80 Aldehyde-Alkyne-Amine Coupling
Total Page:16
File Type:pdf, Size:1020Kb
395 Index a – – solid supports 246 acyclic diyne metathesis polymerization – secondary amines (ADIMET) 80 – – aldehyde-containing oligosaccharides aldehyde-alkyne-amine coupling (A3-coupling) 243 – asymmetric addition – – iminium/enamine intermediate 242 – – primary amines 246 – – quaternary carbon centres 243 – – secondary amines 250 – – transition metal catalysts 243 – Cu-catalyzed 6-endo-dig cyclization alkyne ––advantage 252 – classical reactions 3 – allene formation 257 –history 1 ––α-heteroatom-bearing aromatic aldehydes –modernreactions 4,6 253 –sources 2 – – amidation reaction 260 – structure and properties 2 – – 2-(aminomethyl)indoles 255 alkyne functional group – – 2-aminopyridines 253 – acid/base chemistry 366 – – copper(I) triflate/pybox catalyst system – thermodynamic vs kinetic stability/reactivity 256 365 – – glyoxylic acids 257 alkyne metathesis ––isoelectronicisocyanates 262 – acid-sensitive compounds 73 – – oxazolidinones 261 – alkylidyne unit redistribution 69 – – pyridine-2-carboxaldehyde 255 – amphidinolide F 99, 100 – – salicylaldehydes 253, 254 – antibiotic A26771B 95, 96 – – silver-catalyzed reaction 257 –Chauvincycle 71 – decarboxylations 259 – citreofuran 97, 98 – mechanism 239 –cruentarenA 88 – primary amines – dehydrohomoancepsenolide 86 ––α-formylphosphonate hydrates 242 – fluorinated analogue 73 – – electrophilic imines 241 – haliclonacyclamine C 87, 88 – – iridium(I)-catalyzed alkyne addition 240 – hybridalactone 88, 89 – – Ru/Cu catalyst system 241 – in homogeneous phase 70 – – toluenesulfonamide 242 – Katz/McGinnis mechanism 70 – propargylamines 239 – lactimidomycin 96, 97 –reusablecatalyst – leiodermatolide 92, 94 – – copper metal-organic framework 246 –ligandsize 72 ––Groß’smethod 246 – molybdenum alkylidynes 70 – – heterogeneous 244 – – bench-stable precatalyst 77 – – imidazolium-based ionic liquids 244 – – nitride precursor 79 – – PEG-nanosilver colloids 244 – – oxophilic molybdenum 76 Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, First Edition. Edited by Barry M. Trost and Chao-Jun Li. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 396 Index alkyne metathesis (contd.) – – tricolorin A 376 – – prototype catalysts 75 – – tricolorin A disaccharide 375 – – silanolate ligand exchange 76 – KAPA reagent 369 – – silanolates 78 –KNH2/NH3 isomerization 368 – – triarylsilanolate ligands 77, 78 – optically pure alcohols 365 – – vs. tungsten alkylidyne 76 amphidinolide F 99 – molybdenum-based catalysts 73, 74 antibiotic A26771B 95, 96 – neurymenolide A 91 (-)-apicularen A 371, 372 – non-terminal alkylidynes 74 aspergillide B 392 – olfactory macrolides 86, 87 aspergillide B synthesis 215 – polycavernoside 98, 99 (+)-aspicilin 389, 390 – precipitation-driven method 71 – reaction formats and substrate b – – carbon rich material 82 Bianchini dimerization 305 – – cyclo-oligomerization 80 bicyclobutenes 41 – – deprotio-metallacyclobutadiene complex [4.3.2]bicyclononanes 42 82 bicyclopropanes 37 – – gold catalyzed transannular oxa-Michael bidentate phosphane palladium(II) complex reaction 84 275 – – inter and intramolecular settings 80 biologically active polyyne natural products – – post-metathetic transformations 84 349 – – ring closing alkyne metathesis 85 boc-proline 249 – – self and cross metathesis 82 broussonetine G 379 – Schrock alkylidynes 72 broussonetine G spiroketal 379, 380 – spirastrellolide F methyl ester 101, 102 (-)-bullatacin 341, 342 – trisamide complex 75 – tubulin inhibitory macrolide WF-1360F 91 c – tulearin C 94, 95 Cadiot-Chodkiewicz cross-coupling reaction –tungsten-basedcatalysis 73 – acetylenic-halide homo-coupling 344 –tungsten-basedcatalysts 73 – chemoselectivity 341 alkyne zipper reaction – Hiyama and Stang modifications 342 –Cx+1ω-hydroxyl-1-alkyne 370 – homo-coupling suppression 342 – contra-thermodynamic isomerization 367 – Hoye’s synthesis 341 – iterative bis-asymmetric hydration approach – mechanism 347 ––ω-functionalized sphingolipids 384 – metal acetylides 343 – – apicularen A 371, 372 – palladium catalyzed reactions 343 – – aspergillide B 392 – polyacetylene natural products 350 – – aspicilin 389, 390 carbophilic Lewis acids-enyne – – broussonetine G 379 cycloisomerization – – broussonetine G spiroketal 379, 380 – 1,3- and 1,4-dienes 28 – – cephalosporolide H 387, 388 – bicyclobutenes 41 – – cladospolide A 383 – bicyclopropanes 37 – – cladospolides 380 –Coniaenereactions 32 – – clathculin A and B 386, 387 caryoynencins 350 – – cryptocaryols A and B 373–375 cephalosporolide H 387, 388 – – daumone 377, 378 Chauvin cycle 70 – – daumone aglycon 378 chiral (2-phosphino-1-naphthyl)isoquinoline – – dienoate and galacto-sugars 370 (QUINAP) type ligands 250 – – elenic acid 376, 377 citreofuran 