from Pantoea Species Obtained from the Stem of Solanum mauritianum and Their Effects on Two Cancer Cell Lines Nkemdinma Uche-Okereafor 1,*, Tendani Sebola 1, Kudzanai Tapfuma 1 , Lukhanyo Mekuto 2, Ezekiel Green 1 and Vuyo Mavumengwana 3,* 1 Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa; [email protected]; (T.S.); [email protected] (K.T.); [email protected] (E.G.) 2 Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa; [email protected] 3 South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa * Correspondence: [email protected] (N.U.); [email protected] (V.M.); Tel: +27-83-974-3907 (N.U.); +27-21-938-9952 (V.M.) Received: 17 January 2019; Accepted: 14 February 2019; Published: 19 February 2019 Abstract: Endophytes are microorganisms that are perceived as non-pathogenic symbionts found inside plants since they cause no symptoms of disease on the host plant. Soil conditions and geography among other factors contribute to the type(s) of endophytes isolated from plants. Our research interest is the antibacterial activity of secondary metabolite crude extracts from the medicinal plant Solanum mauritianum and its bacterial endophytes. Fresh, healthy stems of S. mauritianum were collected, washed, surface sterilized, macerated in PBS, inoculated in the nutrient agar plates, and incubated for 5 days at 30 ◦C.
    [Show full text]
  • Invasive Landscape Plants in Arkansas
    Invasive Landscape Plants in Arkansas Janet B. Carson Extension Horticulture Specialist Not all Landscape Plants are invasive Invasive plants are not all equally invasive. An invasive plant has the ability to thrive and spread aggressively outside its natural range. Top 10 Arkansas Landscape Invasives Alphabetically 1. Bamboo Phyllostachys species 2. Bradford Pears Pyrus calleryana ‘Bradford’ They are coming up everywhere! 3. English Ivy Hedera helix 4. Japanese Honeysuckle Lonicera japonica 5. Kudzu Pueraria montana 6. Mimosa Albizia julibrissin 7. Privet Ligustrum sinense Privet is the most invasive plant in Arkansas! 8. Running Monkey Grass Liriope spicata 9. Large leaf vinca Vinca major 10. Wisteria Wisteria floribunda Other Invasive Landscape Plants The following plants have been invasive in some landscape situations, and should be used with caution. They are more invasive under certain soil and weather conditions. Bishop’s Weed Aegopodium podagraria Ajuga Ajuga reptans Garlic Chives Allium tuberosum Devil’s Walking Stick Aralia spinosa Ardisia Ardisia japonica Artemesia Artemisia vulgaris Artemisia absinthium 'Oriental Limelight' Trumpet Creeper Campsis radicans Sweet Autumn Clematis Clematis terniflora Mexican Hydrangea Clereodendron bungei Wild Ageratum Conoclinium coelestinum Queen Ann’s Lace Daucus carota Russian Olive Elaeagnus angustifolia Horsetail - Scouring Rush Equisetum hyemale Wintercreeper Euonymus Euonymus fortunei Carolina Jessamine Gelsemium sempervirens Ground Ivy Glechoma hederacea Chameleon Plant Houttuynia cordata
    [Show full text]
  • A Review on Insect Control and Recent Advances on Tropical Plants
    EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.3 No.1, Issue of April 15, 2000. © 2000 by Universidad Católica de Valparaíso -- Chile Received January 20, 2000 / Accepted February 28, 2000. REVIEW ARTICLE Endophytic microorganisms: a review on insect control and recent advances on tropical plants João Lúcio Azevedo* Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo P. O. Box 83, 13400-970 Piracicaba, São Paulo, Brazil Núcleo Integrado de Biotecnologia Universidade de Mogi das Cruzes Mogi das Cruzes, São Paulo, Brazil. Tel: 55-19-429-4251, Fax: 55-19-433-6706 E-mail : [email protected] Walter Maccheroni Jr. Escola Superior de Agricultura "Luiz de Queiroz " Universidade de São Paulo P. O. Box 83, 13400-970 Piracicaba, São Paulo, Brazil E-mail: [email protected] José Odair Pereira Faculdade de Ciências Agrárias Universidade do Amazonas Campus Universitário, 69077-000 Manaus, Amazonas, Brazil E-mail: [email protected] Welington Luiz de Araújo Escola Superior de Agricultura "Luiz de Queiroz " Universidade de São Paulo P. O. Box 83, 13400-970 Piracicaba, São Paulo, Brazil E-mail: [email protected] Keywords : Biological control, Endophytic bacteria, Endophytic fungi, Insect-pests, Tropical endophytes. In the past two decades, a great deal of information on medicinal plants among others. the role of endophytic microorganisms in nature has been collected. The capability of colonizing internal host tissues has made endophytes valuable for agriculture as The natural and biological control of pests and diseases a tool to improve crop performance. In this review, we affecting cultivated plants has gained much attention in the addressed the major topics concerning the control of past decades as a way of reducing the use of chemical insects-pests by endophytic microorganisms.
