<<

Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Palaeontology, 12, 1 (2015)

AN OVERVIEW OF NON-AVIAN THEROPOD DISCOVERIES AND CLASSIFICATION

Christophe Hendrickx*, Scott A. Hartman# & Octávio Mateus*

* Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, & Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal # University of Wisconsin-Madison, Department of Geosciences, Madison, WI, 53716 USA

Corresponding author: [email protected]

Christophe Hendrickx, Scott A. Hartman & Octávio Mateus. 2015. An Overview of Non- Avian Theropod Discoveries and Classification. - PalArch’s Journal of Vertebrate Palaeon- tology 12, 1 (2015), 1-73. ISSN 1567-2158. 73 pages + 15 figures, 1 table.

Keywords: Dinosauria, , Discovery,

ABSTRACT Theropods form a taxonomically and morphologically diverse group of that include extant . Inferred relationships between theropod are complex and have changed dramatically over the past thirty with the emergence of cladistic techniques. Here, we present a brief historical perspective of theropod discoveries and classification, as well as an overview on the current systematics of non-avian thero- pods. The first scientifically recorded theropod remains dating back to the 17thand 18th centuries come from the Middle of Oxfordshire and most likely belong to the megalosaurid . The latter was the first theropod to be named in 1824, and subsequent theropod material found before 1850 can all be referred to megalosauroids. In the fifty years from 1856 to 1906, theropod remains were reported from all continents but . The Theropoda was erected by in 1881, and in its current usage corresponds to an intricate ladder-like organi- zation of ‘’ to ‘superfamily’ level clades. The earliest definitive theropods come from the Carnian of , and coelophysoids form the first significant theropod radiation from the Late to their in the . Most subsequent theropod clades such as ceratosaurs, allosauroids, tyrannosauroids, ornithomimosaurs, therizinosaurs, oviraptorosaurs, dromaeosaurids, and troodontids persisted until the end of the , though the megalosauroid clade did not extend into the Maas- trichtian. Current debates are focused on the monophyly of deinonychosaurs, the posi- tion of dilophosaurids within coelophysoids, and megaraptorans among neovenatorids. Some recent analyses have suggested a placement of dilophosaurids outside Coelo- physoidea, within , and a paraphyletic with troodontids placed more closely to avialans than dromaeosaurids.

