Retrosynthetic Design of Metabolic Pathways to Chemicals Not Found in Nature

Total Page:16

File Type:pdf, Size:1020Kb

Retrosynthetic Design of Metabolic Pathways to Chemicals Not Found in Nature Retrosynthetic design of metabolic pathways to chemicals not found in nature The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lin, Geng-Min et al. "Retrosynthetic design of metabolic pathways to chemicals not found in nature." Biology 14 (April 2019): 82-107 © 2019 The Authors As Published http://dx.doi.org/10.1016/J.COISB.2019.04.004 Publisher Elsevier BV Version Final published version Citable link https://hdl.handle.net/1721.1/125854 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Available online at www.sciencedirect.com Current Opinion in ScienceDirect Systems Biology Retrosynthetic design of metabolic pathways to chemicals not found in nature Geng-Min Lin1, Robert Warden-Rothman1 and Christopher A. Voigt Abstract simpler chemical building blocks derived from pe- Biology produces a universe of chemicals whose precision and troleum or other sources [1]. Chemicals that are large complexity is the envy of chemists. Over the last 30 years, the and complex with many functional groups and ster- expansive field of metabolic engineering has many successes eocenters have required Herculean efforts to build; in optimizing the overproduction of metabolites of industrial in- for example, halichondrin B has 32 stereocenters (4 terest, including moving natural product pathways to production billion isomers) and requires a sprawling total syn- hosts (e.g., plants to yeast). However, there are stunningly few thesis whose longest linear path is 47 reactions [2]. examples where enzymes are artificially combined to make a Solutions have been found to incredibly challenging chemical that is not found somewhere in nature. Here, we review retrosynthesis problems, many of which are recorded these efforts and discuss the challenges limiting the construc- in the tomes Classics in Total Synthesis I, II, and III tion of such pathways. An analogy is made to the retrosynthesis [3e5]. Human creativity has been the power behind problem solved in chemistry using algorithmic approaches, these solutions, but as the literature size has grown to recently harnessing artificial intelligence, noting key differences an unmanageable size, computer algorithms have in the needs of the optimization problem. When these issues are been developed to guide the identification of reaction addressed, we see a future where chemistry and biology are paths [**6]. intertwined in reaction networks that draw on the power of both to build currently unobtainable molecules across consumer, Cells are the envy of chemists as they are able to build industrial, and defense applications. complex chemicals at high yields under ambient con- ditions. They excel in dictating patterns of stereo- Addresses chemistry, and their products are impossibly Synthetic Biology Center, Department of Biological Engineering, functionalized. In fact, many of the most lauded retro- Massachusetts Institute of Technology, Cambridge, MA, USA synthesis efforts are to rebuild the chemicals made by Corresponding author: Voigt, Christopher A ([email protected]) biology, for example, hard-to-source pharmaceuticals, 1 Equally contributing authors. which can be built with fewer steps biosynthetically (Figure 1). With a view of the complex chemicals built by the natural world, it is clear that it would be revo- Current Opinion in Systems Biology 2019, 14:82–107 lutionary to be able to harness these processes to build This reviews comes from a themed issue on Synthetic biology unnatural molecules of such complexity by design. Edited by Jeff Tabor and Julius Lucks For a complete overview see the Issue and the Editorial Reaching this vision has been inhibited by several Available online 18 April 2019 challenges. Only a fraction of the enzymes sequenced have been characterized. Their high specificity makes it https://doi.org/10.1016/j.coisb.2019.04.004 more difficult to mix and match them between path- 2452-3100/© 2019 The Authors. Published by Elsevier Ltd. This is an ways as part of retrosynthetic effort. Before the emer- open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). gence of DNA synthesis, it was difficult to come by the genetic material for enzymes described in the literature [7]. Physically combining enzyme-encoding genes to Keywords Synthetic biology, Systems biology, Artificial intelligence, Machine build a pathway has only recently been made possible learning. with genetic part libraries to control expression, DNA assembly to put the enzymes together, ‘Foundries’ to build and debug designs, and methods to work with Introduction nonmodel organisms [8e16]. Directed evolution has When posed with a new molecule to build, organic been able to expand enzyme specificity to more sub- chemists have to work backwards. Known as ‘retro- strates and catalyze new reactions, including