Thermophysiologies of Jurassic Marine

Total Page:16

File Type:pdf, Size:1020Kb

Thermophysiologies of Jurassic Marine Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite Nicolas Séon, Romain Amiot, Jérémy Martin, Mark Young, Heather Middleton, François Fourel, Laurent Picot, Xavier Valentin, Christophe Lécuyer To cite this version: Nicolas Séon, Romain Amiot, Jérémy Martin, Mark Young, Heather Middleton, et al.. Thermophys- iologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite. Philosophical Transactions of the Royal Society B: Biological Sciences, Royal Society, The, 2020, 375 (1793), pp.20190139. 10.1098/rstb.2019.0139. hal-02991781 HAL Id: hal-02991781 https://hal.archives-ouvertes.fr/hal-02991781 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted to Phil. Trans. R. Soc. B - Issue Page 2 of 28 1 2 Thermophysiologies of Jurassic marine crocodylomorphs inferred 3 4 5 from the oxygen isotope composition of their tooth apatite 6 7 8 9 10 Nicolas Séon1, Romain Amiot1,*, Jeremy E. Martin1, Mark T. Young2, Heather Middleton3, 11 12 4 5 6,7 1 13 François Fourel , Laurent Picot , Xavier Valentin , Christophe Lécuyer 14 15 16 17 1 UMR 5276, Laboratoire de Géologie de Lyon, Terre, Planètes et Environnement, Université 18 19 20 Claude Bernard Lyon 1/CNRS/École Normale Supérieure de Lyon, 69622 Villeurbanne Cedex, 21 For Review Only 22 France; [email protected] ; [email protected]; [email protected]; 23 24 christophe.lé[email protected] 25 26 2 27 School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh, 28 29 EH9 3FE, UK; [email protected] 30 31 3 16 Rodwell Road, Weymouth, Dorset, DT4 8QL, UK; [email protected] 32 33 4 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université 34 35 36 Claude Bernard Lyon 1, France; [email protected] 37 38 5 Paleospace, Avenue Jean Moulin, 14640 Villers sur mer, France; [email protected] 39 40 6 Laboratoire PALEVOPRIM, UMR 7262 CNRS INEE & University of Poitiers, France; 41 42 43 [email protected] 44 45 7 Palaios, Research Association, 86300 Valdivienne, France 46 47 * Corresponding author 48 49 50 51 52 Keywords: Metriorhynchidae, Teleosauridae, Jurassic, Thermophysiology, Oxygen and carbon 53 54 isotopes, tooth apatite 55 56 57 58 59 60 http://mc.manuscriptcentral.com/issue-ptrsb Page 3 of 28 Submitted to Phil. Trans. R. Soc. B - Issue 1 2 Summary 3 4 5 6 7 Teleosauridae and Metriorhynchidae were thalattosuchian crocodylomorph clades that 8 9 secondarily adapted to marine life and coexisted during the Middle to Late Jurassic. While 10 11 teleosaurid diversity collapsed at the end of the Jurassic, most likely as a result of a global cooling 12 13 14 of the oceans and associated marine regressions, metriorhynchid diversity was largely unaffected, 15 16 although the fossil record of Thalattosuchia is poor in the Cretaceous. In order to investigate the 17 18 possible differences in thermophysiologies between these two thalattosuchian lineages, we analysed 19 20 stable oxygen isotope compositions (expressed as δ18O values) of tooth apatite from metriorhynchid 21 For Review Only 22 18 23 and teleosaurid specimens. We then compared them to the δ O values of coexisting endo- 24 25 homeothermic ichthyosaurs and plesiosaurs, as well as ecto-poïkilothermic chondrichthyans and 26 27 osteichthyans. The distribution of δ18O values suggests that both teleosaurids and metriorhynchids 28 29 30 had body temperatures intermediate between those of typical ecto-poikilothermic vertebrates and 31 32 warm-blooded ichthyosaurs and plesiosaurs, metriorhynchids being slightly warmer than 33 34 teleosaurids. We propose that metriorhynchids were able to raise their body temperature above that 35 36 37 of the ambient environment by metabolic heat production, as endotherms do, but could not maintain 38 39 a constant body temperature compared to fully homeothermic ichthyosaurs and plesiosaurs. 