Purification and Biophysical Characterization of the Core Protease Domain of Anthrax Lethal Factor

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Biophysical Characterization of the Core Protease Domain of Anthrax Lethal Factor Biochemical and Biophysical Research Communications 396 (2010) 643–647 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Purification and biophysical characterization of the core protease domain of anthrax lethal factor Petros V. Gkazonis a, Georgios A. Dalkas a, Christos T. Chasapis a, Alexios Vlamis-Gardikas b, Detlef Bentrop c, Georgios A. Spyroulias a,* a Department of Pharmacy, University of Patras, GR-26504 Patras, Greece b Department of Biochemistry, Foundation for Biomedical Research (BRFAA), Academy of Athens, GR-11527 Athens, Greece c Institute of Physiology II, University of Freiburg, D-79108 Freiburg, Germany article info abstract Article history: Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a Received 9 April 2010 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn2+ binding Available online 8 May 2010 site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given Keywords: the importance of the interaction between LF and substrate for the development of anti-anthrax agents as Anthrax lethal factor well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties LF catalytic site of the LF catalytic site are essential to elucidate its enzymatic properties. Here we report the recombinant Zn metalloprotease expression and purification of a C-terminal part of LF (LF ) that harbours the enzyme’s core protease Recombinant protein expression 672–776 1 13 15 NMR spectroscopy domain. The biophysical characterization and backbone assignments ( H, C, N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn2+, suitable for high resolution structural analysis by NMR. Ó 2010 Elsevier Inc. All rights reserved. 1. Introduction family (MEKs/MKKs) close to their N-termini, thus inactivating them, preventing MKK signalling [5,6] and ultimately causing Inhalation anthrax is the most fatal form of the disease anthrax apoptosis [7]. Recently the interaction of LeTx and in particular caused by the uptake of Bacillus anthracis spores by pulmonary LF with its MKK substrates has attracted considerable scientific macrophages. The spores are carried through lymph nodes, germi- interest due to the potential use of B. anthracis in bioterrorism. In nating en route and spread throughout the host’s bloodstream, addition, recent reports implicate the exclusive specificity of LF where they live and proliferate as extracellular pathogens, causing for MKKs in the regulation of MKK-dependent tumour cell signal- massive septicemia and toxemia resulting in systemic effects that ling and proliferation, stimulating thus the study of native and can cause the host’s death [1]. engineered forms of the enzyme for tumour targeting [8]. For this The virulence factor of B. anthracis is a secreted toxin (anthrax purpose, the stability of the polypeptide chain in denaturing condi- toxin, ATx) [2–4] that consists of three proteins, none of which is tions and the unfolding/refolding properties of the apo and metal- toxic on its own: the 83 kDa protective antigen (PA), the 89 kDa lated enzyme catalytic site are of immense interest. calmodulin-activated edema factor adenylate cyclase (EF) and the The X-ray structure of LF revealed a mainly a-helical protein with 90 kDa anthrax lethal factor (LF). EF combined with PA (PA–EF) four domains [9]. The C-terminal domain IV (residues 552–776) form the edema toxin, while LF combined with PA form the Lethal comprises the catalytic center of the enzyme and contains the active Toxin (LeTx). All three components act in synergy to kill host mac- site in a 40 Å long groove created by the vestigial NAD-binding pock- rophages. Once endocytosed, LF acts as a Zn2+ dependent endopep- et of domain II and the interface between domains II, III, and IV. The tidase cleaving with remarkable specificity members of the MAPKK groove has an overall negative charge, as it contains clusters of glu- tamic and aspartic acid residues [9]. Two Zn2+-binding motifs (H686E687F688G689H690 and E735F736F737A738E739) that can together Abbreviations: LeTx, anthrax lethal toxin; LF, anthrax lethal factor; CD, circular bind to Zn2+ with a 1:1 stoichiometry are located in the