Particularly Hazardous Substances Definitions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exposure to Carcinogens and Work-Related Cancer: a Review of Assessment Methods
European Agency for Safety and Health at Work ISSN: 1831-9343 Exposure to carcinogens and work-related cancer: A review of assessment methods European Risk Observatory Report Exposure to carcinogens and work-related cancer: A review of assessment measures Authors: Dr Lothar Lißner, Kooperationsstelle Hamburg IFE GmbH Mr Klaus Kuhl (task leader), Kooperationsstelle Hamburg IFE GmbH Dr Timo Kauppinen, Finnish Institute of Occupational Health Ms Sanni Uuksulainen, Finnish Institute of Occupational Health Cross-checker: Professor Ulla B. Vogel from the National Working Environment Research Centre in Denmark Project management: Dr Elke Schneider - European Agency for Safety and Health at Work (EU-OSHA) Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers, or these calls may be billed. More information on the European Union is available on the Internet ( 48TU http://europa.euU48T). Cataloguing data can be found on the cover of this publication. Luxembourg: Publications Office of the European Union, 2014 ISBN: 978-92-9240-500-7 doi: 10.2802/33336 Cover pictures: (clockwise): Anthony Jay Villalon (Fotolia); ©Roman Milert (Fotolia); ©Simona Palijanskaite; ©Kari Rissa © European Agency for Safety and Health at Work, 2014 Reproduction is authorised provided the source is acknowledged. European Agency for Safety and Health at Work – EU-OSHA 1 Exposure to carcinogens and work-related cancer: -
Carcinogens Are Mutagens
-Proc. Nat. Acad. Sci. USA Vol. 70, No. 8, pp. 2281-2285, August 1973 Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection (frameshift mutagens/aflatoxin/benzo(a)pyrene/acetylaminofluorene) BRUCE N. AMES, WILLIAM E. DURSTON, EDITH YAMASAKI, AND FRANK D. LEE Biochemistry Department, University of California, Berkeley, Calif. 94720 Contributed by Bruce N. Ames, May 14, 1973 ABSTRACT 18 Carcinogens, including aflatoxin Bi, methylsulfoxide (Me2SO), spectrophotometric grade, was ob- benzo(a)pyrene, acetylaminofluorene, benzidine, and di- tained from Schwarz/Mann, sodium phenobarbital from methylamino-trans-stilbene, are shown to be activated by liver homogenates to form potent frameshift mutagens. Mallinckrodt, aflatoxin B1 from Calbiochem, and 3-methyl- We believe that these carcinogens have in common a ring cholanthrene from Eastman; 7,12-dimethylbenz(a)anthracene system sufficiently planar for a stacking interaction with was a gift of P. L. Grover. Schuchardt (Munich) was the DNA base pairs and a part of the molecule capable of being source for the other carcinogens. metabolized to a reactive group: these structural features are discussed in terms of the theory of frameshift muta- Bacterial Strains used are mutants of S. typhimurium LT-2 genesis. We propose that these carcinogens, and many have been discussed in detail others that are mutagens, cause cancer by somatic muta- and (2). tion. A simple, inexpensive, and extremely sensitive test for Source Liver. Male rats (Sprague-Dawley/Bio-1 strain, detection of carcinogens as mutagens is described. It con- of sists of the use of a rat or human liver homogenate for Horton Animal Laboratories) were maintained on Purina carcinogen activation (thus supplying mammalian metab- laboratory chow. -
OECD Guidance Document Number 24: Acute Oral Toxicity Testing
Unclassified ENV/JM/MONO(2001)4 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 23-Jul-2001 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE Unclassified ENV/JM/MONO(2001)4 JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY OECD SERIES ON TESTING AND ASSESSMENT Number 24 GUIDANCE DOCUMENT ON ACUTE ORAL TOXICITY TESTING English - Or. English JT00111082 Document complet disponible sur OLIS dans son format d’origine Complete document available on OLIS in its original format ENV/JM/MONO(2001)4 2 ENV/JM/MONO(2001)4 OECD Environment, Health and Safety Publications Series on Testing and Assessment No 24 GUIDANCE DOCUMENT ON ACUTE ORAL TOXICITY TESTING Environment Directorate ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Paris June 2001 3 ENV/JM/MONO(2001)4 Also published in the Series on Testing and Assessment No. 1, Guidance Document for the Development of OECD Guidelines for Testing of Chemicals (1993; reformatted 1995) No. 2, Detailed Review Paper on Biodegradability Testing (1995) No. 3, Guidance Document for Aquatic Effects Assessment (1995) No. 4, Report of the OECD Workshop on Environmental Hazard/Risk Assessment (1995) No. 5, Report of the SETAC/OECD Workshop on Avian Toxicity Testing (1996) No. 6, Report of the Final Ring-test of the Daphnia magna Reproduction Test (1997) No. 7, Guidance Document on Direct Phototransformation of Chemicals in Water (1997) No. 8, Report of the OECD Workshop on Sharing Information about New Industrial Chemicals Assessment (1997) No. 9, Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application (1997) No. -