PalArch Foundation 1 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Introduction tally projecting (n.b., some theropods such as tyrannosaurids and caudipterids had a short Theropods form a clade of bipedal neck and short tail, respectively). Variation in among which birds and all strictly carnivorous the postcranium mostly occurs in the forelimb, dinosaurs are found (e.g., Gauthier 1986; Sere- manual and pelvic morphology, hind limbs pro- no 1997; Holtz & Osmólska 2004; Holtz 2012; portion as well as the vertebral counts, ossifica- Naish 2012). Along with sauropodomorph and tion, and elongation of the neural spine. Some ornithischian clades, they appeared in the Late theropods like abelisaurids had short stubby Triassic (Figure1) and rapidly acquired a world- arms bearing four short fingers (e.g., Ruiz et wide distribution, being present on every con- al. 2011; Burch & Carrano 2012) whereas oth- tinent by the Lower Jurassic (Tykoski & Rowe ers like therizinosaurids possess elongated fore- 2004). In the Jurassic (possibly as early as the limbs with three slender fingers bearing large , based on ghost ranges; e.g., Hu (Clark et al. 2004; Zanno 2010a). Like- et al. 2009; Godefroit et al. 2013a, b), small the- wise, although a large majority of theropods ropods gave rise to birds, the only dinosaurs to exhibit short neural spines, some spinosaurids, survive the Cretaceous-Paleocene (K-Pg) mass allosauroids and deinocheirids have developed extinction event 66 million years ago (Figure1). hypertrophied spines forming a hump or a sail After surviving the K-Pg extinction event, birds on the back of these (Bailey 1997; Lee radiated into ecological niches left by non-avian et al. 2014). Unlike the postcranial , dinosaurs (Padian & Chiappe 1998; Chiappe & there is a tremendous diversity of mor- Witmer 2002; Naish 2012). As a result, thero- phology in non-avian theropods, from the elon- pods are one of the most successful groups gated skull of spinosaurids showing a terminal of tetrapods, and the most morphologically spatulate rosette (Charig & Milner 1997; Dal and taxonomically diverse clade of dinosaurs Sasso et al. 2005) to the short -like skull (Rauhut 2003a; Holtz 2012; Foth & Rauhut and edentulous jaws of oviraptorids (Xu & Han 2013). 2010). Recent discoveries of non-avian thero- Non-avian theropods (i.e., Theropoda exclud- pods such as the rodent-like (Xu ing ) were the dominant terrestrial pred- et al. 2002a), the beaked (Xu et al. ators in Jurassic and Cretaceous 2009b), the crested (Xu et al. 2006), worldwide (Rauhut 2003a; D’Amore 2009). the long snouted (Makovicky et al. Though their diversity and disparity remained 2005) and the -billed (Lee et high through the end of the Cretaceous, they al. 2014) indicate a particularly high variety of became extinct at the end of the Cretaceous skull morphologies among theropod dinosaurs concurrent with all other clades of non-avian (Brusatte et al. 2012c; Foth & Rauhut 2013). dinosaurs (Rauhut 2003a; Holtz et al. 2004; Up- Given such morphological and taxonomic church et al. 2011; Brusatte et al. 2012b, 2015). diversity, it is not surprising that theropod clas- While non-avian theropods include the major- sification is particularly complex, with - Thero ity (if not all) of meat-eating dinosaurs, many poda currently comprising more than 20 clades theropod clades became secondarily adapted to at the ‘family’ and ‘super-family’ level. With the herbivorous diets (Barrett 2005; Xu et al. 2009b; emergence of cladistic approaches and the dis- Zanno et al. 2009; Zanno & Makovicky 2011), covery of a large number of new theropod taxa, and several taxa have been described as omni- higher-level theropod relationships have also vores (Holtz et al. 1998; Lee et al. 2014), insec- changed dramatically over the past thirty years. tivores (Senter 2005) or filter feeders (Norell et This paper aims to present an overview of the al. 2001). The non-avian theropod body plan un- current state of knowledge on the systematics derwent relatively little modification during the of non-avian theropods and a general descrip- of the clade, being almost exclusively tion of each subclade. A historical perspective bipedal and exhibiting, for the large majority of initial discoveries and the evolution of thero- of them, elongated necks and a long, horizon- pod classification are also provided.

PalArch Foundation 2 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 1. Phylogeny and stratigraphic distribution of theropod clades. The phylogenetic classification of theropods follows the results of the cladistic analyses obtained by Sues et al. (2011) for non-neotheropod Theropoda, Smith et al. (2007) and Ezcurra & Brusatte (2011) for non-averostran , Pol & Rauhut (2012) and Tortosa et al. (2014) for , Carrano et al. (2012) for non-coelurosaur , Loewen et al. (2013), Lü et al. (2014) and Porfiri et al. (2014) for Tyrannosauroidea, Lee et al. (2014) for , Lamanna et al. (2014) for , and Turner et al. (2012), Godefroit et al. (2013a) and Choiniere et al. (2014b) for non-tyrannosauroid . Silhouettes by Michael Bech Hussein (, Dilophosauridae, , and Alvarezsauroidea), Jaime Headden (), Michael Keesey (Deinocheiridae), William Parker (), Travis Tischler (Megaraptora), and Scott Hartman (all others).