catalytic dichroism; VKK, MAPK (mitogen-activated protein kinase) kinases; NMR, nuclear pocket of LF. The motifs are separated by a spacer of 44 residues magnetic resonance; HSQC, heteronuclear single quantum coherence. [10]. The active site Zn2+ is coordinated tetrahedrally by a water * Corresponding author. Fax: +30 2610969950. E-mail address: [email protected] (G.A. Spyroulias). molecule and the three side chains of His686, His690, and Glu735. With 2+ URL: http://www.bionmr.upatras.gr (G.A. Spyroulias). respect to its Zn -binding site, LF is classified in the MA clan and 0006-291X/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2010.04.144 644 P.V. Gkazonis et al. / Biochemical and Biophysical Research Communications 396 (2010) 643–647 M34 family of Zn-metalloproteases [11]. To comprehend the acetohydroxamic acid (AHA). After concentration to 500 ll, the structure–activity relationship of the catalytic site of LF and sample was loaded onto a Superose 12 10/300GL size exclusion map its atomic level dynamics one needs to monitor the catalytic column using an ÄKTA FPLC™ system (Amersham PharmaciaÒ). 2+ site behaviour towards Zn binding, substrate recognition and LF672–776 was eluted with a high salt buffer (Tris–HCl 20 mM, EDTA interaction in vitro. 5 mM, NaCl 500 mM, pH 7.8) to prevent ionic interactions with Here we report the heterologous expression, purification and residual GST and thrombin and finally dialyzed against application preliminary biophysical characterization of a 105 a.a. C-terminal buffer. construct of the LF catalytic domain (LF672–776 hereafter), harbour- 2+ ing the enzyme’s Zn -binding (active) site (core protease domain). 2.3. Purification and biophysical characterization The recombinant LF catalytic domain was expressed as a GST fusion protein in Escherichia coli and purified from cell extract as Purity of the apo protein samples was checked by Tris–glycine a soluble protein in its apo form to prevent autoproteolysis and SDS–PAGE and automated electrophoresis (Experion, Bio-RadÒ). 2+ to study the Zn binding effects on the structure and dynamics The concentration of the protein samples was estimated by Bradford of the molecule. NMR and CD data showed that LF672–776 is a folded assay using BSA protein standards and confirmed by Lab on Chip protein with secondary and tertiary structure. Heteronuclear NMR automated electrophoresis (Experion). All further characterization allowed an almost complete sequence specific assignment of was carried out in the presence of 5 mM EDTA to retain LF672–776 13C/15N nuclei. 2+ in apo form. Binding of Zn to apoLF672–776 was achieved by dialysis against Tris–HCl 20 mM, NaCl 0.1 M, AHA 0.2 mM, ZnCl2 1 mM, pH 7.2, and metal ion excess was removed by dialysis against metal-free 2. Materials and methods buffer. Protein samples for NMR experiments were prepared in 90% H 0 (50 mM KPi, 5 mM EDTA, 0.2 M AHA, pH 7.2) and 10% D Oat 2.1. Plasmids, bacterial strains, and media 2 2 0.6–0.8 mM protein concentration. Samples of labelled protein were checked on a Bruker Avance DRX 400 MHz NMR Spectrometers A portion of LF full length gene (nucleotides encoding 105 C-ter- while 2D/3D homo- and heteronuclear NMR spectra were recorded minal amino acids) was amplified using primers F 107 BamH1 (TAT at 298 K on a Bruker Avance 600 MHz NMR Spectrometer, equipped ATT AGG ATC CAA AGG TGT AGA ATT AAG G) and LF EcoRC 6His with a cryogenically cooled pulsed field gradient triple resonance (ATT GAA TTC TTA GTG ATG ATG GTG ATG ATG TGA GTT AAT probe (TXI). Sequence specific HN,N,Ca and C0 assignments were AAT GAA CTT AAT CTG ATCG), using as template full length LF in obtained from the following experiments: 2D [1H–15N]-HSQC, 3D pGEX-2TK [12]. The amplified fragment was inserted in vector HNCA, 3D HN(CO)CA, 3D CBCA(CO)NH, 3D CBCANH and 3D HNCO. pGEMT and sequenced. The desired clones were inserted as a Internal 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) was used as BamH1-EcoR1 fragment into expression vector pGEX-4T1 (Amer- a chemical shift reference for 1H. All NMR data were processed with sham BiosciencesÒ), in frame with the existing GST gene of the vec- the Bruker XWINNMR or TOPSPIN software and analyzed with the tor. In this manner, the portion of the LF gene is downstream the programs XEASY [13] and CARA [14]. The backbone 1H, 13C and