40 41 Teleosaurids, on the other hand, may have raised their body temperature by mouth-gape basking, as 42 43 modern crocodilians do, and benefited from the thermal inertia of their large body mass to maintain 44 45 46 their body temperature above ambient one. Endothermy in metriorhynchids might have been a 47 48 byproduct of their ecological adaptations to active pelagic hunting, and it probably allowed them to 49 50 survive the global cooling of the Late Jurassic, thus explaining the selective extinction affecting 51 52 53 Thalattosuchia at the Jurassic-Cretaceous boundary. 54 55 56 57 58 59 60 http://mc.manuscriptcentral.com/issue-ptrsb Submitted to Phil. Trans. R. Soc. B - Issue Page 4 of 28 1 2 Introduction 3 4 Extant crocodylians are archosaurs that rely on environmental sources of heat in order to 5 6 7 raise and maintain their body temperature by behavioural thermoregulation in a restricted range 8 9 bracketed by “critical minimum” and “critical maximum” temperatures (Cowles and Bogert, 1944; 10 11 Pough and Gans, 1982). Within this critical range, crocodylians tend to keep their body temperature 12 13 14 within a narrower activity range from about 25°C to 40°C as determined empirically for a few 15 16 extant species (see Markwick (1998) for a review). Consequently, the spatial and temporal 17 18 distribution of crocodylians is limited by the temperatures of their living environments and by their 19 20 seasonal fluctuations. Due to their rather conservative growth morphology and their restricted 21 For Review Only 22 23 latitudinal distribution today, and in the geologic record, extant and fossil representatives of the 24 25 crown group have been used as climate proxies for more than a century (Berg, 1965; Crichton, 26 27 1825; Markwick, 1998; Owen, 1850). Based on observations of extant representatives of crown 28 29 30 group Crocodylia Owen, 1842, Markwick (1998) proposed that the occurrence of fossil 31 32 representatives imply a living Mean Annual Air temperature (MAT) ≥14.2°C and a Coldest Month 33 34 Mean temperature (CMM) ≥5.5°C. These minimum limits have been tentatively used to constrain 35 36 37 the climatic environment of long-extinct crocodylomorphs (Amiot et al., 2011), as well as the more 38 39 distantly related clade Choristodera (Tarduno et al., 1998). 40 41 The crocodylomorph clade Thalattosuchia became secondarily adapted to marine life during 42 43 the Mesozoic, and is subdivided into the families Teleosauridae Saint-Hilaire, 1831 and 44 45 46 Metriorhynchidae Fitzinger, 1843. While teleosaurids retained a morphology reminiscent of typical 47 48 semi-aquatic longirostrine crocodylomorphs, in having extensive osteoderm coverage and limbs 49 50 adapted for terrestrial locomotion (Eudes-Deslongchamps, 1869), metriorhynchids had a more 51 52 53 hydrodynamic body plan, with a hypocercal tail, and hydrofoil-like forelimbs (Fraas, 1902; Young 54 55 et al., 2010). The bone histology of Callovian teleosaurids and metriorhynchids has been used to 56 57 hypothesize that thalattosuchians were ectothermic (i.e. they rely on environmental sources of heat 58 59 60 in order to raise their body temperature) and poikilothermic (i.e. their body temperature vary along http://mc.manuscriptcentral.com/issue-ptrsb Page 5 of 28 Submitted to Phil. Trans. R. Soc. B - Issue 1 2 with that of their environment), with teleosaurids being capable of mouth-gape basking on shore, 3 4 whereas metriorhynchids thermoregulated differently by staying close to the water surface (Hua and 5 6 7 De Buffrénil, 1996). Hua and de Buffrénil (1996) did note that young metriorhynchids may have 8 9 had a faster growth rate than wild extant crocodylians. 