those not synthesis,’ they identify the series of chemical known to occur in nature [17,18]. Artificial intelligence transformations that can construct the target from is increasingly being applied to the design process. Current Opinion in Systems Biology 2019, 14:82–107 www.sciencedirect.com Retrosynthetic design of metabolic pathways to chemicals not found in nature Lin et al. 83 Figure 1 O OPP GAS GAO CYP71BL2 O CYP71CA1 O HO O OH O OH O O Farnesyl pyrophosphate (+)-Costunolide Parthenolide 4 steps, 30.6% Ac2O SeO2, tBuOOH 1. TBDPSCl, imidazole MnO2 Essential oil HO TBDPSO TBDPSO OH py OAc CH2Cl2 OAc 2. K2CO3, MeOH OH CH2Cl2 O 98% 73% 50% 88% TiCl4, iPr2NEt AUX = N o S CH2Cl2, -78 C O O O O 47% HO P O EtO OH o O TBSCl, imidazole OEt O 1. (COCl)2, toluene, DMF, rt 1. nBuLi, HMDS, THF, -78 C HO TBSO OH HO TBSO TBSO TBSO O N O o OH AUX Glycerol DMF NaHMDS, THF, 0 C-rt 2. NaH, L-(+)-camphorsultam S 2. NH4Cl(aq) 83% 80% 59% O O 89% O O OH O O 1. HCl, H2O, EtOH, 0 oC O 1. LAH, THF, 0 oC O H2O2, (NH4)6Mo7O24 O TBAF TBDPSO AUX TBDPSO TBDPSO TBDPSO TBSO 2. 2-methoxypropene, 2. PhSSPh, nBu3P tBuOH, py THF, rt PPTS, DMF, rt toluene, rt O AUX SPh 86% SO2Ph 95% 74% 92% SO2Ph O O 1. Ti(O-iPr)4, D-(-)-DIPT O CBr4, PPh3 O KHMDS Mg, MeOH PPTS, MeOH TBHP, CH2Cl2, -20 oC HO Br O O o o O O 2,6-lutidine, 0 C THF, 0 C rt (CH2OH)2, rt HO 2. TEMPO, PhI(OAc)2, O O O SO Ph Ph HO CH2Cl2, RT 2 94% SO2 84% 74% 78% Parthenolide 62% 18 steps, 2.3% yield Current Opinion in Systems Biology Comparison of metabolic and chemical routes to parthenolide [339,340]. The pathway has been identified and transferred from its native organism (Tanacetum parthenium) to yeast, and the theoretical yield of the biosynthetic route is shown (0.306 g/g glucose). The rise of the bioeconomy will see biochemistry merge intracellular conditions. This is solved by replacing with organic chemistry as the means by which novel portions of the pathway sourced from different organ- chemicals are discovered and produced. This manu- isms. Figure 2a shows published pathways that are not script reviews the first steps of this process towards the entirely sourced from a single organism and require automation of retrosynthetic design in biochemistry. more than two enzymatic steps from the nearest cellular Like its counterpart in chemistry, the goal of metabolic metabolite [**23e56]. retrosynthetic design is to start with a desired chemical and then determine the enzymatic transformations The route to noscapine, an anticancer alkaloid derived required to build it from metabolites made by the cell. from the opium poppy, is the most complex example to First, we review the metabolic retrosynthesis projects date [**23]. A pathway was constructed in yeast to completed to date. As in chemistry, they have relied on make noscapine from tyrosine, requiring 18 enzymatic human expertise and creativity, and the largest projects steps, of which only 13 involve enzymes from the opium have been to rebuild natural products in a production poppy (Papever somniferum). Of the remaining five, one is strain (e.g., move a plant pathway to yeast). Second, we from the brown rat (Rattus novegicus), one from bacteria will describe efforts to mine enzymes and evolve their (Pseudomonas putida), and three from other plants (Coptis specificity and ability to perform reactions not found in japonica and Eschscholzia californica) [**23,*57e59]. nature. Finally, we will review recent efforts to develop Another example is the reconstruction of the tetrahy- algorithms where a user can specify a chemical structure drocannabinol (THC) pathway from Cannabis sativa in and the software identifies the combination of enzymes yeast [39,60e64]. Only 5 enzymes were from the native required to build it in a cell. plant, with the remaining 6 sourced from four diverse bacterial species. Both the noscapine and THC projects Classics in total retrobiosynthesis required protein engineering to alter the enzymes to Moving natural product pathways from plants to pro- eliminate feedback inhibition and alter localization tags. duction hosts, such as yeast, makes up the most complex Broad enzyme substrate specificity was recognized as metabolic engineering projects to date. All the biosyn- being critical in combining enzymes from diverse sour- thetic enzymes are present in the plant, and in some ces to form a new pathway. cases, they can all be moved into the new host together [19e22]. This is not always possible as an enzyme may Xenobiotic molecules are those not known to occur in be unknown or it is nonfunctional in the new host due to nature. Retrobiosynthetic design has been applied to misfolding, localization, missing cofactors, precursor build these compounds by combining a series of en- supply, feedback inhibition, or differences in the zymes that synthesize it from a cellular metabolite www.sciencedirect.com Current Opinion in Systems Biology 2019, 14:82–107 84 Synthetic biology [**24,26,**28,41e47,65e71].
