All About Audio Equalization: Solutions and Frontiers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDOM VIBRATION—AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION—AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military applications. Whereas the use of random vibration specifications was previously limited to particular missile applications, its use has been extended to areas in which sinusoidal vibration has historically predominated, including propeller driven aircraft and even moderate shipboard environments. These changes have evolved from the growing awareness that random motion is the rule, rather than the exception, and from advances in electronics which improve our ability to measure and duplicate complex dynamic environments. The purpose of this article is to present some fundamental concepts of random vibration which should be understood when designing a structure or an isolation system. INTRODUCTION Random vibration is somewhat of a misnomer. If the generally accepted meaning of the term "random" were applicable, it would not be possible to analyze a system subjected to "random" vibration. Furthermore, if this term were considered in the context of having no specific pattern (i.e., haphazard), it would not be possible to define a vibration environment, for the environment would vary in a totally unpredictable manner. Fortunately, this is not the case. The majority of random processes fall in a special category termed stationary. This means that the parameters by which random vibration is characterized do not change significantly when analyzed statistically over a given period of time - the RMS amplitude is constant with time. For instance, the vibration generated by a particular event, say, a missile launch, will be statistically similar whether the event is measured today or six months from today. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Sonic Retro-Futures: Musical Nostalgia as Revolution in Post-1960s American Literature, Film and Technoculture Permalink https://escholarship.org/uc/item/65f2825x Author Young, Mark Thomas Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Sonic Retro-Futures: Musical Nostalgia as Revolution in Post-1960s American Literature, Film and Technoculture A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in English by Mark Thomas Young June 2015 Dissertation Committee: Dr. Sherryl Vint, Chairperson Dr. Steven Gould Axelrod Dr. Tom Lutz Copyright by Mark Thomas Young 2015 The Dissertation of Mark Thomas Young is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS As there are many midwives to an “individual” success, I’d like to thank the various mentors, colleagues, organizations, friends, and family members who have supported me through the stages of conception, drafting, revision, and completion of this project. Perhaps the most important influences on my early thinking about this topic came from Paweł Frelik and Larry McCaffery, with whom I shared a rousing desert hike in the foothills of Borrego Springs. After an evening of food, drink, and lively exchange, I had the long-overdue epiphany to channel my training in musical performance more directly into my academic pursuits. The early support, friendship, and collegiality of these two had a tremendously positive effect on the arc of my scholarship; knowing they believed in the project helped me pencil its first sketchy contours—and ultimately see it through to the end. -
Loudspeakers and Headphones 21 –24 August 2013 Helsinki, Finland
CONFERENCE REPORT AES 51 st International Conference Loudspeakers and Headphones 21 –24 August 2013 Helsinki, Finland CONFERENCE REPORT elsinki, Finland is known for having two sea - An unexpectedly large turnout of 130 people almost sons: August and winter (adapted from Con - overwhelmed the organizers as over 75% of them Hnolly). However, despite some torrential rain in registered around the time of the “early bird” cut-off the previous week, the weather during the conference date. Twenty countries were represented with most of was excellent. The conference was held at the Helsinki the participants coming from Europe, but some came Congress Paasitorni, which was built in the first from as far away as Los Angeles, San Francisco, Lima, decades of the twentieth century. The recently restored Rio de Janeiro, Tokyo, and Guangzhou. Companies building is made of granite that was dug from the such Apple, Beats, Comsol, Bose, Genelec, Harman, ground where the building now stands. The location KEF, Neumann, Nokia, Samsung, Sennheiser, Skype, near the city center and right by the harbor proved to and Sony were represented by their employees. be an excellent location both for transportation and Universities represented included Aalto (in Helsinki), the social program. Aalborg, Budapest, and Kyushu. 790 J. Audio Eng. Soc., Vol. 61, No. 10, 2013 October CONFERENCE REPORT A packed House of Science and Letters for the Tutorial Day Sponsors Juha Backmann insists that “Reproduced audio WILL be better in the future.” J. Audio Eng. Soc., Vol. 61, No. 10, 2013 October 791 CONFERENCE REPORT low-frequency performance can still be designed using Thiele- Small parameters in a simulation, and the effect of individual parameters (such as voice coil length and pole piece size) on the system performance can be seen directly. -
