Stability Analysis of the Lorenz System Using Hurwitz Polynomials

Total Page:16

File Type:pdf, Size:1020Kb

Stability Analysis of the Lorenz System Using Hurwitz Polynomials International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 502-509 © International Research Publication House. http://www.irphouse.com Stability Analysis of the Lorenz System using Hurwitz Polynomials Fabián Toledo Sánchez1, Pedro Pablo Cárdenas Alzate2 and José Rodrigo González Granada3 1,2,3 Department of Mathematics and GEDNOL, Universidad Tecnológica de Pereira, Pereira, Colombia. Abstract Among these fundamental studies is the stability analysis; this stability analysis can be performed using the results of In the qualitative study of differential equations, we can Lypaunov, who presented two methods to determine stability analyze whether or not small variations or perturbations in the that solve particular problems according to the structure of the initial conditions produce small changes in the future, this differential equations or using Hurwitz type polynomials. intuitive idea was formalized by Lyapunov in his work "The General Problem of Motion Stability". The stability analysis of If the nonlinear ordinary differential equation is expressed in a system of differential equations can be performed using the the form 푥̇ = Ax, then the problem of analyzing the stability methods proposed by Lyapunov or using criteria to obtain becomes a problem of algebraic type, since it is only enough to Hurwitz type polynomials, which provide conditions to analyze know the roots of the characteristic polynomial associated to the dynamics of the system by studying the location of the roots the matrix 퐴 which correspond to the eigenvalues and to of the characteristic polynomial associated to the system. In this observe if these have negative real part; if the above occurs it paper we present a stability analysis of the Lorenz system using is said that the system 푥̇ = Ax is asymptotically stable. If this stability criteria to obtain Hurwitz type polynomials. polynomial has the above mentioned characteristic it is said to be a Hurwitz polynomial [6], [7]. Keywords: Stability of differential equations, Hurwitz polynomials, Hurwitz criterion, Lorenz system. Therefore, a relevant fact to analyze the stability of the system 푥̇ = Ax corresponds to establish criteria to determine when the characteristic polynomial associated to the matrix 퐴 is Hurwitz, I. INTRODUCTION i.e., if all its roots have negative real part. In [8] a series of criteria are presented to obtain Hurwitz type polynomials, these The stability analysis of systems of ordinary differential criteria present some equivalences in their formulation, among equations is the object of study in various mathematical models them the Routh-Hurwitz criterion, the Lienard-Chipart applied to a varied branch of the exact sciences and control conditions, the Hermite-Biehler theorem, the stability test and theory, where the aim is to provide necessary and sufficient the Routh algorithm [9]. conditions so that in a given problem with established initial conditions, solutions close to this initial value remain close Thus, the objective of this paper is to analyze the stability of throughout the future or in a given case tend to the equilibrium the Lorenz system using the Routh-Hurwitz stability criteria solution. This notion of closeness and proximity for small and the Routh algorithm. For this purpose, four sections are variations in the initial conditions was initially worked on by presented: in the first one, the Routh-Hurwitz stability criteria outstanding mathematicians such as Lagrange and Dirichlet, and the Routh algorithm are deduced; in the second section, a but it was not until 1892 when the Russian mathematician and stability analysis of the Lorenz system is performed using the physicist Aleksandr Lyapunov laid the foundations for this criteria presented to obtain Hurwitz type polynomials and concept of proximity in his doctoral thesis entitled "The finally, the results are analyzed by means of simulations General Problem of Motion Stability" [1]. performed in MATLAB using the ode45 function for the solution of the system of nonlinear differential equations. The The study of the dynamics of these sensitive variations in the simulations validate the results obtained on the stability of the initial conditions is the fundamental work in the qualitative Lorenz system. analysis of ordinary differential equations. The importance of such sensitive variation is observed in the Lorenz system, this nonlinear model that described the movement of air masses in the atmosphere gave way to a branch of mathematics called II. HURWITZ POLYNOMIALS chaos theory, because Lorenz, studying the weather patterns, Let began to observe unusual behaviors to those that had been established that should happen. Lorenz using a numerical 풙̇ = 퐴풙 (1) simulation used 0.506 as an initial data as a less accurate be a system of linear or nonlinear ordinary differential approximation of the data 0.506127, obtaining as a