Biological Toxins As the Potential Tools for Bioterrorism
International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins. -
AN INTRODUCTION to AQUATIC TOXICOLOGY This Page Intentionally Left Blank ÂÂ an INTRODUCTION to AQUATIC TOXICOLOGY
AN INTRODUCTION TO AQUATIC TOXICOLOGY This page intentionally left blank AN INTRODUCTION TO AQUATIC TOXICOLOGY MIKKO NIKINMAA Professor of Zoology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
Toxicological Profile for Radon
RADON 205 10. GLOSSARY Some terms in this glossary are generic and may not be used in this profile. Absorbed Dose, Chemical—The amount of a substance that is either absorbed into the body or placed in contact with the skin. For oral or inhalation routes, this is normally the product of the intake quantity and the uptake fraction divided by the body weight and, if appropriate, the time, expressed as mg/kg for a single intake or mg/kg/day for multiple intakes. For dermal exposure, this is the amount of material applied to the skin, and is normally divided by the body mass and expressed as mg/kg. Absorbed Dose, Radiation—The mean energy imparted to the irradiated medium, per unit mass, by ionizing radiation. Units: rad (rad), gray (Gy). Absorbed Fraction—A term used in internal dosimetry. It is that fraction of the photon energy (emitted within a specified volume of material) which is absorbed by the volume. The absorbed fraction depends on the source distribution, the photon energy, and the size, shape and composition of the volume. Absorption—The process by which a chemical penetrates the exchange boundaries of an organism after contact, or the process by which radiation imparts some or all of its energy to any material through which it passes. Self-Absorption—Absorption of radiation (emitted by radioactive atoms) by the material in which the atoms are located; in particular, the absorption of radiation within a sample being assayed. Absorption Coefficient—Fractional absorption of the energy of an unscattered beam of x- or gamma- radiation per unit thickness (linear absorption coefficient), per unit mass (mass absorption coefficient), or per atom (atomic absorption coefficient) of absorber, due to transfer of energy to the absorber. -
(Vol 1): in Vitro Cytotoxicity Test Methods for Estimating Acute Oral
In Vitro Cytotoxicity Test Methods for Estimating Acute Oral Systemic Toxicity Background Review Document Volume 1 of 2 Prepared by The National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) National Institute of Environmental Health Sciences (NIEHS) P.O. Box 12233 Mail Drop: EC-17 Research Triangle Park, NC 27709 November 2006 NIH Publication No. 07-4518 National Institute of Environmental Health Sciences National Institutes of Health U.S. Public Health Service Department of Health and Human Services This document is available electronically at: http://iccvam.niehs.nih.gov/methods/invitro.htm Printed: 11/30/2006 In Vitro Cytotoxicity Test Methods BRD Table of Contents November 2006 TABLE OF CONTENTS APPENDICES.................................................................................................................. xiii LIST OF FIGURES .......................................................................................................... xvi LIST OF TABLES...........................................................................................................xvii LIST OF ACRONYMS AND ABBREVIATIONS ...........................................................xx ACKNOWLEDGMENTS................................................................................................ xxv PREFACE........................................................................................................................xxix EXECUTIVE SUMMARY........................................................................................... -