Voip V2 Loudspeaker Amplifier (Wireless) Operations Guide
VoIP V2 Loudspeaker Amplifier (Wireless) Operations Guide Part #011096 Document Part #930361E for Firmware Version 6.0.0 CyberData Corporation 3 Justin Court Monterey, CA 93940 (831) 373-2601 VoIP V2 Paging Amplifier Operations Guide 930361E Part # 011096 COPYRIGHT NOTICE: © 2011, CyberData Corporation, ALL RIGHTS RESERVED. This manual and related materials are the copyrighted property of CyberData Corporation. No part of this manual or related materials may be reproduced or transmitted, in any form or by any means (except for internal use by licensed customers), without prior express written permission of CyberData Corporation. This manual, and the products, software, firmware, and/or hardware described in this manual are the property of CyberData Corporation, provided under the terms of an agreement between CyberData Corporation and recipient of this manual, and their use is subject to that agreement and its terms. DISCLAIMER: Except as expressly and specifically stated in a written agreement executed by CyberData Corporation, CyberData Corporation makes no representation or warranty, express or implied, including any warranty or merchantability or fitness for any purpose, with respect to this manual or the products, software, firmware, and/or hardware described herein, and CyberData Corporation assumes no liability for damages or claims resulting from any use of this manual or such products, software, firmware, and/or hardware. CyberData Corporation reserves the right to make changes, without notice, to this manual and to any such product, software, firmware, and/or hardware. OPEN SOURCE STATEMENT: Certain software components included in CyberData products are subject to the GNU General Public License (GPL) and Lesser GNU General Public License (LGPL) “open source” or “free software” licenses. -
Audio Coding for Digital Broadcasting
Recommendation ITU-R BS.1196-7 (01/2019) Audio coding for digital broadcasting BS Series Broadcasting service (sound) ii Rec. ITU-R BS.1196-7 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. -
The Frequency Element: Using the Equalizer
Chapter 7 The Frequency Element: Using The Equalizer Even though an engineer has every intention of making his recording sound as big and as clear as possible during tracking and overdubs, it often happens that the frequency range of some (or even all) of the tracks are somewhat limited when it comes time to mix. This can be due to the tracks being recorded in a different studio where different monitors or signal path was used, the sound of the instruments themselves, or the taste of the artist or producer. When it comes to the mix, it’s up to the mixing engineer to extend the frequency range of those tracks if it’s appropriate. In the quest to make things sound bigger, fatter, brighter, and clearer, the equalizer is the chief tool used by most mixers, but perhaps more than any other audio tool, it’s how it’s used that separates the average engineer from the master. “I tend to like things to sound sort of natural, but I don’t care what it takes to make it sound like that. Some people get a very preconceived set of notions that you can’t do this or you can’t do that, but as Bruce Swedien said to me, he doesn’t care if you have to turn the knob around backwards; if it sounds good, it is good. Assuming that you have a reference point that you can trust, of course.” —Allen Sides “I find that the more that I mix, the less I actually EQ, but I’m not afraid to bring up a Pultec and whack it up to +10 if something needs it.” —Joe Chiccarelli The Goals Of Equalization While we may not think about it when we’re doing it, there are three primary goals when equalizing: To make an instrument sound clearer and more defined. -
Real-Time Programming and Processing of Music Signals Arshia Cont
