Extraction Optimization and In-Matrix Stability Testing Of

Total Page:16

File Type:pdf, Size:1020Kb

Extraction Optimization and In-Matrix Stability Testing Of EXTRACTION OPTIMIZATION AND IN-MATRIX STABILITY TESTING OF MEMBRANE-CONCENTRATED BETALAIN COLORANT FROM PRICKLY PEAR (OPUNTIA FICUS INDICA) A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Human Nutrition & Food Science By Shannen N. Hilse 2018 SIGNATURE PAGE THESIS: EXTRACTION OPTIMIZATION AND IN-MATRIX STABILITY TESTING OF MEMBRANE-CONCENTRATED BETALAIN COLORANT FROM PRICKLY PEAR (OPUNTIA FICUS INDICA) AUTHOR: Shannen N. Hilse DATE SUBMITTED: Summer 2018 College of Agriculture Dr. Harmit Singh Thesis Committee Chair Human Nutrition & Food Science Dr. Jeremy T. Claisse Biological Sciences Stephen J. Lauro CEO; colorMaker, Inc. Anaheim, CA ii ACKNOWLEDGEMENTS First and foremost, I cannot express my gratitude and appreciation for my thesis advisor, Dr. Harmit Singh, Professor & Chair of the Human Nutrition & Food Science Department. Beyond his command of food chemistry and creativity in its applications, his support, compassion, and overall optimism during this project kept me going and I cannot thank him enough. To my committee members: Dr. Jeremy Claisse, who offered his statistical expertise in both the experimental design and data analysis of this project and Stephen Lauro, whose industrial input, support, and encouragement was pivotal to its completion. Thank you both for your willingness to be a member of my committee and for the time you have dedicated. Additionally, I would like to give thanks to Dr. Gabriel Davidov-Pardo, Associate Professor of the HNFS Department. Beyond his insight, enthusiasm, and genuine interest in this project, he served as a mentor for me during my time at Cal Poly Pomona and had a big hand in making the past two years such an invaluable experience. I would be remiss to not acknowledge those within the food science family that offered support in their own distinct ways. To my labmates Shirin Mal Ganji and Carol Pow Sang, and to my fellow graduate students Benjamin Steiner, Yuguang Zheng, Huiying Hu, and Franz Fernandez: your advice was always welcome, your experience was always helpful, and your friendship made the long days in lab just a little more entertaining. Also to my undergraduate researcher, Sarah Caballero, who offered a unique perspective, helped with data collection, and never once complained when asked to wash glassware. iii To my parents, Steve and Debra, who made me the person I am today and whose love and support never faltered. To my sister Taryn, who has offered wisdom and advice not just during this project, but throughout my entire adult life. To John, my beginning, and Ellie-Mae, my rock. To Christian, who has helped me in so many ways. And to my entire network of friends and family: your years of belief in me and my education got me here, and I am so grateful for all of you. And finally, to all the students, staff, and faculty at California State Polytechnic University, Pomona and those within the Human Nutrition and Food Science department – thank you for the most difficult, stressful, challenging, memorable, and rewarding years of my life. Research reported in this publication was supported by the MENTORES (Mentoring, Educating, Networking, and Thematic Opportunities for Research in Engineering and Science) project, funded by a Title V grant, Promoting Post-baccalaureate Opportunities for Hispanic Americans (PPOHA) | U.S. Department of Education, Washington, D.C. PR/Award Number: P031M140025. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Education. We would also like to thank Stephen Lauro at ColorMaker (Anaheim, CA) for funding and supporting this research. iv ABSTRACT Although they offer more stability and lower production costs, consumers perceive synthetic colorants as undesirable. Accordingly, companies are looking to natural color sources for their products. Prickly pears are cactus fruits that are rich in pigment molecules known as betalains. These water-soluble colorants are traditionally extracted from red table beets, but beet extract comes with complications – it imparts an undesirable taste and is high in nitrites, precursors to carcinogenic nitrosamines. In addition, sugar beets (as opposed to red table beets) are genetically modified to improve their yield of sugar. This further complicates the product development challenges facing companies looking to avoid artificial colors. Consequently, a commercial betalain source other than red table beets is desirable to industry. The purpose of this research was to increase the feasibility of a marketable betalain food colorant sourced from Opuntia ficus indica. This was achieved through three main objectives: (1) increased colorant yield with use of pectinase, cellulase, and hemicellulase enzymes to break down cell wall structures of the fruit solids, (2) the purification and concentration of the colorant with athermal crossflow membrane filtration, and (3) testing the resulting betalain colorant against comparable natural and artificial colorants on the market when used in a common food matrix. Interestingly, enzymatic treatments led to a decrease in betacyanin content the more crude enzyme was added. This could be explained by potential glucosidase activity of hydrolytic enzymes, leading to betalain degradation. Clarification with centrifugation and microfiltration (MF) caused transmittance to increase from the initial 4.1% to 14.33% post- centrifugation and an average 70.51% post-MF. Nanofiltration led to a 234.36% increase v