The Dose Makes the Poison
CHAPTER 1 THE DOSE MAKES THE POISON hich would you prefer to drink—a cup of caffeine or a cup of trichloroethylene? Chances are good that your response was “caf- Wfeine.” Caffeine occurs naturally in coffee, tea, and chocolate, and it is added to sodas and other types of drinks and foods. Trichloroethylene, on the other hand, is a solvent used to dissolve grease, and it is also a common ingredient in glues, paint removers, and cleaning fluids. Trichloroethylene does not occur naturally in the environment, but it is sometimes found as a pollut- ant in groundwater and surface water. So, which would be better to drink? Believe it or not, caffeine is more poisonous than trichloroethylene. At low concentrations, caffeine is used as a food additive because of its effects as a stimulant—it helps people to stay awake and to feel lively. However, at concentrations higher than those found in food products, caffeine can cause insomnia, dizziness, headaches, vomit- ing, and heart problems. In studies of laboratory animals, high doses of caf- feine have caused birth defects and cancer. Does this mean you should think twice about reaching for that cup of Toxicity indicates cocoa or tea? No, there’s more to the story than that. What it does mean is how poisonous a that many common substances found in food and drinks are toxic, or poison- substance is to ous, if you eat or drink large enough quantities. The amount of caffeine in a biological organisms. normal human diet does not cause illness, but just 50 times this amount is enough to be fatal. -
Method of Rough Estimation of Median Lethal Dose (Ld50)
b Meta olis g m & ru D T o f x o i Journal of Drug Metabolism and l c a o n l o r Saganuwan, J Drug Metab Toxicol 2015, 6:3 g u y o J Toxicology DOI: 10.4172/2157-7609.1000180 ISSN: 2157-7609 Research Article Open Access Arithmetic-Geometric-Harmonic (AGH) Method of Rough Estimation of Median Lethal Dose (Ld50) Using Up – and – Down Procedure *Saganuwan Alhaji Saganuwan Department of Veterinary Physiology, Pharmacology and Biochemistry, College Of Veterinary Medicine, University Of Agriculture, P.M.B. 2373, Makurdi, Benue State, Nigeria *Corresponding author: Saganuwan Alhaji Saganuwan, Department of Veterinary Physiology, Pharmacology and Biochemistry, College Of Veterinary Medicine, University Of Agriculture, P.M.B. 2373, Makurdi, Benue State, Nigeria, Tel: +2348027444269; E-mail: [email protected] Received date: April 6,2015; Accepted date: April 29,2015; Published date: May 6,2015 Copyright: © 2015 Saganuwan SA . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Earlier methods adopted for the estimation of median lethal dose (LD50) used many animals (40 – 100). But for the up – and – down procedure, 5 – 15 animals can be used, the number I still consider high. So this paper seeks to adopt arithmetic, geometric and harmonic (AGH) mean for rough estimation of median lethal dose (LD50) using up – and – down procedure by using 2 – 6 animals that may likely give 1 – 3 reversals. The administrated doses should be summed up and the mean, standard deviation (STD) and standard error of mean (SEM) should be determined. -
Cancer Cause: Biological, Chemical and Physical Carcinogens
Merit Research Journal of Medicine and Medical Sciences (ISSN: 2354-323X) Vol. 6(9) pp. 303-306, September, 2018 Available online http://www.meritresearchjournals.org/mms/index.htm Copyright © 2018 Merit Research Journals Review Cancer Cause: Biological, Chemical and Physical Carcinogens Asst. Prof. Dr. Chateen I. Ali Pambuk* and Fatma Mustafa Muhammad Abstract College of Dentistry / University of Cancer arises from abnormal changes of cells that divide without control Tikrit and are able to spread to the rest of the body. These changes are the result of the interaction between the individual genetic factors and three *Corresponding Author Email: categories of external factors: a chemical carcinogens, radiation, hormonal [email protected]. imbalance, genetic mutations and genetic factors. Genetic deviation leads to Mobile phone No. 009647701808805 the initiation of the cancer process, while the carcinogen may be a key component in the development and progression of cancer in the future. Although the factors that make someone belong to a group with a higher risk of cancer, the majority