10 11 Martin et al. (2014) analysed the diversity of marine crocodylomorphs through the Mesozoic 12 13 14 and Paleogene, and observed a significant correlation between Sea Surface Temperatures (SST) and 15 16 generic diversity within four lineages, including the teleosaurids. Teleosaurids, at least European 17 18 representatives, experienced a diversity crash at the end of the Jurassic during a global cooling of 19 20 Tethyan waters (Lécuyer et al., 2003b), but according to Fanti et al. (2016) they may have 21 For Review Only 22 23 continued to survive until at least the Hauterivian along the southern coast of the Tethys Sea. 24 25 Metriorhynchids however, appear to have experienced an explosive radiation during the Callovian, 26 27 surviving through the Late Jurassic until the Aptian (Chiarenza et al., 2015). When metriorhynchids 28 29 30 became extinct is currently unclear. Young et al. (2010) hypothesized a two-step extinction for 31 32 Metriorhynchidae, first a diversity crash at the end Jurassic, then a final extinction during the cold 33 34 icehouse interval of the Valanginian (Pucéat et al., 2003). However, recent re-evaluations of 35 36 37 Cretaceous fossils and updated phylogenetic studies have disproved both steps of this hypothesis, 38 39 with post-Valanginian metriorhynchid specimens known and no fewer than four metriorhynchid
Recommended publications
  • Télécharger L'article Complet Au Format
    Un travail inédit de Jacques-Amand Eudes-Deslongchamps sur les crocodyliformes marins du Jurassique de Normandie Arnaud BRIGNON 5 villa Jeanne d’Arc, F-92340 Bourg-la-Reine (France) [email protected] Brignon A. 2014. — Un travail inédit de Jacques-Amand Eudes-Deslongchamps sur les crocodyliformes marins du Jurassique de Normandie. Geodiversitas 36 (1): 5-33. http:// dx.doi.org/10.5252/g2014n1a1 RÉSUMÉ Un manuscrit inédit de Jacques-Amand Eudes-Deslongchamps décrit les restes de deux espèces de crocodyliformes fossiles qu’il rattache au genre Steneosaurus Geoffroy Saint-Hilaire, 1825. Il est démontré que ces notes donnent l’explica- tion détaillée de trois gravures qui furent exécutées sous la direction d’Étienne Geoffroy Saint-Hilaire en 1831. Ces planches figurent les restes de Steneosaurus megistorhynchus Geoffroy Saint-Hilaire, in J.-A. Eudes-Deslongchamps, 1866 et de Teleidosaurus calvadosii (J.-A. Eudes-Deslongchamps, 1866). Rédigé avant 1837 et probablement entre juin 1831 et juin 1832, ce travail serait la plus ancienne étude connue à ce jour de Jacques-Amand Eudes-Deslongchamps sur les thalattosuchiens de Normandie. Ce document préfigure déjà la qualité de ses futurs travaux sur les crocodyliformes fossiles publiés plus de trente ans plus tard. Un extrait important de ces notes sera même repris par son fils, Eugène Eudes-Deslongchamps, dans son Prodrome des Téléosauriens du Calvados publié en 1869. Un dessin inédit trouvé dans les archives de Cuvier conservées à la MOTS CLÉS Bibliothèque centrale du Muséum national d’Histoire naturelle, Paris est égale- Crocodyliformes fossiles, ment présenté. Ce dessin, réalisé avant 1832, représente la mandibule et l’extré- Thalattosuchia, mité antérieure de la mâchoire supérieure du premier spécimen de Teleosaurus Eudes-Deslongchamps, Geoffroy Saint-Hilaire, cadomensis (Lamouroux, 1820).