in betacyanins. When used to color a common food matrix (gelatin dessert), both prickly pear and red beet saw rapid degradation at room temperature but showed significant stability under refrigerated conditions. This project resulted in a membrane-concentrated, natural betalain colorant sourced from prickly pear that can be used in refrigerated food items. vi TABLE OF CONTENTS Signature Page ................................................................................................................... ii Acknowledgements .......................................................................................................... iii Abstract .............................................................................................................................. v List of Tables .................................................................................................................... ix List of Figures ................................................................................................................... xi Chapter 1: Introduction ................................................................................................... 1 Relevance of the Topic ................................................................................................... 4 Specific Scope ................................................................................................................. 9 Chapter 2: Literature Review ........................................................................................ 11 Natural Colorants, Betalains ......................................................................................... 11 Phenolic Compounds .................................................................................................... 12 Red Beetroot & Alternatives ......................................................................................... 13 Enzyme Use for Pigment & Phenolic Extraction ......................................................... 15 Membrane Filtration ..................................................................................................... 18 Monitoring Physico-Chemical Properties of Prickly Pear Juice................................... 25 Stability & Model Food Matrices ................................................................................. 28 Chapter 3: Materials & Methods .................................................................................. 31 Objectives and Hypotheses ........................................................................................... 31 Flow Diagram ............................................................................................................... 32 Sample Preparation and Chemical Reagents ................................................................ 32 Methodology ................................................................................................................. 33 Physico-Chemical Parameters .................................................................................. 33 Enzymatic Pretreatments ........................................................................................... 36 Membrane Purification and Concentration via Micro- and Nano-filtration ............ 39 Stability of Prickly Pear Concentrate in a Model Food Matrix ................................ 42 Chapter 4: Results & Discussion ................................................................................... 45 Enzymatic Pretreatment ................................................................................................ 45 Varying Concentrations of Crude Enzymes............................................................... 45 vii Active Enzyme, Deactivated Enzyme, and a Blank Solution ..................................... 49 Membrane Purification and Concentration via Micro- and Nano-filtration ................. 55 Stability of Prickly Pear Concentrate
Recommended publications
  • Does Dietary Fiber Affect the Levels of Nutritional Components After Feed Formulation?
    fibers Article Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Seidu Adams 1 ID , Cornelius Tlotliso Sello 2, Gui-Xin Qin 1,3,4, Dongsheng Che 1,3,4,* and Rui Han 1,3,4 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; [email protected] (S.A.); [email protected] (G.-X.Q.); [email protected] (R.H.) 2 College of Animal Science and Technology, Department of Animal Genetics, Breeding and Reproduction, Jilin Agricultural University, Changchun 130118, China; [email protected] 3 Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun 130118, China 4 Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China * Correspondence: [email protected]; Tel.: +86-136-4431-9554 Received: 12 January 2018; Accepted: 25 April 2018; Published: 7 May 2018 Abstract: Studies on dietary fiber and nutrient bioavailability have gained an increasing interest in both human and animal nutrition. Questions are increasingly being asked regarding the faith of nutrient components such as proteins, minerals, vitamins, and lipids after feed formulation. The aim of this review is to evaluate the evidence with the perspective of fiber usage in feed formulation. The consumption of dietary fiber may affect the absorption of nutrients in different ways. The physicochemical factors of dietary fiber, such as fermentation, bulking ability, binding ability, viscosity and gel formation, water-holding capacity and solubility affect nutrient absorption. The dietary fiber intake influences the different methods in which nutrients are absorbed.