    [Show full text]
  • A Symbiosis Between a Dark Septate Fungus, an Arbuscular Mycorrhiza, and Two Plants Native to the Sagebrush Steppe
    A SYMBIOSIS BETWEEN A DARK SEPTATE FUNGUS, AN ARBUSCULAR MYCORRHIZA, AND TWO PLANTS NATIVE TO THE SAGEBRUSH STEPPE by Craig Lane Carpenter A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Boise State University August 2020 Craig Lane Carpenter SOME RIGHTS RESERVED This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Craig Lane Carpenter Thesis Title: A Symbiosis Between A Dark Septate Fungus, an Arbuscular Mycorrhiza, and Two Plants Native to the Sagebrush Steppe Date of Final Oral Examination: 28 May 2020 The following individuals read and discussed the thesis submitted by student Craig Lane Carpenter, and they evaluated their presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Marcelo D. Serpe, Ph.D. Chair, Supervisory Committee Merlin M. White, Ph.D. Member, Supervisory Committee Kevin P. Feris, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Marcelo D. Serpe, Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. DEDICATION I dedicate this work to my parents, Tommy and Juliana Carpenter, for their love and support during the completion of this work, for my life as well as the Great Basin Desert for all its inspiration and lessons. iv ACKNOWLEDGMENTS With open heart felt gratitude I would like to thank my committee for all their support and guidance.
    [Show full text]
  • New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12
    New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12 Fence Row Plectranthus Mona Lavender Greenhouse Row Split Leaf Philodendron Philodendron bipinnatifidum Crepe Ginger Costus speciosus Chinese Rain Bells Strobilanthes hamiltoniana Velvet Stepladder Ginger Costus malortieanus Dwarf Elephant Ear Colocasia fallax ‘Silver Dollar’ Costus erythrophyllus Imperial Taro Colocasia antiquorum ‘Illustris’ Costus ‘Green Mountain’ Angel Trumpet Brugmansia ‘Charles Grimaldi’ Orange Tulip Ginger Costus curvibracteatus Little White Soldiers Drimiopsis maculata Turmeric Costus longa Dorstenia contrajerva Curcuma hybrid ‘Choco Zebra Red’ Dusty Thalia Thalia dealbata Curcuma ‘Ribbon’ Chinese Taro Alocasia cucullata Curcuma ‘Purple Garden’ Indigo Indigofera decora Curcuma ‘Emperor’ Valerian Valerian officinalis Yellow Dancing Girl Globba schomburgkii Variegated Peppermint Scented Geranium Strap-leaf Ginger Stahlianthes involucratus Pseuderanthemum ‘Texas Tri-Star’ Purple Globe Ginger Globba globulifera Cocoa Plant Theobroma cacao Cat Palm Chamaedorea cataractarum Oyster Plant Tradescantia spathacea Assorted Ti Plants Red Buckeye Aesculus pavia Basket Plant Callisia fragrans Dianthera Dianthera nodosa ‘Pretty in Pink’ Asian Crocus Kaempferia rotunda Cuban Oregano Plectranthus amboinicus Aspidistra Milky Way Aspidistra elatior ‘Milky Way’ Southern Swamp Lily Crinum americanum Perilla ‘Magilla’ Bush Willow Salix integra ‘Hakuro Nishiki’ Mickey Mouse Taro Xanthosoma atrovirens Indigo Spires Sage Salvia ‘Indigo Spires’
    [Show full text]
  • “Friendly” Endophyte-Infected Tall Fescue for Livestock Production