Recommended publications
  • Organic Synthesis: Handout 1
    Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 2016 Mon at 10am; Wed at 9am Dyson Perrins lecture theatre Copies of this handout will be available at hEp://donohoe.chem.ox.ac.uk/page16/index.html 1/33 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III Synopsis 1) Introduc5on to synthesis: (i) Why do we want to synthesise molecules- what sort of molecules do we need to make? (ii) What aspects of selecvity do we need to accomplish a good synthesis (chemo-, regio- and stereoselecvity)? (iii) Protecng group chemistry is central to any syntheAc effort (examples and principles) (iv) What is the perfect synthesis (performed in industry versus academia)? 2) The chiral pool: where does absolute stereochemistry come from? 3) Retrosynthesis- learning to think backwards (revision from first and second year). Importance of making C-C bonds and controlling oxidaAon state. Umpolung 4) Some problems to think about 5) Examples of retrosynthesis/synthesis in ac5on. 6) Ten handy hints for retrosynthesis 7) Soluons to the problems Recommended books: General: Organic Chemistry (Warren et al) Organic Synthesis: The DisconnecRon Approach (S. Warren) Classics in Total Synthesis Volumes I and II (K. C. Nicolaou) The Logic of Chemical Synthesis (E. J. Corey) 2/33 View Article Online / Journal Homepage / Table of Contents for this issue 619461 Strychniqae and BYucine. Pavt XLII. 903 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 (i) Why do we want to synthesise complex molecules? Isolated from the Pacific Yew in 1962 Prescribed for prostate, breast and ovarian cancer Unique mode of acRon 1x 100 year old tree = 300 mg Taxol Isolated in 1818- poisonous Stuctural elucidaon took R.
    [Show full text]
  • Artificial Intelligence for Computer-Aided Synthesis
    ORIGINAL RESEARCH published: 04 August 2020 doi: 10.3389/fceng.2020.00005 Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components Pieter P. Plehiers 1,2, Connor W. Coley 1, Hanyu Gao 1, Florence H. Vermeire 1, Maarten R. Dobbelaere 2, Christian V. Stevens 3, Kevin M. Van Geem 2* and William H. Green 1* 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States, 2 Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium, 3 SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent Edited by: University, Ghent, Belgium René Schenkendorf, Technische Universitat Braunschweig, Germany Computer-aided synthesis has received much attention in recent years. It is a challenging Reviewed by: topic in itself, due to the high dimensionality of chemical and reaction space. It becomes Richard Anthony Bourne, even more challenging when the aim is to suggest syntheses that can be performed in University of Leeds, United Kingdom Alexei Lapkin, continuous flow. Though continuous flow offers many potential benefits, not all reactions University of Cambridge, are suited to be operated continuously. In this work, three machine learning models United Kingdom have been developed to provide an assessment of whether a given reaction may benefit *Correspondence: from continuous operation, what the likelihood of success in continuous flow is for a Kevin M. Van Geem [email protected] certain set of reaction components (i.e., reactants, reagents, solvents, catalysts, and William H. Green products) and, if the likelihood of success is low, which alternative reaction components [email protected] can be considered.
    [Show full text]
  • Organic Synthesis: New Vistas in the Brazilian Landscape
    Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 895-941 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170564 www.scielo.br/aabc | www.fb.com/aabcjournal Organic Synthesis: New Vistas in the Brazilian Landscape RONALDO A. PILLI and FRANCISCO F. DE ASSIS Instituto de Química, UNICAMP, Rua José de Castro, s/n, 13083-970 Campinas, SP, Brazil Manuscript received on September 11, 2017; accepted for publication on December 29, 2017 ABSTRACT In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute.