    [Show full text]
  • Opuntia Dillenii (Ker-Gawl) Haw
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(6); 1101-1110 ISSN: 0975-4873 Research Article Pectin and Isolated Betalains from Opuntia dillenii (Ker-Gawl) Haw. Fruit Exerts Antiproliferative Activity by DNA Damage Induced Apoptosis Pavithra K1, Sumanth, M S2, Manonmani,H K2, ShashirekhaM N1* 1Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute Mysore -570 020, Karnataka, India 2Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore -570 020, Karnataka, India Available Online: 11th October, 2015 ABSTRACT In India, nearly three million patients are suffering from Cancer. There is an alarming increase in new cancer cases and every year ~ 4.5 million people die from cancer in the world. In recent years there is a trend to adopt botanical therapy that uses many different plant constituents as medicine. One plant may be able to address many problems simultaneously by stimulating the immune system to help fight off cancer cells. There appears to be exceptional and growing public enthusiasm for botanical or "herbal" medicines, especially amongst cancer patients. In present study, we studied the in vitro anticancer properties of various fractions of cactus Opuntia dillenii (Ker-Gawl) Haw.employing Erlich ascites carcinoma (EAC) cell lines. The EAC cells when treated with fractions of O. dillenii showed apoptosis that was further confirmed by fluorescent and confocal microscopy. In addition, Cellular DNA content was determined by Flow cytometric analysis, wherein pigment treated cells exhibited 78.88 % apoptosis while pulp and pectin treated cells showed 39 and 38% apoptosis respectively. Tunnel assay was carried out to detect extensive DNA degradation in late stages of apoptosis.
    [Show full text]
  • Effects of Spermine and Putrescine Polyamines on Capsaicin Accumula- Tion in Capsicum Annuum L
    doi:10.14720/aas.2020.115.2.1199 Original research article / izvirni znanstveni članek Effects of spermine and putrescine polyamines on capsaicin accumula- tion in Capsicum annuum L. cell suspension cultures Esra KOÇ 1, 2, Cemil İŞLEK 3, Belgizar KARAYİĞİT 1 Received June 25, 2019; accepted April 11, 2020. Delo je prispelo 25. junija 2019, sprejeto 11. aprila 2020 Effects of spermine and putrescine polyamines on capsaicin Učinki poliaminov spermina in putrescina na akumulacijo accumulation in Capsicum annuum L. cell suspension cul- kapsaicina v suspenzijski kulturi celic paprike Capsicum an- tures nuum L. Abstract: This study examined the effects of different con- Izvleček: V raziskavi so bili preučevani učinki različnih centrations of spermine (Spm) and putrescine (Put) elicitors on koncentracij spermina (Spm) in putrescina (Put) kot elicitorjev capsaicin production at different times in cell suspension cul- na tvorbo kapsaicina v različnih časovnih intervalih v suspen- ture of peper (Capsicum annuum L‘Kahramanmaraş Hat-187’.), zijski celični kulturi paprike (Capsicum annuum ‘Kahramanma- raised from pepper seeds. Callus was obtained from hypocotyl raş Hat-187’. Kalus je bil pridobljen iz izsečkov hipokotila kalic explants of pepper seedlings germinated in vitro conditions, paprike, ki je vzkalila v in vitro razmerah, celične suspenzije so and cell suspensions were prepared from calluses. Spm (0.1, 0.2 bile pripravljene iz kalusov. Spm (0,1; 0,2 in 0,4 mg l-1) in Put -1) and Put (0.1, 0.2 and 0.4 mg l-1) elicitors were ap- and 0.4 mg l (0,1; 0,2 in 0,4 mg l-1) sta bila dodajana kor elicitorja v celične plied on cell suspensions, and control groups free from elicitor suspenzije, hkrati so bile vzpostavljene kontrolne celične kul- treatment were created.