Real-time Programming and Processing of Music Signals Arshia Cont To cite this version: Arshia Cont. Real-time Programming and Processing of Music Signals. Sound [cs.SD]. Université Pierre et Marie Curie - Paris VI, 2013. tel-00829771 HAL Id: tel-00829771 https://tel.archives-ouvertes.fr/tel-00829771 Submitted on 3 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Realtime Programming & Processing of Music Signals by ARSHIA CONT Ircam-CNRS-UPMC Mixed Research Unit MuTant Team-Project (INRIA) Musical Representations Team, Ircam-Centre Pompidou 1 Place Igor Stravinsky, 75004 Paris, France. Habilitation à diriger la recherche Defended on May 30th in front of the jury composed of: Gérard Berry Collège de France Professor Roger Dannanberg Carnegie Mellon University Professor Carlos Agon UPMC - Ircam Professor François Pachet Sony CSL Senior Researcher Miller Puckette UCSD Professor Marco Stroppa Composer ii à Marie le sel de ma vie iv CONTENTS 1. Introduction1 1.1. Synthetic Summary .................. 1 1.2. Publication List 2007-2012 ................ 3 1.3. Research Advising Summary ............... 5 2. Realtime Machine Listening7 2.1. Automatic Transcription................. 7 2.2. Automatic Alignment .................. 10 2.2.1. -
Amplifier Frequency Response
EE105 – Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 2-1 Amplifier Gain vO Voltage Gain: Av = vI iO Current Gain: Ai = iI load power vOiO Power Gain: Ap = = input power vIiI Note: Ap = Av Ai Note: Av and Ai can be positive, negative, or even complex numbers. Nagative gain means the output is 180° out of phase with input. However, power gain should always be a positive number. Gain is usually expressed in Decibel (dB): 2 Av (dB) =10log Av = 20log Av 2 Ai (dB) =10log Ai = 20log Ai Ap (dB) =10log Ap 2-2 1 Amplifier Power Supply and Dissipation • Circuit needs dc power supplies (e.g., battery) to function. • Typical power supplies are designated VCC (more positive voltage supply) and -VEE (more negative supply). • Total dc power dissipation of the amplifier Pdc = VCC ICC +VEE IEE • Power balance equation Pdc + PI = PL + Pdissipated PI : power drawn from signal source PL : power delivered to the load (useful power) Pdissipated : power dissipated in the amplifier circuit (not counting load) P • Amplifier power efficiency η = L Pdc Power efficiency is important for "power amplifiers" such as output amplifiers for speakers or wireless transmitters. 2-3 Amplifier Saturation • Amplifier transfer characteristics is linear only over a limited range of input and output voltages • Beyond linear range, the output voltage (or current) waveforms saturates, resulting in distortions – Lose fidelity in stereo – Cause interference in wireless system 2-4 2 Symbol Convention iC (t) = IC +ic (t) iC (t) : total instantaneous current IC : dc current ic (t) : small signal current Usually ic (t) = Ic sinωt Please note case of the symbol: lowercase-uppercase: total current lowercase-lowercase: small signal ac component uppercase-uppercase: dc component uppercase-lowercase: amplitude of ac component Similarly for voltage expressions. -
Audio Amplifier Circuit
ECE 2C Laboratory Manual 1a Audio Amplifier Circuit Overview In the first part of lab#1 you will construct a low-power audio amplifier/speaker driver based on the LM386 IC from National Semiconductor. The audio amplifier will be a self- contained, battery-operated component. In the second part of the lab you will construct a microphone circuit using a compact electret condenser microphone cartridge. These circuit modules are important building blocks of many audio communications systems, and will be used in our ultrasonic transceiver system. By studying this document and experimenting with the components and circuits in the lab, pay attention to the following: ■ Electrical characteristics of audio speakers ■ Characteristics of condenser microphones ■ Design of single-supply battery-operated op-amp circuits ■ Use of diode limiters/clamps for input protection ■ Use of active filters for tone control ■ Choice of AC coupling capacitors We will discuss the analytical aspects of active filter design in lecture we will see them in action again in our IR receiver system. Remember, the objective here is not simply to create a working circuit, it is to learn about circuits! So, as you progress through the lab, try to understand the role of each component, and how the choice of component value may influence the operation of the circuit. Please tinker with component values, that is an especially valuable way to learn. Ask yourself questions such as: Why is this resistor here? Why does it have this resistance value? Why is this blocking capacitor 1μF instead of 0.1μF or 10μF or 100μF? Why was this particular op- amp chosen? It is only when you can answer such questions that you will truly understand the labs and progress towards designing your own circuits. -
Reference Manual