    [Show full text]
  • The Vertebrate Fauna from the “Stipite” Layers of the Grands Causses (Middle Jurassic, France)
    MINI REVIEW ARTICLE published: 02 September 2014 ECOLOGY AND EVOLUTION doi: 10.3389/fevo.2014.00048 The vertebrate fauna from the “stipite” layers of the Grands Causses (Middle Jurassic, France) Fabien Knoll 1,2* and Raquel López-Antoñanzas 1,3 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain 2 Palaeontology Research Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK 3 Palaeobiology and Biodiversity Research Group, School of Earth Sciences, University of Bristol, Bristol, UK Edited by: The “stipites” are Bathonian (Middle Jurassic) coals that formed in an everglades-like Christopher Carcaillet, Ecole environment and are now exposed in the Grands Causses (southern France). The Pratique des Hautes Etudes, France vertebrate assemblage of the “stipites” and of the transitional layers to the carbonates Reviewed by: in which they are interspersed are reviewed. To date, only small-sized and isolated Lionel Cavin, Muséum d’histoire Naturelle de la Ville de Genève, vertebrate bones, teeth, and scales have been recovered. These record the presence Switzerland of sharks (Hybodus, Asteracanthus), bony fishes (Lepidotes, Pycnodontiformes, Caturus, Holly Woodward, Oklahoma State Aspidorhynchus), amphibians (Anura, Albanerpetontidae), and reptiles (Crocodylomorpha, University Center for Health Ornithischia, Theropoda). Despite its relatively limited taxonomic diversity, the vertebrate Sciences, USA assemblage from the “stipites” and from their associated layers is notable for being one *Correspondence: Fabien Knoll, Departamento de of the few of this age with both terrestrial and marine influences. Compared to other Paleobiología, Museo Nacional de approximately coeval formations in Western Europe, the “stipites” vertebrate assemblage Ciencias Naturales, Consejo is surpassed in diversity only by those from the British Isles.
    [Show full text]
  • Palaeoenvironmental Control on Distribution of Crinoids in the Bathonian (Middle Jurassic) of England and France
    Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France AARON W. HUNTER and CHARLIE J. UNDERWOOD Hunter A.W. and Underwood C.J. 2009. Palaeoenvironmental control on distribution of crinoids in the Bathonian (Mid− dle Jurassic) of England and France. Acta Palaeontologica Polonica 54 (1): 77–98. Bulk sampling of a number of different marine and marginal marine lithofacies in the British Bathonian has allowed us to as− sess the palaeoenvironmental distribution of crinoids for the first time. Although remains are largely fragmentary, many spe− cies have been identified by comparison with articulated specimens from elsewhere, whilst the large and unbiased sample sizes allowed assessment of relative proportions of different taxa. Results indicate that distribution of crinoids well corre− sponds to particular facies. Ossicles of Chariocrinus and Balanocrinus dominate in deeper−water and lower−energy facies, with the former extending further into shallower−water facies than the latter. Isocrinus dominates in shallower water carbon− ate facies, accompanied by rarer comatulids, and was also present in the more marine parts of lagoons. Pentacrinites remains are abundant in very high−energy oolite shoal lithofacies. The presence of millericrinids within one, partly allochthonous lithofacies suggests the presence of an otherwise unknown hard substrate from which they have been transported. These re− sults are compared to crinoid assemblages from other Mesozoic localities, and it is evident that the same morphological ad− aptations are present within crinoids from similar lithofacies throughout the Jurassic and Early Cretaceous. Key words: Echinodermata, Crinoidea, lithofacies, palaeoecology, Jurassic, Bathonian, England, France. Aaron W. Hunter [[email protected]] and Charlie J.
