80 Aldehyde-Alkyne-Amine Coupling

80 Aldehyde-Alkyne-Amine Coupling

395 Index a – – solid supports 246 acyclic diyne metathesis polymerization – secondary amines (ADIMET) 80 – – aldehyde-containing oligosaccharides aldehyde-alkyne-amine coupling (A3-coupling) 243 – asymmetric addition – – iminium/enamine intermediate 242 – – primary amines 246 – – quaternary carbon centres 243 – – secondary amines 250 – – transition metal catalysts 243 – Cu-catalyzed 6-endo-dig cyclization alkyne ––advantage 252 – classical reactions 3 – allene formation 257 –history 1 ––α-heteroatom-bearing aromatic aldehydes –modernreactions 4,6 253 –sources 2 – – amidation reaction 260 – structure and properties 2 – – 2-(aminomethyl)indoles 255 alkyne functional group – – 2-aminopyridines 253 – acid/base chemistry 366 – – copper(I) triflate/pybox catalyst system – thermodynamic vs kinetic stability/reactivity 256 365 – – glyoxylic acids 257 alkyne metathesis ––isoelectronicisocyanates 262 – acid-sensitive compounds 73 – – oxazolidinones 261 – alkylidyne unit redistribution 69 – – pyridine-2-carboxaldehyde 255 – amphidinolide F 99, 100 – – salicylaldehydes 253, 254 – antibiotic A26771B 95, 96 – – silver-catalyzed reaction 257 –Chauvincycle 71 – decarboxylations 259 – citreofuran 97, 98 – mechanism 239 –cruentarenA 88 – primary amines – dehydrohomoancepsenolide 86 ––α-formylphosphonate hydrates 242 – fluorinated analogue 73 – – electrophilic imines 241 – haliclonacyclamine C 87, 88 – – iridium(I)-catalyzed alkyne addition 240 – hybridalactone 88, 89 – – Ru/Cu catalyst system 241 – in homogeneous phase 70 – – toluenesulfonamide 242 – Katz/McGinnis mechanism 70 – propargylamines 239 – lactimidomycin 96, 97 –reusablecatalyst – leiodermatolide 92, 94 – – copper metal-organic framework 246 –ligandsize 72 ––Groß’smethod 246 – molybdenum alkylidynes 70 – – heterogeneous 244 – – bench-stable precatalyst 77 – – imidazolium-based ionic liquids 244 – – nitride precursor 79 – – PEG-nanosilver colloids 244 – – oxophilic molybdenum 76 Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, First Edition. Edited by Barry M. Trost and Chao-Jun Li. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA. 396 Index alkyne metathesis (contd.) – – tricolorin A 376 – – prototype catalysts 75 – – tricolorin A disaccharide 375 – – silanolate ligand exchange 76 – KAPA reagent 369 – – silanolates 78 –KNH2/NH3 isomerization 368 – – triarylsilanolate ligands 77, 78 – optically pure alcohols 365 – – vs. tungsten alkylidyne 76 amphidinolide F 99 – molybdenum-based catalysts 73, 74 antibiotic A26771B 95, 96 – neurymenolide A 91 (-)-apicularen A 371, 372 – non-terminal alkylidynes 74 aspergillide B 392 – olfactory macrolides 86, 87 aspergillide B synthesis 215 – polycavernoside 98, 99 (+)-aspicilin 389, 390 – precipitation-driven method 71 – reaction formats and substrate b – – carbon rich material 82 Bianchini dimerization 305 – – cyclo-oligomerization 80 bicyclobutenes 41 – – deprotio-metallacyclobutadiene complex [4.3.2]bicyclononanes 42 82 bicyclopropanes 37 – – gold catalyzed transannular oxa-Michael bidentate phosphane palladium(II) complex reaction 84 275 – – inter and intramolecular settings 80 biologically active polyyne natural products – – post-metathetic transformations 84 349 – – ring closing alkyne metathesis 85 boc-proline 249 – – self and cross metathesis 82 broussonetine G 379 – Schrock alkylidynes 72 broussonetine G spiroketal 379, 380 – spirastrellolide F methyl ester 101, 102 (-)-bullatacin 341, 342 – trisamide complex 75 – tubulin inhibitory macrolide WF-1360F 91 c – tulearin C 94, 95 Cadiot-Chodkiewicz cross-coupling reaction –tungsten-basedcatalysis 73 – acetylenic-halide homo-coupling 344 –tungsten-basedcatalysts 73 – chemoselectivity 341 alkyne zipper reaction – Hiyama and Stang modifications 342 –Cx+1ω-hydroxyl-1-alkyne 370 – homo-coupling suppression 342 – contra-thermodynamic isomerization 367 – Hoye’s synthesis 341 – iterative bis-asymmetric hydration approach – mechanism 347 ––ω-functionalized sphingolipids 384 – metal acetylides 343 – – apicularen A 371, 372 – palladium catalyzed reactions 343 – – aspergillide B 392 – polyacetylene natural products 350 – – aspicilin 389, 390 carbophilic Lewis acids-enyne – – broussonetine G 379 cycloisomerization – – broussonetine G spiroketal 379, 380 – 1,3- and 1,4-dienes 28 – – cephalosporolide H 387, 388 – bicyclobutenes 41 – – cladospolide A 383 – bicyclopropanes 37 – – cladospolides 380 –Coniaenereactions 32 – – clathculin A and B 386, 387 caryoynencins 350 – – cryptocaryols A and B 373–375 cephalosporolide H 387, 388 – – daumone 377, 378 Chauvin cycle 70 – – daumone aglycon 378 chiral (2-phosphino-1-naphthyl)isoquinoline – – dienoate and galacto-sugars 370 (QUINAP) type ligands 250 – – elenic acid 376, 377 citreofuran 97, 98 – – irciniasulfonic