result, equations, where 퐴 is a square matrix and 풙 is a vector. The according to two tabulations, two completely different climate stability of the system (1) at its equilibrium point can be scenarios [2], [3]. This small variation or perturbation in their determined by performing a study of the eigenvalues of the initial values yielded completely different climatological associated matrix 퐴. This algebraic study establishes that if the results. From the moment Lorenz formulated the problem with roots of the characteristic polynomial associated to the matrix this question, various characteristics of the system began to be A have negative real part, then we conclude that the system (1) studied, such as regions of stability, attractor basins, is asymptotically stable. bifurcations, chaos, geometric aspects, among others [4], [5]. 502 International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 502-509 © International Research Publication House. http://www.irphouse.com Now, the problem of determining the stability in a system of This matrix is constructed as follows: differential equations from the study of the roots of the In the first row are the coefficients of the polynomial characteristic polynomial of 퐴 associated to the linear or (3) with odd location starting with 푎1. nonlinear system, translates into the task of finding necessary In the second row are the coefficients of the and sufficient conditions for which all the roots of this polynomial (3) with even location starting with 푎0. polynomial are located in the left half of the complex plane, i.e., The elements of each subsequent row are formed so if they have negative real part. that the component ℎ푖푗 is given by: This way of obtaining polynomials of this type with negative real part was initially proposed by the physicist James Maxwell 푎 푠푖 0 < 2푗 − 푖 ≤ 0 in 1868, who presented a solution to this problem for ℎ = { 2푗−푖 푖푗 polynomials of degree 3, then in 1877, the Canadian 0 푖푛 표푡ℎ푒푟 푐푎푠푒 mathematician Edward Routh presented an algorithm that As a result of the construction, the coefficients 푎1, 푎2, 푎3, solved the problem in a more general way providing explicit … , 푎푛 are on the main diagonal of the matrix, and all the conditions for polynomials up to degree 5 and later it was the elements of the last column are null, except the last element German mathematician Adolf Hurwitz in 1895 who presented which is 푎푛. The matrix ℋ is called Hurwitz Matrix. a properly analytical solution to the problem [6]. Routh-Hurwitz theorem. The polynomial (3), with its Definition 1: A polynomial with real coefficients is said to be positive leading coefficient (푎0 > 0), is a Hurwitz polynomial Hurwitz if all its roots have a negative real part, that is, if all its if and only if all the diagonal principal minors of the Hurwitz roots lie in ℂ−, the left half-plane of the complex plane, matrix ℋ are positive [10]. ℂ− = { 푎 + 푏푖 ∶ 푎 < 0 } (2) The principal diagonal minors of the matrix (4) are given by the following determinants, 푎1 푎3 푎5 II.I Criteria for obtaining Hurwitz polynomials 푎1 푎3 Δ1 = ∣ 푎1 ∣, Δ2 = | |, Δ3 = |푎0 푎2 푎4|, 푎0 푎2 Let 0 푎1 푎3 푛 푛−1 2 푎1 푎3 푎5 푎7 푃(휆) = 푎0휆 + 푎1휆 + ⋯ + 푎푛−2휆 + 푎푛−1휆 + 푎푛 (3) 푎0 푎2 푎4 푎6 Δ4 = | |, ⋯ , Δ푛 = 푎푛 ∙ Δ푛−1. be the characteristic polynomial associated to the matrix 퐴 of 0 푎1 푎3 푎5 the system (1). 0 푎0 푎2 푎4 In the search for algorithms to determine the location of the roots of the polynomial (3) the following question was asked: II.I.II Routh criterion how to determine if the polynomial (3) is Hurwitz? For the coefficients of the polynomial (3) the Routh This question was studied by several mathematicians and arrangement is constructed as follows, physicists, among the first who proposed to solve this type of problem was the Austrian engineer A. Stodola who at the end 푎0 푎2 푎4 푎6 ⋯ of the 19th century was interested in the problem of finding 푎1 푎3 푎5 푎7 ⋯ conditions under which all the roots of a polynomial had a negative real part; but in 1895 it was Hurwitz who presented a 푏0 푏1 푏2 푏3 ⋯ (5) 푐 푐 ⋯ solution to the previous question based on the work of Hermite. 푐0 푐1 2 3 푑 푑 ⋯ 푑0 푑1 2 3 There are several criteria to obtain Hurwitz type polynomials. ⋮ ⋮ ⋮ ⋮ ⋱ In this paper we only briefly present the Routh-Hurwitz criterion and the Routh algorithm. In the first row are the coefficients of the polynomial (3) with even location starting with 푎0. II.I.I Routh-Hurwitz criterion In the second row are the coefficients of the polynomial To present the Routh-Hurwitz criterion we first construct the (3) with odd location starting with 푎1. following matrix from the coefficients 푎0, 푎1, … , 푎푛 of the The elements of each subsequent row are formed polynomial (3): according to the following algorithm 푎 푎 푎1 푎3 푎5 푎7 ⋯ 0 0 2 푏0 = 푎2 − 푎3 , 푏1 = 푎4 − 푎5 , ⋯ 푎 푎 푎 푎 ⋯ 0 푎 푎 0 2 4 6 1 3 푎 푎 푎 ℋ = 0 1 2 3 ⋯ 0 (4) 푎1 푎3 푎2 푎 푎 ⋯ 0 0 4 6 푐0 = 푎3 − 푏1 , 푐1 = 푎5 − 푏2 , ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ 0 푏0 푏1 [ 0 0 0 0 ⋯ 푎푛] 푏0 푏1 푑0 = 푏1 − 푐1 , 푑1 = 푏2 − 푐2 , ⋯ 푐0 푐1 ⋮ ⋮ 503 International Journal of Engineering Research and Technology.