of cancers actually occur in people who do not have known factors. The aim of this descriptive mini-review, generally, is to shed light on the main cause of cancer and vital factors in cellular system and extracellular system that may be involved with different types of tumors. Keywords: Cancer, Cancer cause, physical Carcinogens, Chemical carcinogens, biological carcinogens INTRODUCTION Carcinogen is any substance (radioactive or radiation) .Furthermore, the chemicals mostly involve as the that is directly involved in the cause of cancer. This may primary cause of cancer, from which dioxins, such as be due to the ability to damage the genome or to disrupt benzene, kibon, ethylene bipromide and asbestos, are cellular metabolism or both rendering the cell to be classified as carcinogens (IUPAC Recommendations, sensitive for cancer development. -
Small Dose... Big Poison
Traps for the unwary George Braitberg Ed Oakley Small dose... Big poison All substances are poisons; Background There is none which is not a poison. It is not possible to identify all toxic substances in a single The right dose differentiates a poison from a remedy. journal article. However, there are some exposures that in Paracelsus (1493–1541)1 small doses are potentially fatal. Many of these exposures are particularly toxic to children. Using data from poison control centres, it is possible to recognise this group of Poisoning is a frequent occurrence with a low fatality rate. exposures. In 2008, almost 2.5 million human exposures were reported to the National Poison Data System (NPDS) in the United Objective States, of which only 1315 were thought to contribute This article provides information to assist the general to fatality.2 The most common poisons associated with practitioner to identify potential toxic substance exposures in children. fatalities are shown in Figure 1. Polypharmacy (the ingestion of more than one drug) is far more common. Discussion In this article the authors report the signs and symptoms Substances most frequently involved in human exposure are shown of toxic exposures and identify the time of onset. Where in Figure 2. In paediatric exposures there is an over-representation clear recommendations on the period of observation and of personal care products, cleaning solutions and other household known fatal dose are available, these are provided. We do not discuss management or disposition, and advise readers products, with ingestions peaking in the toddler age group. This to contact the Poison Information Service or a toxicologist reflects the acquisition of developmental milestones and subsequent for this advice. -
Radiation and Your Patient: a Guide for Medical Practitioners
RADIATION AND YOUR PATIENT: A GUIDE FOR MEDICAL PRACTITIONERS A web module produced by Committee 3 of the International Commission on Radiological Protection (ICRP) What is the purpose of this document ? In the past 100 years, diagnostic radiology, nuclear medicine and radiation therapy have evolved from the original crude practices to advanced techniques that form an essential tool for all branches and specialties of medicine. The inherent properties of ionising radiation provide many benefits but also may cause potential harm. In the practice of medicine, there must be a judgement made concerning the benefit/risk ratio. This requires not only knowledge of medicine but also of the radiation risks. This document is designed to provide basic information on radiation mechanisms, the dose from various medical radiation sources, the magnitude and type of risk, as well as answers to commonly asked questions (e.g radiation and pregnancy). As a matter of ease in reading, the text is in a question and answer format. Interventional cardiologists, radiologists, orthopaedic and vascular surgeons and others, who actually operate medical x-ray equipment or use radiation sources, should possess more information on proper technique and dose management than is contained here. However, this text may provide a useful starting point. The most common ionising radiations used in medicine are X, gamma, beta rays and electrons. Ionising radiation is only one part of the electromagnetic spectrum. There are numerous other radiations (e.g. visible light, infrared waves, high frequency and radiofrequency electromagnetic waves) that do not posses the ability to ionize atoms of the absorbing matter.