1 6 - V O I C E R E A L A N A L O G S Y N T H E S I Z E R REFERENCE MANUAL February 2001 Your shipping carton should contain the following items: 1. Andromeda A6 synthesizer 2. AC power cable 3. Warranty Registration card 4. Reference Manual 5. A list of the Preset and User Bank Mixes and Programs If anything is missing, please contact your dealer or Alesis immediately. NOTE: Completing and returning the Warranty Registration card is important. Alesis contact information: Alesis Studio Electronics, Inc. 1633 26th Street Santa Monica, CA 90404 USA Telephone: 800-5-ALESIS (800-525-3747) E-Mail: [email protected] Website: http://www.alesis.com Alesis Andromeda A6TM Reference Manual Revision 1.0 by Dave Bertovic © Copyright 2001, Alesis Studio Electronics, Inc. All rights reserved. Reproduction in whole or in part is prohibited. “A6”, “QCard” and “FreeLoader” are trademarks of Alesis Studio Electronics, Inc. A6 REFERENCE MANUAL 1 2 A6 REFERENCE MANUAL Contents CONTENTS Important Safety Instructions ....................................................................................7 Instructions to the User (FCC Notice) ............................................................................................11 CE Declaration of Conformity .........................................................................................................13 Introduction ................................................................................................................ 15 How to Use this Manual....................................................................................................................16 -
21065L Audio Tutorial
a Using The Low-Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Revision 1.0 - 12/4/98 dB +12 0 -12 Left Right Left EQ Right EQ Pan L R L R L R L R L R L R L R L R 1 2 3 4 5 6 7 8 Mic High Line L R Mid Play Back Bass CNTR 0 0 3 4 Input Gain P F R Master Vol. 1 2 3 4 5 6 7 8 Authors: John Tomarakos Dan Ledger Analog Devices DSP Applications 1 Using The Low Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Dan Ledger and John Tomarakos DSP Applications Group, Analog Devices, Norwood, MA 02062, USA This document examines desirable DSP features to consider for implementation of real time audio applications, and also offers programming techniques to create DSP algorithms found in today's professional and consumer audio equipment. Part One will begin with a discussion of important audio processor-specific characteristics such as speed, cost, data word length, floating-point vs. fixed-point arithmetic, double-precision vs. single-precision data, I/O capabilities, and dynamic range/SNR capabilities. Comparisions between DSP's and audio decoders that are targeted for consumer/professional audio applications will be shown. Part Two will cover example algorithmic building blocks that can be used to implement many DSP audio algorithms using the ADSP-21065L including: Basic audio signal manipulation, filtering/digital parametric equalization, digital audio effects and sound synthesis techniques. TABLE OF CONTENTS 0. INTRODUCTION ................................................................................................................................................................4 1. -
Subjective Assessment of Audio Quality – the Means and Methods Within the EBU
Subjective assessment of audio quality – the means and methods within the EBU W. Hoeg (Deutsch Telekom Berkom) L. Christensen (Danmarks Radio) R. Walker (BBC) This article presents a number of useful means and methods for the subjective quality assessment of audio programme material in radio and television, developed and verified by EBU Project Group, P/LIST. The methods defined in several new 1. Introduction EBU Recommendations and Technical Documents are suitable for The existing EBU Recommendation, R22 [1], both operational and training states that “the amount of sound programme ma- purposes in broadcasting terial which is exchanged between EBU Members, organizations. and between EBU Members and other production organizations, continues to increase” and that “the only sufficient method of assessing the bal- ance of features which contribute to the quality of An essential prerequisite for ensuring a uniform the sound in a programme is by listening to it.” high quality of sound programmes is to standard- ize the means and methods required for their as- Therefore, “listening” is an integral part of all sessment. The subjective assessment of sound sound and television programme-making opera- quality has for a long time been carried out by tions. Despite the very significant advances of international organizations such as the (former) modern sound monitoring and measurement OIRT [2][3][4], the (former) CCIR (now ITU-R) technology, these essentially objective solutions [5] and the Member organizations of the EBU remain unable to tell us what the programme will itself. It became increasingly important that com- really sound like to the listener at home.