    [Show full text]
  • Highly Enantioselective Synthesis of Γ-, Δ-, and E-Chiral 1-Alkanols Via Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA)–Cu- Or Pd-Catalyzed Cross-Coupling
    Highly enantioselective synthesis of γ-, δ-, and e-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling Shiqing Xu, Akimichi Oda, Hirofumi Kamada, and Ei-ichi Negishi1 Department of Chemistry, Purdue University, West Lafayette, IN 47907 Edited by Chi-Huey Wong, Academia Sinica, Taipei, Taiwan, and approved May 2, 2014 (received for review January 21, 2014) Despite recent advances of asymmetric synthesis, the preparation shown in Schemes 1 and 2 illustrate the versatility of ZACA of enantiomerically pure (≥99% ee) compounds remains a chal- represented by the organoaluminum functionality of the ini- lenge in modern organic chemistry. We report here a strategy tially formed ZACA products. Introduction of the OH group for a highly enantioselective (≥99% ee) and catalytic synthesis by oxidation of initially formed alkylalane intermediates in of various γ- and more-remotely chiral alcohols from terminal Scheme 2 is based on two considerations: (i) the proximity of the alkenes via Zr-catalyzed asymmetric carboalumination of alkenes OH group to a stereogenic carbon center is highly desirable for (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ lipase-catalyzed acetylation to provide ultrapure (≥99% ee) di- oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols functional intermediates, and (ii) the versatile OH group can R S α ω produced both ( )- and ( )- , -dioxyfunctional intermediates (3) be further transformed to a wide range of carbon groups by – ee ≥ ee in 80 88% , which were readily purified to the 99% level tosylation or iodination followed by Cu- or Pd-catalyzed cross- by lipase-catalyzed acetylation through exploitation of their high α ω coupling.
    [Show full text]
  • Complex Organic Synthesis: Structure, Properties, And/Or 5 Function? 6
    Essays 1 DOI: 10.1002/ijch.201800016 2 3 4 Complex Organic Synthesis: Structure, Properties, and/or 5 Function? 6 7 [a] 8 George M. Whitesides 9 10 In 1956 – the year R. B. Woodward’s famous Perspective[1] addition to performing research, university research groups 11 was published – I was a senior in high school. The next year, have the important obligation to teach students what they need 12 when I started college and joined a research group, it was still to know for their intended careers. Is the training that students 13 all the (I thought, hopefully and in anticipation, “we”) organic currently receive in organic synthesis the one that best 14 chemistry graduate students talked about. The vision was so prepares them for their future (and which may possibly be 15 astonishing, and the ambition so grand, that it was transfixing. entirely different than their research director’s past)? 16 It clearly marked the transformation of the field of synthesis 17 from one state into something entirely different – one marked 18 by disciplined, elegant, complexity. I never actually met “Organic Synthesis:” What Is It? 19 Woodward (other than secondarily, through one of his 20 postdocs, to let me know of his intense displeasure at my use The phrase “Organic Synthesis” is a complicated one, and 21 of his IR spectrometers in the middle of the night), but I did means different things to different people. It is always risky, 22 go to Woodward group seminars, where I learned humility, as semantically, to use a single phrase to describe many different 23 well as new definitions of “endurance” and bladder control things.
    [Show full text]
  • Custom Peptide Services
    Innovative Peptide Solutions Custom Peptide Services Custom & Specialty Peptides Clinical Peptides Peptide Libraries Peptide Pools Peptide Arrays Peptidomimetic & Organic Synthesis Innovative Peptide Solutions JPT’s key technologies are: Custom & Specialty Peptides We are peptide experts with a track record of more than 20 years and offer the largest variety of peptide History chemistries, formats and modifications. JPT Peptide Technologies is a service provider located in Berlin, Germany that has achieved worldwide credi- PepMix™ bility for its commitment to rigorous quality standards Defined antigen spanning peptide pools to and a reputation for developing and implementing stimulate CD4+ and CD8+ T-cells. innovative peptide-based services and research tools for various applications. PepTrack™ Together with its US-subsidiary JPT serves its clientele Peptide libraries of individual peptides offering in the pharmaceutical and biotechnology industries as various specifications and optimization for different well as researchers in universities, governmental and types of assays. non-profit organizations. Clinical Peptides Custom peptides produced for the stringent require- ments of cellular therapy as well as vaccine and Technology & drug development. Application PepStar™ Over the past decade JPT has developed a portfolio of Peptide microarray platform for antibody epitope propietary technologies as well as innovative products dis covery, monitoring of humoral immune responses, and services that have helped to advance the develop- protein-protein interactions and enzyme profiling. ment of new immunotherapies, proteomics and drug discovery. SPOT High-throughput peptide synthesis for T-cell epitope discovery , neo epitope qualification and peptide lead Quality Assurance discovery. JPT is DIN EN ISO 9001:2015 certified and GCLP audited. SpikeTides™ Light and stable isotope-labeled or quantified peptides for mass spectrometry based proteomics assays.