    [Show full text]
  • 106. Johnson, Young, Brusatte
    Edinburgh Research Explorer Emptying the Wastebasket: A Historical and Taxonomic Revision of the Jurassic Crocodylomorph Steneosaurus Citation for published version: Johnson, M, Young, M & Brusatte, S 2020, 'Emptying the Wastebasket: A Historical and Taxonomic Revision of the Jurassic Crocodylomorph Steneosaurus', Zoological Journal of the Linnean Society, vol. 189, no. 2. https://doi.org/10.1093/zoolinnean/zlaa027 Digital Object Identifier (DOI): 10.1093/zoolinnean/zlaa027 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Zoological Journal of the Linnean Society General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 Abstract Teleosauroidea is a clade of successful ancient crocodylomorphs that were integral components of coastal marine environments throughout the Jurassic. For nearly two centuries, one of the most familiar genera of teleosauroids has been Steneosaurus, encompassing nearly every teleosauroid species at some point. However, no type species has been designated for Steneosaurus under ICZN Code rules; the type specimen of the presumed type species S. rostromajor Geoffroy Saint-Hilaire 1825 (MNHN.RJN 134c-d), is a chimera that has been largely neglected in the literature.
    [Show full text]
  • A Building Stone Atlas of Hertfordshire
    Strategic Stone Study A Building Stone Atlas of Hertfordshire Published August 2018 Contents The Church of St Ippolyts (page 25) Introduction ...................................................................................................................................................... 1 Hertfordshire Bedrock Geology Map ................................................................................................................2 Hertfordshire Superficial Geology Map ............................................................................................................3 Stratigraphic Table ............................................................................................................................................4 The use of stone in Hertfordshire’s buildings ............................................................................................. 5-17 Background and historical context ........................................................................................................................................................................... 5 Chiltern Hills .................................................................................................................................................................................................................. 7 East Anglian Chalk ........................................................................................................................................................................................................ 8 Thames
    [Show full text]
  • Carte Géologioue De La France a 1/50000
    CARTE GÉOLOGIOUE DE LA FRANCE A 1/50000 CAEN '" M. RIOULT, J.P. COUTARD, P de LA QUERIËRE M. HELlUIN, C. LARSONNEUR, J. PELLERIN avec la collabOialion de M.PRQVQST CAEN la carte géologique à 1/50000 CAEN est recouverte par la coupure CAEN (N' 29) de la carte géologique de la France à 1/80000. j,"'" MINISTËRE DE L'INDUSTRIE .~. -\- ET De L'AM~NAGEMENTDU TERRITOIRE eo.,...... ~ lil«" eU~EAU DE RECHERCHES Gl:OlOGIQUES n MINIERES SERVICE GËOLOGIQUE NATIONAL .- 60;'. pO..ole 6009 45060 O.II••n. Cedex 2 ~'.nce _.-_. ,- ";" NOTICE EXPLICATIVE DE LA FEUILLE CAEN À 1150000 par M. RIOULT, J.P. COUTARD, P. de LA QUERIÈRE, M. HELLUIN, C. LARSONNEUR, J. PELLERIN avec la collaboration de M. PROVOST 1989 Éditions du HRGM - HP 6009 - 45060 ORLÉANS Cedex 2 - FRANCE Références bibliographiques. Toute référence en bibliographie au présent document doit être faite de façon suivante: - pour la carte: RIOULTM., COUTARD J.F., HELLUINM., PELLERIN J., QUINEJURE-HEL­ LUINE., LARSONNEURC., ALAINY. (1986) - Carte géoJ. France (1/50000), feuille CAEN (120) - Orléans: Bureau de recherches géologiques et minières. Notice explicative par RIOULT M., COUTARD J.P., DE LA QUERIERE P., HELLUIN M., LARSONNEUR C., PELLE­ RIN J., PROVOSTM. (1989), 104 p. - pour la notice: RIOULT M., COUTARD J.P., DE LA QUERIÈRE P., HELLUIN M., LARS ON­ NEUR C., PELLERIN J., PROVOST M. (1989) - Notice explicative, Carte géoJ. France (1/50 000), feuille CAEN (120) - Orléans: Bureau de recherches géologiques et minières, 104 p. Carte géolo­ gique par RIOULTM., COUTARDJ.P., HELLUINM., PELLERINJ., QUINEJURE­ HELLUINE., LARSONNEURC., ALAINY. (1986).