PalArch Foundation 3 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Historical Background portion of was reillustrated by English naturalist Richard Brookes (1763) who labeled First Discoveries the figure ‘Scrotum Humanum’, given the super- The description of the first theropod remains ficial similarity of the distal to and the first material go in hand, testicles (Figure 2B). Although this binomial as the first dinosaur and teeth reported term was clearly used as a descriptive appel- in the literature belong to theropods (Lebrun lation by Brookes (Spalding & Sarjeant 2012), 2004). All theropod material reported in the some have proposed its use as a valid scientific 17th, 18th, and the first half of the 19th cen- name. That would make ‘Scrotum Humanum’ the tury came from and France, and has first formal binomial name given to a dinosaur been referred to megalosauroid theropods, with and a senior of Megalosaurus buck- most remains being assigned to Megalosauri- landii (Halstead 1970; Delair & Sarjeant 1975), dae. This coincidence can be explained by two a proposition which was rejected by the Inter- independent factors: 1) the emergence of verte- national Zoological Commission (Halstead & brate in the Early modern period Sarjeant 1993; Delair & Sarjeant 2002). and early 19th century in Western , with Isolated theropod teeth were first described scientists like Georges Cuvier, Gideon Mantell, and figured in 1699 by Welsh naturalist Edward and Richard Owen; and 2) the excavation, at Lhuyd in his catalogue of and minerals that time, of vertebrate remains from Middle Lithophylacii Britannici Ichnographica (Lhuyd Jurassic quarries of Stonesfield (Ox- 1699). The specimen number 1328 (Lhuyd fordshire) and Caen (Normandy), a period of 1699, plate 16), originally ascribed to a by time when megalosauroids were the dominant Lhuyd (1699), corresponds to an isolated theropods in Europe. from the Middle Jurassic Great Oolite of Stones- Theropod fossils were almost certainly field (Figure 2C). This shed tooth greatly resem- found by prescientific societies prior to the 17th bles Megalosaurus and most likely belongs to century, but the discovery of these unusual re- that (Delair & Sarjeant 2002). Additional mains were interpreted in ways that gave rise theropod findings reported in the 18th century to myths and legends (Buffetaut 1994; Lebrun include a limb from Stonesfield labeled 2004; Spalding & Sarjeant 2012). Theropod specimen a.1 by John Woodward (1729) in his tracks from the Lower Cretaceous catalogue of British fossils from his personal of Paraíba in north-eastern Brazil were, for in- collection. This section of limb bone is current- stance, considered by Amerindians to pertain to ly preserved in the Sedgwick Museum of Cam- giant running birds (Leonardi 1984; Mayor & bridge (specimen D.30.1) and, once again, likely Sarjeant 2001). Likewise, a set of theropod pertains to Megalosaurus (Delair & Sarjeant tracks visible on limestone in the 1975, 2002). It may, therefore, be the earliest- south of Algeria was believed by Arabs to be- discovered bone that can still be identified as long to a giant , property of a venerated belonging to a theropod with confidence (De- man buried nearby (Taquet 2010). lair & Sarjeant 1975, 2002). Later, an incomplete The first published record of a theropod femur described and illustrated by Platt (1758) bone is of an incomplete left femur described was identified as belonging to a hippopotamus, and figured by Robert Plot in his 1677 ‘Natural a , or an unknown of large History of Oxfordshire’ (Figure 2A). The size (Figure 2D). This large femur, which is also was dug up from a quarry in the Parish of Corn- from Stonesfield, was recently referred to Meg- well, Oxfordshire, and probably pertains to the alosaurus bucklandii (Evans 2010). megalosaurid Megalosaurus (Delair & Sarjeant The first theropod taxon to be recognized 1975, 2002). Plot (1677) correctly identified the as reptilian and formally described in the lit- bone as a distal femoral condyle (capita femoris erature is, in fact, Megalosaurus, coined by Wil- inferiora), and wondered whether this partial liam Buckland in 1824 (although the generic femur belonged to an brought to Brit- name was already announced by James Par- ain by the Romans. Plot (1677), however, noted kinson in 1822). Material originally ascribed to many differences with the femur of Megalosaurus included a right dentary with a and instead referred the bone to a human giant well-preserved erupted tooth (Figure 2E), , also brought by the Romans (Evans 2010). This hind-limb elements, pelvic bones, and sacral

PalArch Foundation 4 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 2. Earliest historical records of theropod remains in the world. A-B) Distal part of a left femur of Megalosaurus from Cornwell, U.K., in posterior view, and first reported by Plot (1677); A, illustrations by Plot (1677, table 8, fig.4); and B, Brookes (1763, p. 312, figure 317) showing the label ‘Scrotum Humanum’; C) Isolated theropod tooth (likely Megalosaurus) from the Stonesfield, U.K., illustrated by Lhuyd (1699, plate 16, figure 1328); D) Right femur ofMegalosaurus from Stonesfield, U.K., in anterior view, illustrated by Platt (1758, table 19); E) Right dentary of Megalosaurus bucklandii from Stonesfield, U.K., in medial and posterior views, illustrated by Buckland (1824, plate 40).