    [Show full text]
  • M.Sc. (Organic Chemistry) Part II Pattern 2019
    M.Sc. (Organic Chemistry) Part II Pattern 2019 Deccan Education Society’s FERGUSSON COLLEGE (AUTONOMOUS), PUNE Syllabus for M. Sc. (Organic Chemistry) Part II (Semester-III and Semester-IV) [Pattern 2019] from Academic Year 2020-21 1 Department of Chemistry, Fergusson College (Autonomous), Pune M.Sc. (Organic Chemistry) Part II Pattern 2019 Program Structure of M.Sc. (Organic Chemistry) Part-II Particulars Paper Paper Title of Paper Type of No. of code Paper Credits Paper- 1 CHO5301 Stereochemistry of Organic Molecules CORE-1 4 Paper - 2 CHO5302 Structure Determination by Analytical CORE- 2 4 Methods Paper - 3 CHO5303 Chemistry of Heterocycles and Medicinal D. elective Chemistry CHO5304 Pharmaceutical Chemistry G. Elective M.Sc. CHO5305 MOOC Course MOOC1 4 Semester- III Paper -4 CHO5306 Organic Chemistry Practical V PCORE-1 4 Paper -5 CHO5307 Organic Chemistry Practical VI PCORE-1 4 Chemistry of Natural Products and CHO5401 Paper -1 Chiron Approach D. elective CHO5402 Forensic Science and Toxicology G. Elective 4 CHO5403 MOOC Course MOOC2 Paper - 2 CHO5404 Advanced Synthetic Organic Chemistry D. elective CHO5405 Analytical Spectroscopy G. Elective 4 M. Sc. CHO5409 MOOC Course MOOC3 Semester- Paper - 3 Designing of Organic Synthesis and D. elective CHO5407 IV Asymmetric Synthesis 4 CHO5408 Polymer Chemistry G. Elective CHO5409 MOOC Course MOOC4 Paper -4 CHO5410 Organic Chemistry Practical VII PCORE-3 4 Paper -5 CHO5411 Organic Chemistry Practical VIII PCORE-4 4 OR Paper -6 Project / Internship (Optional for practical 8 CHO5412 courses CHO5410 and CHO5411) * 1 P * Course- 1 CHO-01 Environmental Chemistry MOOCs 4 Course- 2 CHO-02 MOOCs 4 MOOC Biophysical Chemistry courses Course-3 CHO-03 Environmental soil chemistry MOOCs 4 Course- 4 CHO-04 Food Analysis MOOCs 4 CHO5301: Stereochemistry of Organic Molecules [Credits – 4] 2 Department of Chemistry, Fergusson College (Autonomous), Pune M.Sc.