Recommended publications
  • Stability Analysis of Fitzhughâ•Finagumo With
    Proceedings of GREAT Day Volume 2011 Article 4 2012 Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcing Tyler Massaro SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/proceedings-of-great-day Creative Commons Attribution 4.0 License This work is licensed under a Creative Commons Attribution 4.0 License. Recommended Citation Massaro, Tyler (2012) "Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcing," Proceedings of GREAT Day: Vol. 2011 , Article 4. Available at: https://knightscholar.geneseo.edu/proceedings-of-great-day/vol2011/iss1/4 This Article is brought to you for free and open access by the GREAT Day at KnightScholar. It has been accepted for inclusion in Proceedings of GREAT Day by an authorized editor of KnightScholar. For more information, please contact [email protected]. Massaro: Stability Analysis of FitzHugh–Nagumo with Smooth Periodic Forcin Stability Analysis of FitzHugh – Nagumo with Smooth Periodic Forcing Tyler Massaro 1 Background Since the concentration of K+ ions is so much higher inside the cell than outside, there is a As Izhikevich so aptly put it, tendency for K+ to flow out of these leak channels “If somebody were to put a gun to the head of along its concentration gradient. When this the author of this book and ask him to name the happens, there is a negative charge left behind by single most important concept in brain science, he the K+ ions immediately leaving the cell. This would say it is the concept of a neuron[16].” build-up of negative charge is actually enough to, in a sense, catch the K+ ions in the act of leaving By no means are the concepts forwarded in his and momentarily halt the flow of charge across the book restricted to brain science.
    [Show full text]
  • At Work in Qualitative Analysis: a Case Study of the Opposite
    HISTORIA MATHEMATICA 25 (1998), 379±411 ARTICLE NO. HM982211 The ``Essential Tension'' at Work in Qualitative Analysis: A Case Study of the Opposite Points of View of Poincare and Enriques on the Relationships between Analysis and Geometry* View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Giorgio Israel and Marta Menghini Dipartimento di Matematica, UniversitaÁ di Roma ``La Sapienza,'' P. le A. Moro, 2, I00185 Rome, Italy An analysis of the different philosophic and scienti®c visions of Henri Poincare and Federigo Enriques relative to qualitative analysis provides us with a complex and interesting image of the ``essential tension'' between ``tradition'' and ``innovation'' within the history of science. In accordance with his scienti®c paradigm, Poincare viewed qualitative analysis as a means for preserving the nucleus of the classical reductionist program, even though it meant ``bending the rules'' somewhat. To Enriques's mind, qualitative analysis represented the af®rmation of a synthetic, geometrical vision that would supplant the analytical/quantitative conception characteristic of 19th-century mathematics and mathematical physics. Here, we examine the two different answers given at the turn of the century to the question of the relationship between geometry and analysis and between mathematics, on the one hand, and mechanics and physics, on the other. 1998 Academic Press Un'analisi delle diverse posizioni ®loso®che e scienti®che di Henri Poincare e Federigo Enriques nei riguardi dell'analisi qualitativa fornisce un'immagine complessa e interessante della ``tensione essenziale'' tra ``tradizione'' e ``innovazione'' nell'ambito della storia della scienza.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Table of Contents More Information