    Agriculture and Natural Resources FSA2140 “Friendly” Endophyte-Infected Tall Fescue for Livestock Production John A. Jennings Introduction Cattle suffering from fescue Extension Livestock toxicosis retain rough hair coats Specialist - Forages Tall fescue is the major cool- (Figure 1), exhibit heat stress during season perennial forage in Arkansas warm periods (Figure 2) and suffer Charles P. West and much of the southeastern U.S. losses of ear tips and tail switches Professor, Department Tall fescue is widely grown throughout during cool periods (Figure 3). Losses of Crop, Soil and Arkansas because of its persistence, in cattle production due to fescue Environmental Sciences ease of management and long growing toxicosis have been estimated at season. Most tall fescue in this region is $50 million annually in Arkansas. Steven M. Jones infected with a fungus that produces livestock Extension Horse toxins called ergot Specialist alkaloids. This fungus (endophyte) lives within the tall fescue plant, improving its drought tolerance and stand persistence on poor soils. Therefore, there is still widespread use of toxic tall fescue in Arkansas, consisting mainly of the variety Kentucky-31. Consumption of toxic endophyte-infected (E+) tall fescue depresses body condition, reproduction and milk production in cows and weaning weights in calves. These problems are collectively called “fescue toxicosis.” Grazing toxic E+ tall fescue pastures or consuming Arkansas Is toxic E+ tall fescue hay Our Campus decreases forage intake, lowers average daily gain and alters hormone con­ Visit our web site at: centrations in cattle and Figure 1. Rough hair coats on cattle grazing toxic endophyte-infected tall fescue. https://www.uaex.uada.edu other livestock species.
    [Show full text]
  • Evolution of Endophyte–Plant Symbioses
    Opinion TRENDS in Plant Science Vol.9 No.6 June 2004 Evolution of endophyte–plant symbioses Kari Saikkonen1, Piippa Wa¨ li2, Marjo Helander2 and Stanley H. Faeth3 1MTT Agrifood Research Finland, Plant Production Research, Plant Protection, FIN-31600 Jokioinen, Finland 2Section of Ecology, Department of Biology, FIN-20014 University of Turku, Finland 3Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA All fungi invading plant foliage have an asymptomatic Forces driving fungus–plant interactions period in their life cycle that varies from an imper- Like other host–parasite or host–predator, or host– ceptibly short period (e.g. pathogens) to a lifetime mutualist interactions, endophyte–plant interactions (e.g. Neotyphodium endophytes in grasses). Endo- project to the ecological surface of a dynamic fitness phytic fungus–grass associations are generally treated landscape with adaptive peaks and valleys occupied by the separately from parasitic, pathogenic and saprophytic most and least fit fungus–plant genotype combinations interactions and are viewed as mutualistic associations. within a population [9–11]. Highly integrated and However, endophyte–host interactions are based on specialized symbioses require well-matched architectural, mutual exploitation. Benefits to the partners are rarely morphological, physiological and life history traits of the symmetric and conflicting selection forces are likely to fungus and of the host plant to evolve and persist [5,9].In destabilize them. Unanswered questions are how (i) simplified agro-ecosystems, traits related to defensive genetic diversity of the fungus and phenotypic plasticity plant mutualism can provide a selective advantage to in fungal life history traits, (ii) genetic combinations the host plant, leading to highly integrated symbioses [12].