PalArch Foundation 5 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) and caudal vertebrae, all collected in the Tayn- 1833), and Owen (1840-1845; 1849-1884) all re- ton Limestone Formation (middle ) ferred these isolated teeth to crocodilians, yet of Stonesfield, Oxfordshire. As Buckland (1824) they closely resemble those of the spinosaurid did not provide a name for Megalosau- walkeri discovered much later. Sucho- rus, the species Megalosaurus conybeari saurus teeth are now considered as belonging was proposed by Ferdinand von Ritgen in 1826 to either Baryonyx or an unnamed member of (von Ritgen 1826). This author failed to provide Baryonychinae (Milner 2003; Buffetaut 2007; a description and diagnosis for the species, al- Mateus et al. 2011). lowing Mantell (1827) to be the first scientist The first non-megalosauroid theropod to be to name and diagnose a theropod species, i.e., formally described is Nuthetes destructor from Megalosaurus bucklandii, which is the name the Purbeck Formation (, Early Cre- currently accepted by the scientific community. taceous) of Durlston Bay, Dorset. This tentative Streptospondylus altdorfensis (Meyer 1832) dromaeosaurid was erected by Owen (1854) and bucklandii (Eudes-Deslong- based on an incomplete dentary and some champs 1837) from France were the first non- isolated teeth originally assigned to a avian theropods to be described in the literature or a varanid (Milner 2002). A few years later, outside England, and the second and third Me- longipes (Wagner 1861), from sozoic theropods to be formally named. These the Solnhofen Limestone of Germany, was the two megalosauroids, considered valid species first non-avian theropod preserving a nearly (Carrano et al. 2012), are only known from post- complete and slightly disarticulated skull and cranial remains. The material of Streptospondy- skeleton to be reported in the literature. This lus, discovered in the Vaches Noires theropod was discovered in Germany around cliffs around 1770, was mixed with crocodilian 1859 (Wellnhofer 2008) and was reported by remains, and interpreted as a by Cu- Wagner (1859) the same . It remained one vier (1808, 1812, 1824). The remains of Poeki- of the most completely known theropods for lopleuron from the Formation more than a century (Ostrom 1978). (middle Bathonian) in Caen, Normandy, were After Europe, became the correctly identified as belonging to a large rep- second continent to yield theropod remains de- tile closely related to Megalosaurus. Unfortu- scribed by paleontologists. The first theropod nately, the material was lost during World War II fossils reported were isolated teeth discovered and, besides the original illustrations provided in 1855 by eminent American scientist Ferdi- by Eudes-Deslongchamps (1837), only casts of nand Vandiveer Hayden from the Upper Cre- some bones remain (Allain & Chure 2002). taceous of , at the confluence of the Although Buckland (1824) and Mantell and Judith rivers (Breithaupt 1999). (1827) were the first to give a relatively good de- The dental material was briefly described one scription of the of Megalosaurus, Rich- year later by Leidy (1856) who erected two ard Owen was the first scientist to exhaustively new species, Deinodon horridus based on sev- investigate the tooth of theropods and eral fragment of teeth (Figure 3A) and many other . In his treatise on verte- formosus based on a single shed tooth (Figure brate teeth, ‘Odontography’ (Owen 1840-1845), 3B). Troodon and Deinodon were originally and his richly illustrated four volume ‘A History thought to belong to a ‘lacertian’ (a large Moni- of British Fossil ’ (Owen 1849-1884), tor according to Leidy 1860) and a relative of Owen provided a comprehensive description Megalosaurus, respectively (Leidy 1856, 1860). and illustration of the crowns, denticles, and Troodon is now considered to be a valid species internal structure of the teeth of Megalosaurus of troodontid (Currie 1987), whereas Deinodon bucklandii and Suchosaurus cultridens. The lat- has been recognized as belonging to an uniden- ter was erected by Owen (1840-1845) based on tified tyrannosaurid, probably isolated teeth from the Wealden of Tilgate For- known from the same deposits (Breithaupt est, near Cuckfield (Sussex). Interestingly, the 1999; Breithaupt & Elizabeth 2008). teeth of Suchosaurus were discovered by Man- Shortly after Leidy’s description of theropod tell, and were first described and illustrated by teeth from North America, the Reverend Ste- Mantell (1822) and Cuvier (1824), respectively phen Hislop (1861, 1864) reported the discov- (Buffetaut 2010). Cuvier (1824), Mantell (1827, ery of isolated theropod teeth from the Upper