    [Show full text]
  • Pitaia (Hylocereus Sp.): Uma Revisão Para O Brasil
    Gaia Scientia (2014) Volume 8 (1): 90-98 Versão On line ISSN 1981-1268 http://periodicos.ufpb.br/ojs2/index.php/gaia/index Pitaia (Hylocereus sp.): Uma revisão para o Brasil Ernane Nogueira Nunes1*, Alex Sandro Bezerra de Sousa2, Camilla Marques de Lucena3, Silvanda de Melo Silva4, Reinaldo Farias Paiva de Lucena5, Carlos Antônio Belarmino Alves6 e Ricardo Elesbão Alves7. 1Aluno de Pós Graduação (Mestrado) do Programa de Pós Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. 2Aluno de Graduação em Agronomia. Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Areia, Paraíba, Brasil. CEP: 58.397-000. e-mail: [email protected] 3Aluna de Pós Graduação (Doutorado) do Programa de Pós Graduação em Desenvolvimento e Meio Ambiente. Universidade Federal da Paraíba. Campus I. João Pessoa, Paraíba, Brasil. CEP: 5801-970. e-mail: [email protected] 4Professora da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Ciências Fundamentais e Sociais. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 5Professor da Universidade Federal da Paraíba. Campus II. Centro de Ciências Agrárias. Departamento de Fitotecnia e Ciências Ambientais. Setor de Ecologia e Biodiversidade. Laboratório de Etnoecologia. Areia. Paraíba. Brasil. CEP: 58.397-000. e-mail: [email protected] 6Professor da Universidade Estadual da Paraíba. Centro de Humanidades. Guarabira, Paraíba, Brasil. CEP: 58.200-000. e-mail: [email protected] 7Pesquisadores da Empresa Brasileira de Pesquisa Agropecuária. EMBRAPA Agroindústria Tropical. Fortaleza. Ceará, Brasil. CEP: 60511-110. e-mail: [email protected]; [email protected] Artigo recebido em 17 janeiro 2013; aceito para publicação em 8 março 2014; publicado 12 março 2014 Resumo As espécies da família Cactaceae, possivelmente tiveram sua origem na América do Norte, Central e do Sul.
    [Show full text]
  • The Heart Health Benefits of Dietary Fiber
    Conclusions. Heart disease continues to be one of the most factors for cardiovascular disease, including blood pressure, weight, widespread health problems in the United States. Fortunately, it is and glucose levels. Not all fibers provide the same cardiovascular ™ also among the most preventable health problems. To that end, benefits; however, and differences among the various types of fibers Expert Views Americans are encouraged to adopt heart-healthy habits, which should be appreciated when choosing a fiber supplement. Psyllium include a healthy diet and regular exercise.7 In addition to being an and oat fibers are the only fibers that have been recognized by the GI HealtH & Wellness | Issue four | february 2011 important part of a healthy diet, dietary fibers provide a number of FDA for their cholesterol-lowering and cardiovascular benefits, while cardiovascular benefits. The cholesterol-lowering benefits of certain other fibers such as calcium polycarbophil are indicated for their fibers (psyllium and oat fibers) as adjunct to a low-fat diet are well- laxation effects. An understanding of these differences should allow features: the heart health benefits of recognized and have been demonstrated in numerous well-controlled physicians and patients to tailor their choice of dietary fiber and fiber trials. Further, dietary fibers have beneficial effects on other key risk supplements to better meet their individual health goals. One dietary fiber CHD Prevalence february Is amerIcan Heart HealtH montH Cholesterol Lowering Benefits Heart
    [Show full text]
  • Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nutrition & Health Sciences Dissertations & Theses Nutrition and Health Sciences, Department of 5-2010 Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils Mark McKinley Ash University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/nutritiondiss Part of the Dietetics and Clinical Nutrition Commons, and the Molecular, Genetic, and Biochemical Nutrition Commons Ash, Mark McKinley, "Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils" (2010). Nutrition & Health Sciences Dissertations & Theses. 17. https://digitalcommons.unl.edu/nutritiondiss/17 This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nutrition & Health Sciences Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils by Mark McKinley Ash A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Nutrition Under the Supervision of Professor Timothy P. Carr Lincoln, Nebraska May, 2010 Modulation of Lipid Metabolism by Phytosterol Stearates and Black Raspberry Seed Oils Mark McKinley Ash, M.S. University of Nebraska, 2010 Adviser: Timothy P. Carr Naturally occurring compounds and lifestyle modifications as combination and mono- therapy are increasingly used for dyslipidemia. Specficially, phytosterols and fatty acids have demonstrated an ability to modulate cholesterol and triglyceride metabolism in different fashions.