one coding for GST, the two peptides joined by a thrombin cleavage 15N chemical shifts have been deposited in the BioMagResBank site. Top10 chemically competent E. coli strains (InvitrogenÒ) were (http:/www.bmrb.wisc.edu) under the accession number 16735. used as host strains for plasmid propagation and subcloning appli- Secondary structure prediction based on the chemical shifts of back- cations, while BL21(DE3)Gold (StratageneÒ) strains were used as bone 1H and 13C nuclei was performed using CSI (Chemical Shift expression hosts. All bacterial strains were routinely cultured in Index; http://www.bionmr.ualberta.ca/bds/software/csi/latest/csi. Luria Bertani medium (LB) in liquid or solid medium
Recommended publications
  • Irina Nicoleta Cimalla Algan/Gan Sensors for Direct Monitoring Of
    Irina Nicoleta Cimalla AlGaN/GaN sensors for direct monitoring of fluids and bioreactions AlGaN/GaN sensors for direct monitoring of fluids and bioreactions Irina Nicoleta Cimalla Universitätsverlag Ilmenau 2011 Impressum Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind im Internet über http://dnb.d-nb.de abrufbar. Diese Arbeit hat der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Ilmenau als Dissertation vorgelegen. Tag der Einreichung: 23. November 2009 1. Gutachter: PD Dr. rer. nat. habil. Andreas Schober (Technische Universität Ilmenau) 2. Gutachter: Univ.-Prof. Dr. rer. nat. habil. Oliver Ambacher (Fraunhofer Institut für Angewandte Festkörperphysik Freiburg) 3. Gutachter: PD Dr.-Ing. habil. Frank Schwierz (Technische Universität Ilmenau) Tag der Verteidigung: 15. Juli 2010 Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag Herstellung und Auslieferung Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de ISBN 978-3-86360-003-7 (Druckausgabe) URN urn:nbn:de:gbv:ilm1-2010000519 Titelfoto: photocase.com | AlexFlint „Unde dragoste nu e, nimic nu e” „Wo Liebe nicht ist, ist gar nichts“ Marin Preda: „Cel mai iubit dintre pamanteni“ 5 6 Abstract In this thesis, AlGaN/GaN heterostructures, which have shown to be reliable pH sensors, have been characterized and further developed for the in situ monitoring of cell reactions. For this reason, NG108-15 nerve cells were cultivated on sensor surfaces and their response on different neuroinhibitors was clearly monitored. First, a measurement setup for extracellular recording was designed in connection with an improved chip design and sensor technology.
    [Show full text]
  • Families and the Structural Relatedness Among Globular Proteins
    Protein Science (1993), 2, 884-899. Cambridge University Press. Printed in the USA. Copyright 0 1993 The Protein Society -~~ ~~~~ ~ Families and the structural relatedness among globular proteins DAVID P. YEE AND KEN A. DILL Department of Pharmaceutical Chemistry, University of California, San Francisco, California94143-1204 (RECEIVEDJanuary 6, 1993; REVISEDMANUSCRIPT RECEIVED February 18, 1993) Abstract Protein structures come in families. Are families “closely knit” or “loosely knit” entities? We describe a mea- sure of relatedness among polymer conformations. Based on weighted distance maps, this measure differs from existing measures mainly in two respects: (1) it is computationally fast, and (2) it can compare any two proteins, regardless of their relative chain lengths or degree of similarity. It does not require finding relative alignments. The measure is used here to determine the dissimilarities between all 12,403 possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank (PDB). Combined with minimal spanning trees and hier- archical clustering methods,this measure is used to define structural families. It is also useful for rapidly searching a dataset of protein structures for specific substructural motifs.By using an analogy to distributions of Euclid- ean distances, we find that protein families are not tightly knit entities. Keywords: protein family; relatedness; structural comparison; substructure searches Pioneering work over the past 20 years has shown that positions after superposition. RMS is a useful distance proteins fall into families of related structures (Levitt & metric for comparingstructures that arenearly identical: Chothia, 1976; Richardson, 1981; Richardson & Richard- for example, when refining or comparing structures ob- son, 1989; Chothia & Finkelstein, 1990).