acid 386 cladospolide A 383 ––iso-cladospolide B 384 cladospolides 380 – – merremoside D 389, 391 clathculin A and B 386, 387 – – merremoside D aglycon 392 co catalyzed direct catalytic asymmetric – – milbemycin β3 373 conjugate alkynylation 192, 193 Index 397 Conia-ene reactions 32 – – Fu’s protocol 344 conjugate alkynylation – – Negisihi protocol 344 – enantioselective catalytic conjugate addition – – oxidative homo-coupling 336 182 – – palladium catalyzed acetylenic coupling – metal alkynylides reactions 343 ––s-cis α, β-enones 173–175 – – Tykwinski protocol 344 ––s-trans α, β-enones 175–177 copper-catalyzed hetero-coupling reactions – – Ni catalysis 176, 177, 180 – Bohlman’s mechanistic hypothesis 344 ––TBSOTf 177 – propiolic acids 340 – – TMSI promoter 178 copper-cocatalyzed reactions – organocuprates 173 – supported palladium-phosphorous catalysts –terminalalkynes – – chloroenyne formation 274 ––β-substituted α,β-enones 184 – – bidentate phosphane palladium(II) – – acrylates 183, 184 complex 275 – – Cu catalysis 185, 187 – – SiliaBond® 275 – – enantioselective catalytic conjugate – unsupported palladium-phosphorous addition 188 catalysts ––vs. metalated alkynylides 182 – – 6-alkynyl-substituted (R)-pipecolic acid – – Pd catalysis 184, 185 derivatives 270 – – Pd-based catalytic system 188, 189 – – egonol precursor 272 – – Ru catalysis 184, 186 – – oligo-p-aryleneethynylenes 271 – – vinyl ketones 182–184 – – resveratrol dimer 271 – – Zn catalysis 186–188 – – water-soluble phosphane 273 conjugated 1,3-diynes copper-free reactions – [4+2] benzannulation reaction 354 – supported palladium-phosphorous catalysts – alkene/alkyne metathesis 355 275 – Cadiot-Chodkiewicz cross-coupling reaction – unsupported palladium-phosphorous – – Hiyama and Stang modifications 342 catalysts – classical syntheses 336 – – aryl bromide and acetylenes coupling – Eglinton-Galbraith diyne coupling reactions 273 357 – – chlorostyrene with 1-octyne coupling – Hay’s-coupling reaction 356 274 – helically chiral bi-triphenylenes 354 – – Xphos-related phosphane 274 – heterocyclic structures 352 Cozzi’s enantioselective addition 215 – hydrosilylation 353 cruentaren A 88, 89 –linearlyπ-conjugated acetylenic oligomers cryptocaryol A and B 373–375 and polymers 355 Cu catalyzed direct catalytic conjugate – macrocyclic acetylenic rings 357 alkynylation – polyacetylene natural products – aliphatic alkynes 194, 195 – – biological activities 349 – ethyl propiolate 184, 187 – – Cadiot-Chodkiewicz cross-coupling – phenylacetylene 188, 189 reaction 350 Cu-catalyzed azide–alkyne cycloaddition – – Hay’s coupling reaction 350 (CuAAC) – – Kim’s iterative synthesis 351 – 1,2,3-triazoles – polythiophenes 352 – – arylation 125 – porphyrin-based heterocycles 352 – – oxidative couplings 125 – regio- and chemoselective hydrosilylation – 5-telluro-1,2,3-triazoles 126 352, 354 – bioconjugation studies – synthesis method – – BTTES 135 – – alkyne dimerization reaction 338 – – cowpea mosaic virus capsid 134 – – Cadiot-Chodkiewicz cross-coupling – – cyclooctynes 136 reaction 341 – – ligands 134, 136 – – copper-catalyzed hetero-coupling – – living system 136 reactions 340 – – reactive oxygen species 134 398 Index Cu-catalyzed azide–alkyne cycloaddition – – cobalt complexes 315 (CuAAC) (contd.) – – iridium complexes 315 – – SPAAC 134 ––ironcomplex 310 – biological applications 132 ––nickelcomplexes 319 –catalyst – – osmium complex 309 – – catalyst structure–activity relationship – – palladium-catalyzed dimerization 318 128 – – rodium-catalyzed dimerization 311 – – electro-, photo-, and self-induced click – – ruthenium-catalyzed dimerization 302 131 – lanthanide and actinide complexes – – ligands 127 ––(Z)-selective dimerization mechanism – Cu(1)NHC–acetylide 118 324 – DFT calculation 118 – – cyclodimerization products 322 – – advantages 120 – – lutetium alkyl complex 323 – – azide–Cu(1) structures 121 – products 301, 302 – – kinetic MS- and 15N-NMR-experiments – Straus coupling 326 119 – titanium complexes 325, 326 – – quantum mechanical assessment 121 – uranium compounds 324 – Huisgen 1,3-dipolar cycloaddition reaction – zirconium complex 325 115 (S)-(E)-15,16-dihydrominquartynoic acid – low redox potential 118 351 – molecular orbital considerations 121 diyne carbinols 14 – optimal conditions 131 domino cycloisomerization-pinacol – quantum mechanical calculations 118 rearrangements methodologies 42 – reaction parameters 117 domino enyne cycloisomerization-nucleophile – requirements 115 addition reactions – side reactions 126 – carbon nucleophiles – substrates 123 – – 1,3-dicarbonyl derivatives 61 – triazole chemistry 118 ––alkenes 54 – vs. RuAAC 117 ––allylsilanes 61 [4+2] cycloaddition reactions 42 ––aromaticrings 56 – general outcome 44 d – oxygen

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us