    [Show full text]
  • Phenolics in Human Health
    International Journal of Chemical Engineering and Applications, Vol. 5, No. 5, October 2014 Phenolics in Human Health T. Ozcan, A. Akpinar-Bayizit, L. Yilmaz-Ersan, and B. Delikanli with proteins. The high antioxidant capacity makes Abstract—Recent research focuses on health benefits of polyphenols as an important key factor which is involved in phytochemicals, especially antioxidant and antimicrobial the chemical defense of plants against pathogens and properties of phenolic compounds, which is known to exert predators and in plant-plant interferences [9]. preventive activity against infectious and degenerative diseases, inflammation and allergies via antioxidant, antimicrobial and proteins/enzymes neutralization/modulation mechanisms. Phenolic compounds are reactive metabolites in a wide range of plant-derived foods and mainly divided in four groups: phenolic acids, flavonoids, stilbenes and tannins. They work as terminators of free radicals and chelators of metal ions that are capable of catalyzing lipid oxidation. Therefore, this review examines the functional properties of phenolics. Index Terms—Health, functional, phenolic compounds. I. INTRODUCTION In recent years, fruits and vegetables receive considerable interest depending on type, number, and mode of action of the different components, so called as “phytochemicals”, for their presumed role in the prevention of various chronic diseases including cancers and cardiovascular diseases. Plants are rich sources of functional dietary micronutrients, fibers and phytochemicals, such
    [Show full text]
  • Pearling Barley and Rye to Produce Phytosterol-Rich Fractions Anna-Maija Lampia,*, Robert A
    Pearling Barley and Rye to Produce Phytosterol-Rich Fractions Anna-Maija Lampia,*, Robert A. Moreaub, Vieno Piironena, and Kevin B. Hicksb aDepartment of Applied Chemistry and Microbiology, University of Helsinki, Finland, and bUSDA, ARS, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, ABSTRACT: Because of the positive health effects of phyto- in the kernels and are more concentrated in the outer layers sterols, phytosterol-enriched foods and foods containing than in the starch-rich endosperm (6,7). During the milling of elevated levels of natural phytosterols are being developed. some grains, pearling is a traditional way of gradually remov- Phytosterol contents in cereals are moderate, whereas their lev- ing the hull, pericarp, and other outer layers of the kernels and els in the outer layers of the kernels are higher. The phytosterols germ as pearling fines to produce pearled grains. It is the most in cereals are currently underutilized; thus, there is a need to common technique used to fractionate barley (8). The abra- create or identify processing fractions that are enriched in sion of rye and barley to produce high-starch pearled grains phytosterols. In this study, pearling of hulless barley and rye was investigated as a potential process to make fractions with higher also has been used to improve fuel ethanol production (9,10). levels of phytosterols. The grains were pearled with a labora- There is a need to find new food uses for the pearling fines tory-scale pearler to produce pearling fines and pearled grains. and other possible low-starch by-products remaining after Lipids were extracted by accelerated solvent extraction, and separation of the high-starch pearled grain.
    [Show full text]
  • Comparison of Antioxidant Activities and Total Polyphenolic and Methylxanthine Contents Between the Unripe Fruit and Leaves of Ilex Paraguariensis A
    ORIGINAL ARTICLES Universidade Regional Integrada do Alto Uruguai e das Misso˜es1, Programa de Po´s-Graduac¸a˜o em Cieˆncias Farmaceˆuti- cas2, Curso de Farma´cia3, Departamento de Microbiologia4, Departamento de Farma´cia Industrial5, Universidade Federal de Santa Maria, Campus Camobi, Santa Maria, Rio Grande do Sul, Brasil Comparison of antioxidant activities and total polyphenolic and methylxanthine contents between the unripe fruit and leaves of Ilex paraguariensis A. St. Hil. A. Schubert1, D. F. Pereira2, F. F. Zanin3, S. H. Alves4, R. C. R. Beck5, M. L. Athayde5 Received February 15, 2007, accepted March 8, 2007 Prof. Dr. Margareth Linde Athayde, Departamento de Farma´cia Industrial, Pre´dio 26, sala 1115, Campus Camobi, Universidade Federal de Santa Maria, RS, Brasil. CEP 97105-900 [email protected] Pharmazie 62: 876–880 (2007) doi: 10.1691/ph.2007.11.7052 Ilex paraguariensis is used in Brazil as a stimulating beverage called “mate”. Leaves and immature fruit extracts of Ilex paraguariensis were evaluated for their radical scavenging capacity, total methyl- xanthine and polyphenol contents. Antimicrobial activity of two enriched saponin fractions obtained from the fruits were also evaluated. The radical scavenging activity of the fractioned extracts was determined spectrophotometrically using 1,1-diphenylpicrylhydrazyl free radical (DPPH). The IC50 of l-ascorbic acid, ethyl acetate and n-butanol fractions from the leaves and ethyl acetate fraction from the fruits were 6.48 mg/mL, 13.26 mg/mL, 27.22 mg/mL, and 285.78 mg/mL, respectively. Total methylxanthine content was 1.16 Æ 0.06 mg/g dry weight in the fruits and 8.78 Æ 0.01 mg/g in the leaves.