    [Show full text]
  • Organic Synthesis - Gian Paolo Chiusoli
    FUNDAMENTALS OF CHEMISTRY – Vol. II - Organic Synthesis - Gian Paolo Chiusoli ORGANIC SYNTHESIS Gian Paolo Chiusoli University of Parma, Italy Keywords: asymmetric synthesis, catalysis, combinatorial chemistry, chirality amplification, electrochemical synthesis, electrocyclic reactions, electrophilic reagents, enzymes, metallacyclic reactions, nucleophilic reagents, oligomerization, organic reactions, organic sequences, phase transfer, photochemical synthesis, polymerization, protective groups, retrosynthetic analysis, selectivity, self-assembly, self-replication, solid-state reactions, stereoselectivity, supercritical fluids Contents 1. Introduction 2. Organic Reactions 2.1. Reactions of Nucleophilic Reagents with Electrophilic Substrates 2.2. Reactions of Electrophilic Reagents with Nucleophilic Substrates 2.3. Electrocyclic Reactions 2.4. Metallacyclic Reactions: Metathesis 3. Rate and Selectivity Control 3.1. Rational Use of Chemical and Physical Parameters 3.2. Catalysis 3.3. Selectivity 3.4. Asymmetric Synthesis 3.5. Protective Groups 3.6. Heterogeneous and Solid-State Reactions 3.7. Phase-Transfer Techniques 3.8. Syntheses in Special Fluids 3.8.1. Synthesis in Fluorous Phase 3.8.2. Synthesis in Supercritical Fluids 3.8.3. Synthesis in Ionic Liquids 3.9. Photochemical Synthesis 3.10. Electrochemical Synthesis 4. Multistep UNESCOReactions – EOLSS 4.1. Oligomerization and Polymerization of Organic Compounds 4.2. Stepwise Reactions Involving Group Protection and Deprotection 4.3. Chain-Growth Organic Reactions 5. Organic SynthesisSAMPLE based on Weak Interactions: CHAPTERS Self-Assembly 6. Bio-Inspired Organic Synthesis 6.1. Enzyme Models 6.2. Antibody-Catalyzed Reactions 6.3. Self-Replication 6.4. Amplification of Chirality 7. Synthetic Planning and Strategies 7.1. Target Identification and Modeling 7.1.1. New Structures 7.1.2. New Structures with Function ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF CHEMISTRY – Vol.
    [Show full text]
  • History of Organic Electrochemistry 37
    CORE Metadata, citation and similar papers at core.ac.uk Provided by South East Academic Libraries System (SEALS) THE ELECTROCHEMICAL HYDROXYLATION OF AROMATIC SUBSTRATES By DANIËL RAUTENBACH Baccalareus Technologiae Chemistry, Port Elizabeth Technikon A dissertation submitted in partial fulfilment of the requirements for the Masters Degree in Technology: Chemistry In the Faculty of Applied Science at the PORT ELIZABETH TECHNIKON January 2002 Promoter: Prof. P.L.R. Loyson 2 ACKNOWLEDGEMENTS My promoter Prof. P.L.R Loyson for his help and guidance. To NRF for their financial assistance To my mother for all her help, support and guidance. Without her I would not be what and where I am today. Jacques and Nikki for reminding me that the problems encountered were not too big but the successes were. The staff of the Faculty of Applied Science (PE Technikon), and Shawn Gouws, Wilroy Bennen, Lee-Anne Willets and the rest of the gang for friendship, entertainment and advice concerning various matters. 3 CONTENTS ACKNOWLEDGEMENTS 2 CONTENTS 3 CHAPTER 1: INTRODUCTION 11 1.1 GENERAL 11 1.2 BRIEF HISTORY OF THE SOUTH AFRICAN CHEMICAL INDUSTRY 12 1.2.1 Current Trends 14 1.2.2 Coal Chemicals vs. Oil Chemicals 18 1.3 OVERVIEW ON STARTING MATERIALS 21 1.3.1 Properties 22 1.4 OVERVIEW ON PRODUCTS 23 1.4.1 Introduction 23 1.4.2 Properties 24 1.4.3 Uses and applications of products 25 1.4.4 Sources 28 1.4.4.1. Natural 28 1.4.4.2. Synthetic 28 1.5 NEED FOR AN ELECTROCHEMICAL INVESTIGATION 34 CHAPTER 2: ELECTROCHEMICAL ASPECTS 35 2.1 INDUSTRIAL ELECTROCHEMISTRY
    [Show full text]
  • Organic Synthesis - En-Cours-2017-Lchm2241 Lchm2241 Organic Synthesis 2017
    Université catholique de Louvain - Organic synthesis - en-cours-2017-lchm2241 lchm2241 Organic synthesis 2017 6 credits 45.0 h + 15.0 h Q2 Teacher(s) Nay Bastien ;Riant Olivier ; Language : English Place of the course Louvain-la-Neuve Main themes The content of the first part of this lecture course can vary, based upon novelties in the literature. The general themes will encompass: the basics of organometallic chemistry - examples of organometallic catalysis in industrial processes - the main classes of organometallic catalysts - application in enantioselective catalysis - application to the synthesis of organic compounds of interest for the agrochemical and pharmaceutical industries - application to the synthesis of natural products. The second part will focus on the study of the most important classes of natural products (terpenes, steroids, alkaloids, macrolides, prostaglandins,..). Their biosynthesis and their total synthesis will be presented. Representative total synthesis will illustrate the power of organic chemistry. In parallel, the notions of strategies in total synthesis and of retrosynthetic analysis will be implemented and developed. New methods, reagents and concepts will be discussed and their use in total synthesis exemplified. Methods for asymmetric induction will be studied and multi steps total synthesis will be practised on paper. Aims Specialised course on the construction of complex molecules by multi steps synthesis. The first part of this course will focus on modern methods for multi steps organic synthesis and more specifically on organometallic catalysis, a synthetic tool widespread in academic and in industrial laboratories. The special case of enantioselective catalysis will also be studied in detail. Several examples of multi steps total 1 syntheses, employing one or more organometallic reagents, will highlight the usefulness of these catalysts in applied fields.