    Cambridge University Press 978-1-107-03042-8 - Lyapunov Exponents: A Tool to Explore Complex Dynamics Arkady Pikovsky and Antonio Politi Table of Contents More information Contents Preface page xi 1Introduction 1 1.1 Historical considerations 1 1.1.1 Early results 1 1.1.2 Biography of Aleksandr Lyapunov 3 1.1.3 Lyapunov’s contribution 4 1.1.4 The recent past 5 1.2 Outline of the book 6 1.3 Notations 8 2Thebasics 10 2.1 The mathematical setup 10 2.2 One-dimensional maps 11 2.3 Oseledets theorem 12 2.3.1 Remarks 13 2.3.2 Oseledets splitting 15 2.3.3 “Typical perturbations” and time inversion 16 2.4 Simple examples 17 2.4.1 Stability of fixed points and periodic orbits 17 2.4.2 Stability of independent and driven systems 18 2.5 General properties 18 2.5.1 Deterministic vs. stochastic systems 18 2.5.2 Relationship with instabilities and chaos 19 2.5.3 Invariance 20 2.5.4 Volume contraction 21 2.5.5 Time parametrisation 22 2.5.6 Symmetries and zero Lyapunov exponents 24 2.5.7 Symplectic systems 26 3 Numerical methods 28 3.1 The largest Lyapunov exponent 28 3.2 Full spectrum: QR decomposition 29 3.2.1 Gram-Schmidt orthogonalisation 31 3.2.2 Householder reflections 31 v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03042-8 - Lyapunov Exponents: A Tool to Explore Complex Dynamics Arkady Pikovsky and Antonio Politi Table of Contents More information vi Contents 3.3 Continuous methods 33 3.4 Ensemble averages 35 3.5 Numerical errors 36 3.5.1 Orthogonalisation 37 3.5.2 Statistical error 38 3.5.3
    [Show full text]
  • The Development of Hierarchical Knowledge in Robot Systems
    THE DEVELOPMENT OF HIERARCHICAL KNOWLEDGE IN ROBOT SYSTEMS A Dissertation Presented by STEPHEN W. HART Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2009 Computer Science c Copyright by Stephen W. Hart 2009 All Rights Reserved THE DEVELOPMENT OF HIERARCHICAL KNOWLEDGE IN ROBOT SYSTEMS A Dissertation Presented by STEPHEN W. HART Approved as to style and content by: Roderic Grupen, Chair Andrew Barto, Member David Jensen, Member Rachel Keen, Member Andrew Barto, Department Chair Computer Science To R. Daneel Olivaw. ACKNOWLEDGMENTS This dissertation would not have been possible without the help and support of many people. Most of all, I would like to extend my gratitude to Rod Grupen for many years of inspiring work, our discussions, and his guidance. Without his sup- port and vision, I cannot imagine that the journey would have been as enormously enjoyable and rewarding as it turned out to be. I am very excited about what we discovered during my time at UMass, but there is much more to be done. I look forward to what comes next! In addition to providing professional inspiration, Rod was a great person to work with and for|creating a warm and encouraging labora- tory atmosphere, motivating us to stay in shape for his annual half-marathons, and ensuring a sufficient amount of cake at the weekly lab meetings. Thanks for all your support, Rod! I am very grateful to my thesis committee|Andy Barto, David Jensen, and Rachel Keen|for many encouraging and inspirational discussions.