PalArch Foundation 6 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Cretaceous of India. One of them was discov- though the teeth were interpreted as belonging ered by Mr. Rawes in the locality of Takli, in the to an ichthyodectid fish (Buffetaut 2005, 2010). Nagpur area of Maharashtra, and represents the The first theropod material to be reported in earliest historical record of theropod dinosaurs was an isolated tooth described in (Carrano et al. 2010). The shed tooth was by famous Argentinian paleontologist Floren- sent to the Geological Society’s Museum of Lon- tino Ameghino in 1899 (Ameghino 1899; Co- don (which is now part of the Natural History ria & Salgado 1996; Figure 3E-F). Based on this Museum) and studied and illustrated by English fragmentary tooth and a partial femur found in naturalist Richard Lydekker (1879, 1885, 1890; the Upper Cretaceous of Par-Aïk, Shehuen Riv- Figure 3C). Although the latter recognized the er, Santa Cruz Province of Argentina, Ameghi- theropod affinity of the tooth, he assigned it to no erected the taxon Loncosaurus argentines a new species of sauropodomorph, Mas- which was initially classified as a megalosaurid sospondylus rawesi (Lydekker 1890). The tooth (Ameghino 1899). Although the partial tooth was later referred to Megalosaurus (Vianey- most likely belongs to a theropod, the femur of Liaud et al. 1988) and is currently assigned to Loncosaurus is that of an ornithopod (Coria & an indeterminate theropod, almost certainly an Salgado 1996). Genyodectes serus, named and abelisaurid (Carrano et al. 2010, 2012; C.H. pers. described by Woodward only two years later, obs.). is the first valid theropod (and dinosaur) to In the span of a decade, between the latest be reported from Argentina (Woodward 1901; part of the 19th century and the first part of Rauhut 2004b). Until the 1970s, this cerato- the 20th century, theropod skeletal material saurid remained one of the most complete the- was reported on three continents of the South- ropods known from that continent (Rauhut ern Hemisphere, , South America and 2004b). . The French were the first to collect Theropod material is scarcer in Oceania, and describe material belonging to Gondwanan yet the first representative fossil was reported theropods. The first definitive theropod skeletal in Australia by the beginning of the 20th cen- remains to be reported in the Southern Hemi- tury (Agnolín et al. 2010). Woodward (1906) sphere, in fact, belong to the well-known abelis- described a theropod ungual unearthed from aurid crenatissimus unearthed Cape Patterson, on the south coast of Victoria in the () of (Figure 3G). This , the first dinosaur materi- . The species was erected as Megalo- al reported from Australia, was collected by Mr. saurus crenatissimus by French paleontologist W. H. Ferguson in the Wonthaggi Formation Charles Depéret in 1896, based on fossils col- (early ; Agnolín et al. 2010). The pedal lected by Mr. Landillon in the Mahajanga Ba- ungual was initially thought to be from a tax- sin one year before (Depéret 1896a, b; Krause on closely related to Megalosaurus, and some- et al. 2007). Nevertheless, theropod tracks dis- times as Megalosaurus itself (Woodward 1906; covered in Cenomanian limestone in the Jebel Huene 1926a). It is now considered an indeter- Bou-Khaïl (near the city of Laghouat), Algeria, minate theropod (Agnolín et al. 2010; Carrano by French geologist G. Le Mesle were already et al. 2012). Four years later, Woodward (1910) reported by Le Mesle & Peron (1880; Figure 3D) briefly reported the discovery of a tooth and a sixteen years before, and account for the first posterior caudal of what he assumed described theropod material from Africa (Ta- to be a small megalosaurian theropod. The ma- quet 2010; Chabou et al. 2015). Almost twenty terial was found by T.C. Wollaston and comes years later, a theropod vertebra and isolated from the Griman Creek Formation () teeth assigned to were discov- of Lightning Ridge near Walgett, New South ered in the Djoua country (near Timassânine), Wales. Huene (1932) described and referred Algeria, during a mission led by French officer the vertebra to the new taxon Walgettosuchus François Lami and explorer Fernand Foureau in woodwardi, an indeterminate theropod current- 1898 (Buffetaut 2010; Taquet 2010). Based on ly considered a (Agnolín et al. the material collected by the latter, French pa- 2010). leontologist Emile Haug (1904, 1905) reported Antarctica is the last continent to have yield- on and illustrated the first skeletal material of ed non-avian theropod material. The first dis- a theropod (and a dinosaur) from the Sahara, covery of theropod remains occurred in 1988