    [Show full text]
  • Mypyramid Food Groups
    Know how. Know now. Learn at Home: Nutrition Lessons for Healthy Living MyPyramid Food Groups By choosing to complete this mail lesson, you have taken the first step in learning more about the im- portance of nutrition and its relationship to good health. MyPyramid shows us what and how much we need to eat. It also shows us we need to be physically active. To complete this lesson: • Carefully read this lesson. It should take about 15-20 minutes to complete. • Answer the questions included with this lesson. • When you are finished, place the questions in the prepaid envelope and place the envelope in the mail. MyPyramid Food Groups – Orange is for the Grain group MyPyramid shows the impor- – Green is for the Vegetable group tance of making good food choices – Red is for the Fruit group from each of the five food groups every day. It also shows the impor- – Yellow is for Oils tance of being physically active most days of the week and making changes – Blue is for the Dairy group “one step at a time.” This mail lesson – Purple is for the Protein Foods group will discuss: • The MyPyramid symbol How Much Do You Need Every Day? • How much do you need every day? Calorie Level 2,000* • MyPyramid food groups Grain Group 6 ounces • Where do other foods fit? Vegetable Group 2 ½ cups MyPyramid Symbol Fruit Group 2 cups • The MyPyramid symbol shows six color bands Dairy Group 3 cups that run from the bottom of the pyramid to the Protein Foods Group 5 ½ ounces top.
    [Show full text]
  • Identification of the 100 Richest Dietary Sources of Polyphenols: an Application of the Phenol-Explorer Database
    European Journal of Clinical Nutrition (2010) 64, S112–S120 & 2010 Macmillan Publishers Limited All rights reserved 0954-3007/10 www.nature.com/ejcn ORIGINAL ARTICLE Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database JPe´rez-Jime´nez1,2, V Neveu1,2,FVos1,2 and A Scalbert1,2 1Clermont Universite´, Universite´ d’Auvergne, Unite´ de Nutrition Humaine, Saint-Genes-Champanelle, France and 2INRA, UMR 1019, UNH, CRNH Auvergne, Saint-Genes-Champanelle, France Background/Objectives: The diversity of the chemical structures of dietary polyphenols makes it difficult to estimate their total content in foods, and also to understand the role of polyphenols in health and the prevention of diseases. Global redox colorimetric assays have commonly been used to estimate the total polyphenol content in foods. However, these assays lack specificity. Contents of individual polyphenols have been determined by chromatography. These data, scattered in several hundred publications, have been compiled in the Phenol-Explorer database. The aim of this paper is to identify the 100 richest dietary sources of polyphenols using this database. Subjects/Methods: Advanced queries in the Phenol-Explorer database (www.phenol-explorer.eu) allowed retrieval of information on the content of 502 polyphenol glycosides, esters and aglycones in 452 foods. Total polyphenol content was calculated as the sum of the contents of all individual polyphenols. These content values were compared with the content of antioxidants estimated using the Folin assay method in the same foods. These values were also extracted from the same database. Amounts per serving were calculated using common serving sizes.
    [Show full text]
  • How to Improve the Functionality, Nutritional Value and Health
    a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.17721 How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: a review Amanda Alves PRESTES1, Maryella Osório VARGAS2, Cristiane Vieira HELM3, Erick Almeida ESMERINO4, Ramon SILVA4, Elane Schwinden PRUDENCIO1,2* Abstract Fermented milks, with diverse manufacturing, fermentations and specific strains, have been consumed around the world, with a millennial knowledge of their production. These dairy products have a potential nutritional value, taking food industries to invest, nowadays, in dairy products with a functional and healthy appeal due to the changes in the habits and diet of the population. The addition of natural ingredients from vegetables and fruits into fermented milks is a tendency nowadays. The inclusion of natural additives may change the texture, composition, sensory attributes and increase of the shelf life since some compounds are related to have a high antioxidant activity, which decreases the development of deteriorating microorganisms. These called bioactive compounds are synthesized by plants and also may contribute to the fermented milk formulation, in special from fruits, which increase the sensory acceptance. Several classes of fruits bioactive compounds are associated to several health benefits and are a base of many studies about functional fermented milks, reported in this review. This theory background becomes essential for future studies and dairy products development. Keywords: dairy products; functional food; natural additives; antioxidant activity; prebiotics. Practical Application: Potential functional properties of fermented milks added of fruit bioactive compounds. 1 Introduction The dairy products manufacturing is known since Foods with a functional appeal are those that, besides to antiquity, with the fermentation process as a traditional promote basic nutrients, when consumed in a routine, produce approach to food preservation.
    [Show full text]