97, 98 – – irciniasulfonic acid 386 cladospolide A 383 ––iso-cladospolide B 384 cladospolides 380 – – merremoside D 389, 391 clathculin A and B 386, 387 – – merremoside D aglycon 392 co catalyzed direct catalytic asymmetric – – milbemycin β3 373 conjugate alkynylation 192, 193 Index 397 Conia-ene reactions 32 – – Fu’s protocol 344 conjugate alkynylation – – Negisihi protocol 344 – enantioselective catalytic conjugate addition – – oxidative homo-coupling 336 182 – – palladium catalyzed acetylenic coupling – metal alkynylides reactions 343 ––s-cis α, β-enones 173–175 – – Tykwinski protocol 344 ––s-trans α, β-enones 175–177 copper-catalyzed hetero-coupling reactions – – Ni catalysis 176, 177, 180 – Bohlman’s mechanistic hypothesis 344 ––TBSOTf 177 – propiolic acids 340 – – TMSI promoter 178 copper-cocatalyzed reactions – organocuprates 173 – supported palladium-phosphorous catalysts –terminalalkynes – – chloroenyne formation 274 ––β-substituted α,β-enones 184 – – bidentate phosphane palladium(II) – – acrylates 183, 184 complex 275 – – Cu catalysis 185, 187 – – SiliaBond® 275 – – enantioselective catalytic conjugate – unsupported palladium-phosphorous addition 188 catalysts ––vs. metalated alkynylides 182 – – 6-alkynyl-substituted (R)-pipecolic acid – – Pd catalysis 184, 185 derivatives 270 – – Pd-based catalytic system 188, 189 – – egonol precursor 272 – – Ru catalysis 184, 186 – – oligo-p-aryleneethynylenes 271 – – vinyl ketones 182–184 – – resveratrol dimer 271 – – Zn catalysis 186–188 – – water-soluble phosphane 273 conjugated 1,3-diynes copper-free reactions – [4+2] benzannulation reaction 354 – supported palladium-phosphorous catalysts – alkene/alkyne metathesis 355 275 – Cadiot-Chodkiewicz cross-coupling reaction – unsupported palladium-phosphorous – – Hiyama and Stang modifications 342 catalysts – classical syntheses 336 – – aryl bromide and acetylenes coupling – Eglinton-Galbraith diyne coupling reactions 273 357 – – chlorostyrene with 1-octyne coupling – Hay’s-coupling reaction 356 274 – helically chiral bi-triphenylenes 354 – – Xphos-related phosphane 274 – heterocyclic structures 352 Cozzi’s enantioselective addition 215 – hydrosilylation 353 cruentaren A 88, 89 –linearlyπ-conjugated acetylenic oligomers cryptocaryol A and B 373–375 and polymers 355 Cu catalyzed direct catalytic conjugate – macrocyclic acetylenic rings 357 alkynylation – polyacetylene natural products – aliphatic alkynes 194, 195 – – biological activities 349 – ethyl propiolate 184, 187 – – Cadiot-Chodkiewicz cross-coupling – phenylacetylene 188, 189 reaction 350 Cu-catalyzed azide–alkyne cycloaddition – – Hay’s coupling reaction 350 (CuAAC) – – Kim’s iterative synthesis 351 – 1,2,3-triazoles – polythiophenes 352 – – arylation 125 – porphyrin-based heterocycles 352 – – oxidative couplings 125 – regio- and chemoselective hydrosilylation – 5-telluro-1,2,3-triazoles 126 352, 354 – bioconjugation studies – synthesis method – – BTTES 135 – – alkyne dimerization reaction 338 – – cowpea mosaic virus capsid 134 – – Cadiot-Chodkiewicz cross-coupling – – cyclooctynes 136 reaction 341 – – ligands 134, 136 – – copper-catalyzed hetero-coupling – – living system 136 reactions 340 – – reactive oxygen species 134 398 Index Cu-catalyzed azide–alkyne cycloaddition – – cobalt complexes 315 (CuAAC) (contd.) – – iridium complexes 315 – – SPAAC 134 ––ironcomplex 310 – biological applications 132 ––nickelcomplexes 319 –catalyst – – osmium complex 309 – – catalyst structure–activity relationship – – palladium-catalyzed dimerization 318 128 – – rodium-catalyzed dimerization 311 – – electro-, photo-, and self-induced click – – ruthenium-catalyzed dimerization 302 131 – lanthanide and actinide complexes – – ligands 127 ––(Z)-selective dimerization mechanism – Cu(1)NHC–acetylide 118 324 – DFT calculation 118 – – cyclodimerization products 322 – – advantages 120 – – lutetium alkyl complex 323 – – azide–Cu(1) structures 121 – products 301, 302 – – kinetic MS- and 15N-NMR-experiments – Straus coupling 326 119 – titanium complexes 325, 326 – – quantum mechanical assessment 121 – uranium compounds 324 – Huisgen 1,3-dipolar cycloaddition reaction – zirconium complex 325 115 (S)-(E)-15,16-dihydrominquartynoic acid – low redox potential 118 351 – molecular orbital considerations 121 diyne carbinols 14 – optimal conditions 131 domino cycloisomerization-pinacol – quantum mechanical calculations 118 rearrangements methodologies 42 – reaction parameters 117 domino enyne cycloisomerization-nucleophile – requirements 115 addition reactions – side reactions 126 – carbon nucleophiles – substrates 123 – – 1,3-dicarbonyl derivatives 61 – triazole chemistry 118 ––alkenes 54 – vs. RuAAC 117 ––allylsilanes 61 [4+2] cycloaddition reactions 42 ––aromaticrings 56 – general outcome 44 d – oxygen