PalArch Foundation 7 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 3. Earliest historical records of theropod remains in A-B, North America; C, Asia; D, Africa; E-F, South America; G, Oceania; and H, Antarctica. Isolated teeth of: A) Troodon formosus; and B, Deinodon horridus (= Albertosaurus sarcophagus) from the Upper Cretaceous Judith River of Colorado and first reported by Leidy (1856; modified from Leidy 1860, plate 9); C) Isolated theropod tooth of ‘ rawesi’, an abelisaurid from the Upper Cretaceous of India (localities of Takli and Maleri) first reported by Hislop (1861, 1864, illustration by Lydekker 1890, fig. 1); D) Casts of theropod tracks from the Upper Cretaceous of Jebel Bou-Khaïl, Algeria, and first reported by Le Mesle and Peron (1880; illustration by Mesle & Peron 1880, figures 65 and 66); E-F) Isolated theropod tooth from the Upper Cretaceous of Par-Aïk, Argentina, referred to Loncosaurus argentines and first reported by Ameghino (1899); E, illustration by Ameghino (1900, p. 160) and Ameghino (1906, Figure 8); and F, Huene (1929a, plate 41); G) Pedal ungual of an indeterminate theropod from the Upper Cretaceous of Cape Patterson, Australia, and first reported by Woodward (1906); H) Distal part of a of a megalosauroid? theropod from the Upper Cretaceous of Col Crame, Antarctica, discovered in 1988 (modified from Molnaret al. 1996).