    [Show full text]
  • Année 2013-2014 Mémoire De MASTER M1 S.E.P. Martial Plasse
    Spécialité "SYSTÉMATIQUE, ÉVOLUTION, PALÉONTOLOGIE" Master Master Sciences de l’Univers, Evolution, Patrimoine naturel environnement, écologie et Sociétés Année 2013-2014 Mémoire de MASTER M1 S.E.P. Martial Plasse Une vertèbre de théropode du Jurassique des Vaches Noires (Calvados) et le problème des restes de dinosaures en milieu marin © San Diego Natural History Museum Sous la direction de : Eric Buffetaut (CNRS/ENS) Laurent Picot (Paléospace, musée de paléontologie de Villers-sur-Mer) Laboratoire d'accueil : Laboratoire de Géologie de l’Ecole Normale Supérieure, UMR 8538 Structure d'accueil : Paléospace l'Odyssée de Villers-sur-Mer Sommaire Introduction ….....................................................................................................................................1 Falaises des Vaches Noires …..............................................................................................................1 Datation paléontologique .....................................................................................................................2 Description de la vertèbre ....................................................................................................................3 Identification de la vertèbre .................................................................................................................5 Recherche bibliographique sur les restes de dinosaures connus dans le Jurassique marin des Vaches Noires et des régions avoisinantes de Normandie ...............................................................................8
    [Show full text]
  • Bayeux - Courseulles-Sur-Mer
    NOTICE EXPLICATIVE DE LA FEUILLE BAYEUX - COURSEULLES-SUR-MER À 1/50 000 par P. MAURIZOT, J.-P. AUFFRET, S. BAIZE, J.-P. DEROIN, O. DUGUÉ, G. FILY, J. LE GALL, F. LELIEPAULT, B. MAZENC, J. PELLERIN 2000 Editions du BRGM Service géologique national Références bibliographiques. Toute référence en bibliographie à ce document doit être faite de la façon suivante : -pour la carte : MAURIZOT P., PELLERIN J., LE GALL J., AUFFRET J.-P. (2000) - Carte géol. France (1/50 000), feuille Bayeux - Courseulles-sur-Mer (119). Orléans : BRGM. Notice explicative par MAURIZOT P. et al. (2000), 151p. -pour la notice : MAURIZOT P., AUFFRET J.-P, BAIZE S., DEROIN J.-P, DUGUÉ O., FILY G., LE GALL J., LELIEPAULT F., MAZENC B., PELLERIN J. (2000) - Notice explicative, Carte géol. France (1/50 000), feuille Bayeux - Courseulles-sur-Mer (119). Orléans : BRGM, 151p. Carte géologique par MAURIZOT P. et al (2000). © BRGM, 2000. Tous droits de traduction et de reproduction réservés. Aucun extrait de ce docu- ment ne peut être reproduit, sous quelques forme ou par quelque procédé que ce soit (machine électronique, mécanique, à photocopier, à enregistrer ou tout autre) sans l'autorisation préalable de l'éditeur. ISBN : 2-7159-1119-X SOMMAIRE Pages RÉSUMÉ - ABSTRACT 7-8 INTRODUCTION 9 SITUATION GÉOGRAPHIQUE 9 CADRE GÉOLOGIQUE RÉGIONAL - PRÉSENTATION DE LA CARTE 11 TRAVAUX ANTÉRIEURS - CONDITIONS D ÉTABLISSEMENT DE LA CARTE 13 DESCRIPTION DES TERRAINS 16 GÉOLOGIE MARINE 16 PROTÉROZOÏQUE SUPÉRIEUR 21 Briovérien supérieur 21 PALÉOZOÏQUE 26 Cambrien 26 Ordovicien 28 Roches
    [Show full text]
  • Notice Explicative De La Feuille Mézidon À 1/50 000