    [Show full text]
  • Report from the 26Th Meeting on Toxinology,“Bioengineering Of
    toxins Meeting Report Report from the 26th Meeting on Toxinology, “Bioengineering of Toxins”, Organized by the French Society of Toxinology (SFET) and Held in Paris, France, 4–5 December 2019 Pascale Marchot 1,* , Sylvie Diochot 2, Michel R. Popoff 3 and Evelyne Benoit 4 1 Laboratoire ‘Architecture et Fonction des Macromolécules Biologiques’, CNRS/Aix-Marseille Université, Faculté des Sciences-Campus Luminy, 13288 Marseille CEDEX 09, France 2 Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, Sophia Antipolis, 06550 Valbonne, France; [email protected] 3 Bacterial Toxins, Institut Pasteur, 75015 Paris, France; michel-robert.popoff@pasteur.fr 4 Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4-9182-5579 Received: 18 December 2019; Accepted: 27 December 2019; Published: 3 January 2020 1. Preface This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/ international) was held at the Institut Pasteur of Paris on 4–5 December 2019. The central theme selected for this meeting, “Bioengineering of Toxins”, gave rise to two thematic sessions: one on animal and plant toxins (one of our “core” themes), and a second one on bacterial toxins in honour of Dr. Michel R. Popoff (Institut Pasteur, Paris, France), both sessions being aimed at emphasizing the latest findings on their respective topics. Nine speakers from eight countries (Belgium, Denmark, France, Germany, Russia, Singapore, the United Kingdom, and the United States of America) were invited as international experts to present their work, and other researchers and students presented theirs through 23 shorter lectures and 27 posters.
    [Show full text]
  • World Journal of Biological Chemistry
    ISSN 1949-8454 (online) World Journal of Biological Chemistry World J Biol Chem 2019 January 7; 10(1): 1-27 Published by Baishideng Publishing Group Inc World Journal of W J B C Biological Chemistry Contents Continuous Volume 10 Number 1 January 7, 2019 EDITORIAL 1 New findings showing how DNA methylation influences diseases Sallustio F, Gesualdo L, Gallone A MINIREVIEWS 7 Autism and carnitine: A possible link Demarquoy C, Demarquoy J 17 Last decade update for three-finger toxins: Newly emerging structures and biological activities Utkin YN WJBC https://www.wjgnet.com I January 7, 2019 Volume 10 Issue 1 World Journal of Biological Chemistry Contents Volume 10 Number 1 January 7, 2019 ABOUT COVER Editor-in-Chief of World Journal of Biological Chemistry, Vsevolod V Gurevich, PhD, Professor, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States AIMS AND SCOPE World Journal of Biological Chemistry (World J Biol Chem, WJBC, online ISSN 1949-8454, DOI: 10.4331) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians. WJBC is to rapidly report the most recent developments in the research by the close collaboration of biologists and chemists in area of biochemistry and molecular biology, including: general biochemistry, pathobiochemistry, molecular and cellular biology, molecular medicine, experimental methodologies and the diagnosis, therapy, and monitoring of human disease. We encourage authors to submit their manuscripts to WJBC. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.
    [Show full text]
  • Intensive Care Muscle Wasting and Weakness
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 862 Intensive care Muscle Wasting and Weakness Underlying Mechanisms, Muscle Specific Differences and a Specific Intervention Strategy GuiLLAumE RENAud ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-8586-3 2013 urn:nbn:se:uu:diva-192531 Dissertation presented at Uppsala University to be publicly examined in Hedstrandsalen, Ingång 70, bv, Akademiska sjukhuset, Uppsala, Friday, March 8, 2013 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Abstract Renaud, G. 2013. Intensive care Muscle Wasting and Weakness: Underlying Mechanisms, Muscle Specific Differences and a Specific Intervention Strategy. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 862. 57 pp. Uppsala. ISBN 978-91-554-8586-3. The intensive care unit (ICU) condition, i.e., immobilisation, sedation and mechanical ventilation, often results in severe muscle wasting and weakness as well as a specific acquired myopathy, i.e., Acute Quadriplegic Myopathy (AQM). The exact mechanisms underlying AQM remain incomplete, but this myopathy is characterised a preferential myosin loss and a decreased muscle membrane leading to a delayed recovery from the primary disease, increased mortality and morbidity and altered quality of life of survivors. This project aims at improving our understanding of the mechanisms underlying the muscle wasting and weakness associated with AQM and explore the effects of a specific intervention strategy. Time-resolved analyses have been undertaken using a unique experimental rodent ICU model and specifically studying the muscle wasting and weakness in limb and diaphragm muscles over a two week period.