PalArch Foundation 8 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) when Agelandro Lopez Angriman found the from the old Greek words θηρίον, thérion mean- distal part of a tibia in the - ing ‘wild beast, animal’, and ποδος, pous, podos Hidden Formation of Antarctica (Molnar meaning ‘foot’. Theropods, with ‘beast feet’ were, et al. 1996; Figure 3H). The bone, known as the at that time, separated from ornithopods, mean- Hidden Lake specimen (Carrano et al. 2012), ing ‘ feet’, and sauropods, meaning ‘ comes from the north of Col Crame in the Cape feet’, which were coined by Marsh in 1871 and Lachman region, north-western James Ross Is- 1878, respectively. A year after naming the tax- land. This tibia was assigned to an indetermi- on Theropoda, Marsh (1882) already included nate tetanuran by Molnar et al. (1996), and to a six ‘families’ in this clade, namely Megalosau- megalosauroid by Carrano et al. (2012), which ridae, Zanclodontidae, Amphisauridae, Labro- makes it the latest surviving member of this sauridae, , and . clade found to date. Although the Hidden Lake A few years later, Seeley (1887) used the orien- specimen was the first theropod material to be tation and morphology of the to divide found in Antarctica, this partial tibia was only the clade of Dinosauria into two major groups, described in 1996, and the first theropod to be the and the . Theropods reported in the literature is, in fact, Cryolopho- and sauropodomorphs were grouped among saurus ellioti, described by Hammer and Hick- saurischian dinosaurs with reptile-like pelves, erson (1994) two years earlier. whereas ornithischians with bird-like pelves in- material was collected during the 1990-1991 cluded and . Ironically, and 2003-2004 field seasons, and this taxon is saurischian theropods with beast-like feet and a the most complete theropod from Antarctica, reptile-like ultimately give rise to birds, one of the largest from the Early Jurassic, and instead of the ornithischians with a bird-like possibly one of the earliest tetanurans hitherto pelvis, and the ornithopods with bird-like feet. discovered (Smith et al. 2007; Carrano et al. By the end of the 19th century, four currently 2012). valid theropod clades (, Mega- losauridae, Compsognathidae, Omithomimi- History of Classification dae), two sauropodomorph (, The clade Dinosauria was erected as a tribe (or Anchisauridae) and four unrecognized archo- a sub-) by Richard Owen in 1842 to con- saur clades (i.e., Labrosauridae, Dryptosauridae, tain three taxa of large reptiles, Megalosaurus, Coeluridae, and Hallopidae) were gathered into , and Hylaeosaurus. Owen (1842) did Theropoda by Marsh (1895, 1896). not include the already named theropods Poeki- The classification of theropods was marked- lopleuron, Streptospondylus, and Suchosaurus, ly affected by the work of German paleontolo- all considered to be crocodilian taxa at the time. gist (1909, 1914a, b, 1923, ‘Goniopoda’ was the first clade of dinosaurs to 1926a, b, 1929b, 1932) in the first half of the gather two valid theropod dinosaurs. This order 20th century. Up until 1932, Huene ignored the was erected by in 1866 to name Theropoda and erected two new clades encompass (now known as Dryptosau- to encompass all saurischian dinosaurs, Coe- rus; Brusatte et al. 2011) and ‘probably’ Mega- lurosauria and ‘Pachypodosauria’. In Huene’s losaurus. ‘Goniopoda’ was, by then, opposed to earlier classifications, coelurosaurs comprised the ‘Orthopoda’ consisting of , Hy- theropods such as , , laeosaurus, Iguanodon, and Hadrosaurus (Cope Compsognathus, , Tyranno- 1866). saurus, and , whereas pachypo- Although the taxa ‘Goniopoda’ and ‘Orthop- dosaurs included the , consisting oda’ were used in Matthew & Brown’s (1922) of Megalosaurus, , and classification of theropods in the 20th century, (formerly known as ), as well as the these two groups were abandoned in favor of Prosauropoda and the , two clades clades coined by Othniel Charles Marsh by currently classified as sauropodomorphs. In the end of the 19th century. Marsh (1881) first the 1930s, Huene (1932) modified his view on erected the taxon Theropoda to contain the theropod systematics and abandoned the taxon family , initially represented by the ‘Pachypodosauria’. At that time, saurischian di- North American genera Allosaurus, Creosaurus, nosaurs included Coelurosauria, Carnosauria, and Labrosaurus. The term ‘Theropoda’ derived Prosauropoda, and Sauropoda, and the separa-