    NOTICE EXPLICATIVE DE LA FEUILLE MÉZIDON À 1/50 000 par J.P. DEROIN, G. LEROUGE, G. BARBIER, Y. VERNHET, J.P. COUTARD, J.C. OZOUF, C. LANGEVIN 1999 Éditions du BRGM Service géologique national Références bibliographiques. Toute référence en bibliographie à ce document doit être faite de la façon suivante : pour la carte : DEROIN J.P., LEROUGE G., BARBIER G., VERNHET Y., COUTARD J.P., OZOUF J.C., LANGEVIN C. (1999) – Carte géol. France (1/50 000), feuille Mézidon (146). Orléans : BRGM. Notice explicative par J.P. Deroin et al. (1999), 150 p. pour la notice : DEROIN J.P., LEROUGE G., BARBIER G., VERNHET Y., COUTARD J.P., OZOUF J.C., LANGEVIN C. (1999) – Notice explicative, Carte géol. France (1/50 000), feuille Mézidon (146). Orléans : BRGM, 150 p. Carte géologique par J.P. Deroin et al. (1999). © BRGM, 2000. Tous droits de traduction et de reproduction réservés. Aucun extrait de ce document ne peut être reproduit, sous quelque forme ou par quelque procédé que ce soit (machine électronique, mécanique, à photocopier, à enregistrer ou tout autre) sans l’autorisation préalable de l’éditeur. ISBN : 2-7159-1146-7 SOMMAIRE Pages RÉSUMÉ - ABSTRACT 7-8 INTRODUCTION 11 SITUATION GÉOGRAPHIQUE 11 CADRE GÉOLOGIQUE RÉGIONAL – PRÉSENTATION DE LA CARTE 11 TRAVAUX ANTÉRIEURS ET CONDITIONS D’ÉTABLISSEMENT DE LA CARTE 12 DESCRIPTION DES TERRAINS 19 PROTÉROZOÏQUE SUPÉRIEUR 19 Briovérien 19 PALÉOZOÏQUE 22 Cambrien 23 Ordovicien 34 Silurien 43 MÉSOZOÏQUE 44 Trias 45 Jurassique inférieur (Lias supérieur) 48 Jurassique moyen 51 Jurassique moyen (Callovien) et
    [Show full text]
  • An Archaeological Investigation in the East Wing of Somerset House, City of Westminster
    London and Middlesex Archaeological Society Transactions, 67 (2016), 133—82 AN ARCHAEOLOGICAL INVESTIGATION IN THE EAST WING OF SOMERSET HOUSE, CITY OF WESTMINSTER Neil Hawkins With contributions by Philip Armitage, Kevin Hayward, Kevin Rielly, Neil Rushton and Berni Sudds SUMMARY CIRCUMSTANCES OF THE FIELDWORK Investigations within the basement of the East Wing of Somerset House recorded evidence for activity spanning King’s College London commissioned from the Saxon period to the 19th century. Middle Pre-Construct Archaeology Ltd (PCA) to Saxon deposits and refuse pits confirmed that the site undertake an archaeological watching brief lay within the settlement of Lundenwic. By the late and excavation within the East Wing of 12th or 13th century there was evidence of external Somerset House (Grade I Listed Building), levelling deposits and pitting. However, there was no Strand, in the City of Westminster, between evidence of buildings on site until either the 15th or October 2010 and November 2011 (Fig early 16th century when a series of chalk rubble cellar 1). The area of the site lies within an wall foundations were constructed; by this date the area Archaeological Priority Zone, as defined south of the Strand was occupied by the residences of two by the City of Westminster, between the bishops, several inns and a church. Brick and masonry Embankment and the Strand with the foundations representing part of the cellars under the River Thames c.90m to the south (centred southern range of the Lower Court of the palace of at TQ 3078 8082). The watching brief and Somerset House, principally constructed in 1547—51 by excavation were undertaken as part of the Edward Seymour, Lord Protector and Duke of Somerset, redevelopment of the basement of the East were discovered.