    [Show full text]
  • Proteins, Peptides, and Amino Acids
    Proteins, Peptides, and Amino Acids Chandra Mohan, Ph.D. Calbiochem-Novabiochem Corp., San Diego, CA The Chemical Nature of Amino Acids Peptides and polypeptides are polymers of α-amino acids. There are 20 α-amino acids that make-up all proteins of biological interest. The α-amino acids in peptides and proteins α consist of a carboxylic acid (-COOH) and an amino (-NH2) functional group attached to the same tetrahedral carbon atom. This carbon is known as the -carbon. The type of R- group attached to this carbon distinguishes one amino acid from another. Several other amino acids, also found in the body, may not be associated with peptides or proteins. These non-protein-associated amino acids perform specialized functions. Some of the α-amino acids found in proteins are also involved in other functions in the body. For example, tyrosine is involved in the formation of thyroid hormones, and glutamate and aspartate act as neurotransmitters at fast junctions. R Amino acids exist in either D- or L- enantiomorphs or stereoisomers. The D- and L-refer to the absolute confirmation of optically active compounds. With the exception of glycine, all other amino acids are mirror images that can not be superimposed. Most of the amino acids found in nature are of the L-type. Hence, eukaryotic proteins are always composed of L-amino acids although D-amino acids are found in bacterial cell walls and in some peptide antibiotics. All biological reactions occur in an aqueous phase. Hence, it is important to know how the R-group of any given amino acid dictates the structure-function relationships of peptides and proteins in solution.
    [Show full text]
  • 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda Crassicornis Is an Agonist of Human Α7 Nicotinic Acetylcholine Receptor
    Mar. Drugs 2015, 13, 1255-1266; doi:10.3390/md13031255 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor Igor E. Kasheverov 1, Irina V. Shelukhina 1, Denis S. Kudryavtsev 1, Tatyana N. Makarieva 2, Ekaterina N. Spirova 1, Alla G. Guzii 2, Valentin A. Stonik 2 and Victor I. Tsetlin 1,* 1 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia; E-Mails: [email protected] (I.E.K.); [email protected] (I.V.S.); [email protected] (D.S.K.); [email protected] (E.N.S.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Russian Academy of Sciences, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia; E-Mails: [email protected] (T.N.M.); [email protected] (A.G.G.); [email protected] (V.A.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +7-495-335-57-33. Academic Editor: Alejandro M. Mayer Received: 30 December 2014 / Accepted: 15 February 2015 / Published: 12 March 2015 Abstract: 6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR).
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • List Over Prohibited Substances and Withdrawal Times, Valid from January 1St, 2016 A. LIST of PROHIBITED SUBSTANCES
    Reviewed 01.06.16 List over prohibited substances and withdrawal times, valid from January 1st, 2016 This list has been developed in collaboration with the other Nordic countries through NEMAC (Nordic Equine Medication and Anti-doping Committee) and is reviewed yearly by the board of DNT (The Norwegian Trotting Association) (in accordance with DNT’s Doping Regulations 2016 § 3, 1st subsection). The List of prohibited substances and withdrawal times consists of the A-list, listing substances and treatment methods that are absolutely prohibited for horses, and the B-list, listing substances that are prohibited in competition; the withdrawal times for these substances as well as treatment methods with withdrawal times. The list may be reviewed several times per year. This list is valid starting from January 1st, 2016 and is enforced until a new list takes effect. A valid list of withdrawal times can be found at any time on DNT’s official website, www.travsport.no. Withdrawal times given on STC’s official website, www.travsport.se, are also valid in Norway. Health certificate and keeping of medical records The trainer is responsible for ensuring that any treatment that requires a withdrawal time is listed in the horse’s health certificate. The start and end dates of the treatment, the name of the treatment/medication/active substance, amount given, method of administration, withdrawal time as well as the name of the veterinarian or other person responsible for the treatment must all be listed in the health certificate in accordance with DNT’s Doping Regulations 2016 § 4. Passport and health certificate should be brought with the horse at all times.