    [Show full text]
  • Synthesis of Metal Oxide-Based Catalysts by Microwave-Assisted Solution Combustion Method Kawthar Frikha
    Synthesis of metal oxide-based catalysts by microwave-assisted solution combustion method Kawthar Frikha To cite this version: Kawthar Frikha. Synthesis of metal oxide-based catalysts by microwave-assisted solution combustion method. Material chemistry. Université de Haute Alsace, 2020. English. tel-03010014 HAL Id: tel-03010014 https://hal.archives-ouvertes.fr/tel-03010014 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Année 2020 N° d’ordre : (attribué par le SCD) UNIVERSITÉ DE HAUTE-ALSACE−UNIVERSITÉ DE STRASBOURG ÉCOLE NATIONALE D’INGÉNIEURS DE SFAX−UNIVERSITÉ DE SFAX THESE En cotutelle internationale Pour l’obtention du grade de DOCTEUR DE L’UNIVERSITÉ DE HAUTE-ALSACE ECOLE DOCTORALE : Physique et Chimie-Physique (ED 182) Discipline : Chimie-Physique ET DOCTEUR DE L’ÉCOLE NATIONALE D’INGÉNIEURS DE SFAX ECOLE DOCTORALE : Sciences et Technologies Discipline : Matériaux et Environnement Présentée et soutenue publiquement par Kawthar FRIKHA Le 27 Mai 2020 SYNTHÈSE DE CATALYSEURS D’OXYDES MÉTALLIQUES PAR LA MÉTHODE DE COMBUSTION EN SOLUTION ASSISTÉE PAR MICRO- ONDES Jury : M. Patrick FIEVET, Professeur des Universités, UTINAM, France (Président) M. Jean-Luc ROUSSET, Directeur de Recherche, IRCELyon, France (Rapporteur) Mme.
    [Show full text]
  • Organic Electrosynthesis Amps up the Potential for Synthetic Innovation
    Vol. 4 No.2 March 2020 Organic electrosynthesis amps up the potential for synthetic innovation, while technological advances decrease the resistance for entry into this electrifying field By Matthew Hartle, Ph.D. Abstract Organic electrochemistry is an area that is receiving more attention as chemists face pressures to synthesize more complex molecular targets in a more efficient fashion. The pressure comes from many corners including a desire to develop processes that are greener and more sustainable while producing significantly fewer toxic wastes and a reduction in manufacturing costs. It helps that many electrochemical processes are safer to operate and can be inherently linked to renewable energies. While innovations in beaker-scale electrolysis1 have opened the field to the typical organic bench chemist, a technology gap exists for scaling the reactions to the production level.2 Here we review several recent organic transformations that could either scale to larger flow-cell type systems or require further optimization in parallel with scale-up, as examples where the technology gap could be bridged. The Electrosynthesis Company is well-positioned to bridge the gap that exists between the bench and commercialization. A technology gap exists in scale-up of organic electrochemistry Reduction and oxidation are a short topic in the typical college organic chemistry class. Redox topics are relegated to the reduction of multiple bonds to alkenes or alkanes and the oxidation of oxygen groups to form carboxylic acids. Graduate-level organic chemistry classes also tend to follow the typical idea of organic chemical transformations being substitutions, eliminations, and concerted mechanisms without a deep description of reductions and oxidations of each process beyond hydrogenations or heterogeneous oxidations.
    [Show full text]