    [Show full text]
  • První Fosilní Materiál Jurského Teropodního Dinosaura Z České Republiky
    MASARYKOVA UNIVERZITA PŘÍRODOV ĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH V ĚD PRVNÍ FOSILNÍ MATERIÁL JURSKÉHO TEROPODNÍHO DINOSAURA Z ČESKÉ REPUBLIKY REŠERŠE K BAKALÁ ŘSKÉ PRÁCI DANIEL MADZIA VEDOUCÍ PRÁCE : RND R. NELA DOLÁKOVÁ , CS C. BRNO 2012 Obsah 1. Paleogeografie jihovýchodního okraje Českého masivu v pozdní ju ře 3 1.1 Svrchní jura v okolí Brna 3 1.2 Stá ří karbonát ů na Švédských šancích 4 2. Teropodní dinosau ři: původ, stru čná morfologická charakteristika a fylogeneze 5 2.1 Evolu ční p ůvod teropod ů 5 2.2 Vstup k morfologii a systematice teropod ů 8 2.2.1 Stru čná morfologická charakteristika teropod ů 8 2.2.2 Úvod k systematice teropod ů 8 2.2.2.1 Nomenklatura 8 2.2.3 Coelophysoidea 10 2.2.4 Averostra 11 2.2.4.1 Ceratosauria 11 2.2.4.2 Tetanurae 13 2.2.4.2.1 Avetheropoda 14 2.2.4.2.1.1 Coelurosauria 15 2.2.4.2.1.1.1 Paraves 16 3. Stru čný p řehled výzkumu teropodích zub ů 19 3.1 Anatomie teropodích zub ů a jejich význam pro taxonomii 19 3.2 Význam pro interpretace potravní specializace 22 4. Literatura 23 2 1. Paleogeografie jihovýchodního okraje Českého masivu v pozdní ju ře Svrchnojurské sedimentární horniny jihovýchodního okraje Českého masivu jsou sou částí st ředno- až svrchnojurského sedimenta čního cyklu a p ředstavují vývoj tethydního šelfu. Horniny lze rozlišit do t ří facií: facie pánevní, jejíž sedimenty vznikly v hlubších prost ředích (sublitorál až batyál), facie karbonátové platformy vzniklé v hloubce maximáln ě n ěkolika desítek metr ů a facie šelfové laguny (viz obr.
    [Show full text]
  • An Overview of Non-Avian Theropod Discoveries and Classification
    Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) AN OVERVIEW OF NON-AVIAN THEROPOD DISCOVERIES AND CLASSIFICATION Christophe Hendrickx*, Scott A. Hartman# & Octávio Mateus* * Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal & Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal # University of Wisconsin-Madison, Department of Geosciences, Madison, WI, 53716 USA Corresponding author: [email protected] Christophe Hendrickx, Scott A. Hartman & Octávio Mateus. 2015. An Overview of Non- Avian Theropod Discoveries and Classification. - PalArch’s Journal of Vertebrate Palaeon- tology 12, 1 (2015), 1-73. ISSN 1567-2158. 73 pages + 15 figures, 1 table. Keywords: Dinosauria, Theropoda, Discovery, Systematics ABSTRACT Theropods form a taxonomically and morphologically diverse group of dinosaurs that include extant birds. Inferred relationships between theropod clades are complex and have changed dramatically over the past thirty years with the emergence of cladistic techniques. Here, we present a brief historical perspective of theropod discoveries and classification, as well as an overview on the current systematics of non-avian thero- pods. The first scientifically recorded theropod remains dating back to the 17th and 18th centuries come from the Middle Jurassic of Oxfordshire and most likely belong to the megalosaurid Megalosaurus. The latter was the first theropod genus to be named in 1824, and subsequent theropod material found before 1850 can all be referred to megalosauroids. In the fifty years from 1856 to 1906, theropod remains were reported from all continents but Antarctica.
    [Show full text]