    [Show full text]
  • Endophyte Mediated Plant-Herbivore Interactions Or Cross Resistance to Fungi and Insect Herbivores?
    Endophyte mediated plant-herbivore interactions or cross resistance to fungi and insect herbivores? Kari Saikkonen E-mail: [email protected] DEFINITION • Wilson 1995: “Endophytes are fungi or bacteria which, for all or part of their life cycle, invade the tissues of living plants and cause unapparent and asymptomatic infections entirely within plant tissues but cause no symptoms of disease” => Includes * Latent pathogens * Dormant saprophytes FUNGAL ENDOPHYTES “Fescue toxicosis” 1948 (New Zealand) 1950 (USA) Bacon, C. W., Porter, J. K., Robbins, J. D. and Luttrell, E. S. (1977). Epichloë typhina from toxic tall fescue grasses. Applied and Environmental Microbiology 34: 576-581. MUTUALISM AS PREVAILING CONCEPTUAL FRAMEWORK Endophytes increase plant resistance against herbivores??? <=> Clay, K. 2009. Defensive mutualism and grass endophytes: still valid after all these years? In: Defensive mutualism in symbiotic association (eds. M. Torres. and J.F. Jr. White). Taylor and Francis Publications: 9-20. FUNGAL ENDOPHYTES Also tree endophytes attracted increasing attention with a ten years delay (see e.g. Special Feature of Ecology in 1988, vol 69: “Endophyte Mutualism and Plant Protection from Herbivores”). Horizontally transmitted tree endophytes were described as “inducible mutualists” whilst vertically transmitted grass enodophytes were considered “constitutive mutualists” (Carroll 1988) ~7% ~17% ~4% Trees can not escape endophyte infections No E- trees in nature! Saikkonen (2007) Biologically significant? Fungal Biology Reviews 21/2-3:
    [Show full text]
  • Endophytic Hyphal Compartmentalization Is Required for Successful Symbiotic Ascomycota Association with Root Cells
    ARTICLE IN PRESS MYCRES554_proof 11 March 2009 1/10 mycological research xxx (2009) 1–10 1 58 2 59 3 60 4 61 5 62 6 journal homepage: www.elsevier.com/locate/mycres 63 7 64 8 65 9 Endophytic hyphal compartmentalization is required for 66 10 67 11 68 Q1 successful symbiotic Ascomycota association with root cells 12 69 13 70 a,c c b a, 14 Lobna ABDELLATIF , Sadok BOUZID , Susan KAMINSKYJ , Vladimir VUJANOVIC * 71 15 72 aDepartment of Food and Bioproduct Sciences, University of Saskatchewan, 51 College Drive, Saskatoon, SK S7N 5A8, Canada 16 b 73 Q2 Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada 17 cTunis El Manar University, Tunis 1060, Tunisia 74 18 75 19 76 20 article info abstract 77 21 78 22 Article history: Root endophytic fungi are seen as promising alternatives to replace chemical fertilizers 79 23 Received 8 January 2009 and pesticides in sustainable and organicPROOF agriculture systems. Fungal endophytes struc- 80 24 Accepted 24 February 2009 ture formations play key roles in symbiotic intracellular association with plant-roots. To 81 25 Corresponding Editor: John Dighton compare the morphologies of Ascomycete endophytic fungi in wheat, we analyzed growth 82 26 morphologies during endophytic development of hyphae within the cortex of living vs. 83 27 Keywords: dead root cells. Confocal laser scanning microscopy (CLSM) was used to characterize fungal 84 28 Ascomycota cell morphology within lactofuchsin-stained roots. Cell form regularity Ireg and cell growth 85 29 Cell compartmentalization direction Idir, indexes were used to quantify changes in fungal morphology.
    [Show full text]