    [Show full text]
  • Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products
    International Journal of Molecular Sciences Review Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products Dongchen An, Steve Peigneur , Louise Antonia Hendrickx and Jan Tytgat * Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; [email protected] (D.A.); [email protected] (S.P.); [email protected] (L.A.H.) * Correspondence: [email protected] Received: 12 June 2020; Accepted: 15 July 2020; Published: 17 July 2020 Abstract: Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity.
    [Show full text]
  • Natural Neurotoxins with Targeting T0 Cholinergic Nervous System (Cholinotoxins)
    22 VOJENSKÉ ZDRAVOTNICKÉ LISTY - SUPLEMENTUM VOLUME LXVII, 1998, no. 2 NATURAL NEUROTOXINS WITH TARGETING T0 CHOLINERGIC NERVOUS SYSTEM (CHOLINOTOXINS) Jiří PATOČKA Department of Toxicology, Purkyně Military Medical Academy, Hradec Králové Summary Cholinergic nervous system plays an important røle in many physiological and behavioral functions in all animals. The activity of central and peripheral nervous system depends on the production and fate of acetylcholine and all compounds influenced its biosynthesis, storage, release, hydrolysis, and interactions with different subtypes of acetylcholine both muscarinic and nicotinic receptors. Many natural neurotoxins also interact with different parts of cholinergic nervous system and these compounds are the aim of this review. KEY WORDS: Cholinergic nervous system; Alkaloids; Animal venoms; Neurotoxins. 1. Introduction purposes by native civilizations in all continents. Toxins of venomous animals as for instance snakes, Natural toxins are chemical agents of biological scorpions, spiders, bees etc., have fascinated origin, present in the bodies of some organisms or mankind because of their dramatic toxic effect on in the special glands which product venom. Toxins other animals. These poisons are used by the have evolved in microorganisms, fungi, plants and animals for protection against predators or for animals over many thousands of years to have capturing prey and very often affect their nervous specific and unique effects. Venoms from different system (neurotoxins). Many venoms have multiple toxic plants are known and used for different components or toxins that lead toa complicated VOLUME LXVII, 1998, no. 2 VOJENSKE ZDRAVOTNICKÉ LISTY - SUPLEMENTUM › 23 clinical picture. The toxicity of many toxins is very Arecoline high, very often comparable with chemical warfare agents, and they may be dangerous for humans.
    [Show full text]
  • Drug/Substance Trade Name(S)
    A B C D E F G H I J K 1 Drug/Substance Trade Name(s) Drug Class Existing Penalty Class Special Notation T1:Doping/Endangerment Level T2: Mismanagement Level Comments Methylenedioxypyrovalerone is a stimulant of the cathinone class which acts as a 3,4-methylenedioxypyprovaleroneMDPV, “bath salts” norepinephrine-dopamine reuptake inhibitor. It was first developed in the 1960s by a team at 1 A Yes A A 2 Boehringer Ingelheim. No 3 Alfentanil Alfenta Narcotic used to control pain and keep patients asleep during surgery. 1 A Yes A No A Aminoxafen, Aminorex is a weight loss stimulant drug. It was withdrawn from the market after it was found Aminorex Aminoxaphen, Apiquel, to cause pulmonary hypertension. 1 A Yes A A 4 McN-742, Menocil No Amphetamine is a potent central nervous system stimulant that is used in the treatment of Amphetamine Speed, Upper 1 A Yes A A 5 attention deficit hyperactivity disorder, narcolepsy, and obesity. No Anileridine is a synthetic analgesic drug and is a member of the piperidine class of analgesic Anileridine Leritine 1 A Yes A A 6 agents developed by Merck & Co. in the 1950s. No Dopamine promoter used to treat loss of muscle movement control caused by Parkinson's Apomorphine Apokyn, Ixense 1 A Yes A A 7 disease. No Recreational drug with euphoriant and stimulant properties. The effects produced by BZP are comparable to those produced by amphetamine. It is often claimed that BZP was originally Benzylpiperazine BZP 1 A Yes A A synthesized as a potential antihelminthic (anti-parasitic) agent for use in farm animals.
    [Show full text]