    [Show full text]
  • Voltage Control Using Limited Communication**This Work Was
    20th IFAC World Congress 2017 IFAC PapersOnline Volume 50, Issue 1 Toulouse, France 9-14 July 2017 Part 1 of 24 Editors: Denis Dochain Didier Henrion Dimitri Peaucelle ISBN: 978-1-5108-5071-2 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2017) by IFAC (International Federation of Automatic Control) All rights reserved. Printed by Curran Associates, Inc. (2018) For permission requests, please contact the publisher, Elsevier Limited at the address below. Elsevier Limited 360 Park Ave South New York, NY 10010 Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS PART 1 VOLTAGE CONTROL USING LIMITED COMMUNICATION*............................................................................................................1 Sindri Magnússon, Carlo Fischione, Na Li A LOCAL STABILITY CONDITION FOR DC GRIDS WITH CONSTANT POWER LOADS* .........................................................7 José Arocas-Pérez, Robert Griño VSC-HVDC SYSTEM ROBUST STABILITY ANALYSIS BASED ON A MODIFIED MIXED SMALL GAIN AND PASSIVITY THEOREM .......................................................................................................................................................................13 Y. Song, C. Breitholtz
    [Show full text]
  • Unconventional Means of Preventing Chaos in the Economy
    CES Working Papers – Volume XIII, Issue 2 Unconventional means of preventing chaos in the economy Gheorghe DONCEAN*, Marilena DONCEAN** Abstract This research explores five barriers, acting as obstacles to chaos in terms of policy (A), economic (B), social (C), demographic effects (D) and natural effects (E) factors for six countries: Russia, Japan, USA, Romania, Brazil and Australia and proposes a mathematical modelling using an original program with Matlab mathematical functions for such systems. The initial state of the systems is then presented, the element that generates the mathematical equation specific to chaos, the block connection diagram and the simulation elements. The research methodology focused on the use of research methods such as mathematical modelling, estimation, scientific abstraction. Starting from the qualitative assessment of the state of a system through its components and for different economic partners, the state of chaos is explained by means of a structure with variable components whose values are equivalent to the economic indices researched. Keywords: chaos, system, Chiua simulator, multiscroll, barriers Introduction In the past four decades we have witnessed the birth, development and maturing of a new theory that has revolutionised our way of thinking about natural phenomena. Known as chaos theory, it quickly found applications in almost every area of technology and economics. The emergence of the theory in the 1960s was favoured by at least two factors. First, the development of the computing power of electronic computers enabled (numerical) solutions to most of the equations that described the dynamic behaviour of certain physical systems of interest, equations that could not be solved using the analytical methods available at the time.
    [Show full text]
  • Quantitative Research Methods in Chaos and Complexity: from Probability to Post Hoc Regression Analyses
    FEATURE ARTICLE Quantitative Research Methods in Chaos and Complexity: From Probability to Post Hoc Regression Analyses DONALD L. GILSTRAP Wichita State University, (USA) In addition to qualitative methods presented in chaos and complexity theories in educational research, this article addresses quantitative methods that may show potential for future research studies. Although much in the social and behavioral sciences literature has focused on computer simulations, this article explores current chaos and complexity methods that have the potential to bridge the divide between qualitative and quantitative, as well as theoretical and applied, human research studies. These methods include multiple linear regression, nonlinear regression, stochastics, Monte Carlo methods, Markov Chains, and Lyapunov exponents. A postulate for post hoc regression analysis is then presented as an example of an emergent, recursive, and iterative quantitative method when dealing with interaction effects and collinearity among variables. This postulate also highlights the power of both qualitative and quantitative chaos and complexity theories in order to observe and describe both the micro and macro levels of systemic emergence. Introduction Chaos and complexity theories are numerous, and, for the common reader of complexity texts, it is easy to develop a personal panacea for how chaos and complexity theories work. However, this journal highlights the different definitions and approaches educational researchers introduce to describe the phenomena that emerge during the course of their research. Converse to statements from outside observers, complexity theory in its general forms is not complicated, it is complex, and when looking at the micro levels of phenomena that emerge we see much more sophistication or even messiness.
    [Show full text]
  • Dynamical System: an Overview Srikanth Nuthanapati* Department of Aeronautics, IIT Madras, Chennai, India
    OPEN ACCESS Freely available online s & Aero tic sp au a n c o e r e E n A g f i n Journal of o e l a e n r i r n u g o J Aeronautics & Aerospace Engineering ISSN: 2168-9792 Perspective Dynamical System: An Overview Srikanth Nuthanapati* Department of Aeronautics, IIT Madras, Chennai, India PERSPECTIVE that involved a large number of people. Knowing the trajectory is often sufficient for simple dynamical systems, but most dynamical The idea of a dynamical system emerges from Newtonian mechanics. systems are too complicated to be understood in terms of individual There, as in other natural sciences and engineering disciplines, the trajectories. The problems arise because: evolution rule of dynamical systems is an implicit relation that gives the system’s state only for a short time in the future. Finding an (a) The studied systems may only be known approximately—the orbit required sophisticated mathematical techniques and could system’s parameters may not be known precisely, or terms only be accomplished for a small class of dynamical systems prior may be missing from the equations. The approximations to the advent of computers. The task of determining the orbits of a used call the validity or relevance of numerical solutions dynamical system has been simplified thanks to numerical methods into question. To address these issues, several notions of implemented on electronic computing machines. A dynamical stability, such as Lyapunov stability or structural stability, system is a mathematical system in which a function describes the have been introduced into the study of dynamical systems.
    [Show full text]
  • Effect of Coordinate Switching on Simulation Accuracy of Translunar Trajectories
    Effect of Coordinate Switching on Simulation Accuracy of Translunar Trajectories Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. Mana P. Vautier Certificate of Approval: John E. Cochran, Jr. Andrew J. Sinclair, Chair Department Head and Professor Assistant Professor Aerospace Engineering Aerospace Engineering David A. Cicci Joe F. Pittman Professor Interim Dean Aerospace Engineering Graduate School Effect of Coordinate Switching on Simulation Accuracy of Translunar Trajectories Mana P. Vautier A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama 09 August, 2008 Effect of Coordinate Switching on Simulation Accuracy of Translunar Trajectories Mana P. Vautier Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights. Signature of Author Date of Graduation iii Vita Mana Vautier, son of Ian Philip and Hinekaitangi Awhi (Skipwith) Vautier, was born 5 February, 1980, in Auckland, New Zealand. He graduated from Saint Kentigern College in 1997 and attended the University of Auckland for one year. In 2003 he transferred to Brigham Young University in Provo, Utah and graduated with a Bachelor of Science degree in Physics-Astronomy. He began his graduate studies in Aerospace Engineering at Auburn University in August 2006. In August 2004 he married Annette (Hughes) Vautier, daughter of Eugene Marion and Constance (Huffman) Hughes.
    [Show full text]
  • (Thesis) Biodynamic Analysis of Human Torso Stability Using Finite
    Biodynamic Analysis of Human Torso Stability using Finite Time Lyapunov Exponents Martin L. Tanaka Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University and Wake Forest University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN BIOMEDICAL ENGINEERING Kevin P. Granata, Ph.D., Past Chair Shane D. Ross, Ph.D., Co-Chair Maury A. Nussbaum, Ph.D., Co-Chair J. Wallace Grant, Ph.D. Deborah G. Heiss, Ph.D., DPT James S. Thomas, Ph.D., P.T. March 25, 2008 Blacksburg, Virginia Key Words: Low Back Pain, Spinal Stability, Basin of Stability, Threshold of Stability, Lagrangian Coherent Structures Copyright 2008 ©, Martin L.Tanaka Biodynamic Analysis of Human Torso Stability using Finite Time Lyapunov Exponents Martin L. Tanaka Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences ABSTRACT Low back pain is a common medical problem around the world afflicting 80% of the population some time in their life. Low back injury can result from a loss of torso stability causing excessive strain in soft tissue. This investigation seeks to apply existing methods to new applications and to develop new methods to assess torso stability. First, the time series averaged finite time Lyapunov exponent is calculated from data obtained during seated stability experiments. The Lyapunov exponent is found to increase with increasing task difficulty. Second, a new metric for evaluating torso stability is introduced, the threshold of stability. This parameter is defined as the maximum task difficulty in which dynamic stability can be maintained for the test duration. The threshold of stability effectively differentiates torso stability at two levels of visual feedback.
    [Show full text]
  • Third Lecture on Thermal Convection) by Aarnout Van Delden ( )
    PART 3 (third lecture on thermal convection) By Aarnout van Delden (http://www.staff.science.uu.nl/~delde102/TinF.htm ) 14. Finite amplitude convection according to the Lorenz model When the Rayleigh number exceeds the critical value for onset of convection, macroscopic motions (convection currents) grow in amplitude and start to modify the horizontal average temperature. The nonlinear terms in the Lorenz model describe this interaction between the convection cell (the “wave”) and the horizontal mean thermal state. The system evolves towards a new equilibrium (figure 7), which represents a state in which warm fluid is steadily transported upwards in the middle of the domain and cold fluid is steadily transported downwards on both sides of the upward current. Remember: side boundary conditions are periodic. Figure 8 shows the temperature distribution in the state of rest (upper panel) and in the final new equilibrium state (lower panel), which is a linearly stable equilibrium at this Rayleigh number. The convective equilibrium state, however, looses its stability to small perturbations for all Rayleigh numbers above certain value (exercise 8). What is the character of the solution if the system does not possess a stable equilibrium? Edward Lorenz addressed this question in his famous paper, published in 1963. A tentative answer to this question can only be obtained by numerical methods. Apparently Lorenz trusted his numerical approximation to the time-derivatives, which in hindsight, was not the best choice, and so discovered the chaotic solution of his equations. Figure 7. The evolution of Y and Z in a numerical integration of the Lorenz equations (87-89) with Pr=10, ax=1/√2 and Ra=2Rac (scaled with the steady state value).
    [Show full text]