PalArch Foundation 9 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) tion between coelurosaurs and carnosaurs was ics, and the results of those cladistic analyses mostly based on size (Rauhut 2003a). Among radically changed prevailing views on theropod carnivorous saurischians, coelurosaurs were as- phylogeny. Thulborn (1984) was the first to in- signed to relatively small, slenderly built, pre- vestigate theropod interrelationships through daceous theropod clades such as a cladistic approach by addressing the system- (formerly known as ‘Podokesauridae’), Comp- atics of and other stem-group sognathidae, and , whereas birds. Gauthier’s (1986) work on saurischian carnosaurs encompassed large, heavily built interrelationships was the first to outline the predators with massive such as Megalo- current phylogenetic classification of non-avian sauridae, Spinosauridae, (for- theropods. Based on a cladistic analysis per- merly known as ‘Dinodontidae’), and Allosauri- formed on a data matrix of 84 characters, the dae (Huene 1932). American paleontologist confirmed the mono- In the beginning of the second half of the phyly of dinosaurs and corroborated Seeley’s 20th century, Alfred Sherwood Romer, in his idea that and Theropoda authoritative book ‘Osteology of the Reptiles’, were sister-groups within Saurischia. Gauthier (1956) proposed a slightly modified version of (1986) recovered Theropoda as a well-supported the saurischian classification. Romer separated clade divided into Ceratosauria and Tetanurae, saurischian dinosaurs into Theropoda and Sau- and provided the modern phylogenetic defini- ropoda, and included all bipedal saurischians tion of theropods as birds and all saurischians within theropods, including Prosauropoda, Coe- closer to birds than to sauropodomorphs. He lurosauria, and Carnosauria. Romer adopted the recognized a dichotomy between Carnosauria size criteria followed by Huene (1932) and re- and Coelurosauria within tetanuran theropods, stricted carnosaurs to Teratosauridae (now con- and erected the clade to encom- sidered to be a clade of rauisuchian ; pass coelurosaurs more derived than Ornitho- e.g., Benton 1986), (represented mimidae. At that time, Ceratosauria contained at that time by theropods such as Ceratosaurus, Coelophysis, , and Ceratosaurus, Megalosaurus, Spinosaurus, Allosaurus, Carcha- carnosaurs included Allosaurus, Acrocanthosau- rodontosaurus, and Proceratosaurus), and Ty- rus and tyrannosaurids, and non-avian coeluro- rannosauridae. From the 1960s to the beginning saurs comprised Compsognathus, , of the 1980s, authors working on theropods, in- and the Ornithomimidae, Caenagnathidae, and cluding Walker (1964), Colbert (1964), Colbert Deinonychosauria (Gauthier 1986). & Russell (1969), Ostrom (1976a), and Russell Since the pioneering work of Gauthier (1984) did not deviate significantly from the (1986), the availability of parsimony-based phy- classification scheme of Romer (1956). Most of logenetic software has enabled a large number them, however, did acknowledge that coeluro- of authors to investigate theropod interrelation- saurs and carnosaurs were likely to be grades ships via cladistic analysis, resulting in major rather than clades (Thulborn 1984). A few revisions to theropod systematics. Novas (1992) authors like Ostrom (1972), Barsbold (1977), was the first to include abelisaurids and tyran- Welles (1984) and Carroll (1988) abandoned nosaurids among ceratosaurs and coelurosaurs, the size-based dichotomy between coelurosaurs respectively (Rauhut 2003a), and Holtz (1994) and carnosaurs, and Barsbold (1977) included was the first major phylogenetic analysis that newly erected clades such as Oviraptorosauria recovered the clade (erected by (with ), Deinonychosauria (with Paul 1988 and also known as ‘Neotetanurae’; and , formerly Table 1) to include Allosauridae and Coeluro- known as ‘Saurornithoididae’), and Therizino- sauria (Figure 4). The same year, Sereno et al. sauria (formerly known as ‘Deinocheirosauria’ (1994) found that (formerly by Barsbold, 1977, then ‘Segnosauria’ by Bars- known as ‘Torvosauroidea’ and ‘Spinosauroi- bold and Perle, 1980) among theropods. dea’) formed the of Avetheropoda The adoption in the early 1980s of phyloge- and was divided into Megalosauridae (formerly netic methodology developed by German ento- known as ‘Torvosauridae’) and Spinosauridae mologist Willi Hennig (1950) in the beginning (Figure 4). Two years later, Sereno et al. (1996) of the second half of the 20th century, was a found the new clade (also termed major step in the history of theropod systemat- ‘Carnosauria’ sensu Padian et al. 1999), which

PalArch Foundation 10 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 4. of basal Theropoda showing the relationships of tyrannosauroids and non-coelurosaur theropods. The phylogenetic classification follows the results of the cladistic analyses obtained by Sues et al. (2011) for non-neotheropod Theropoda, Smith et al. (2007) and Ezcurra & Brusatte (2011) for non-averostran Neotheropoda, Pol & Rauhut (2012) and Tortosa et al. (2014) for Ceratosauria, Carrano et al. (2012) for non-coelurosaur Tetanurae, Loewen et al. (2013), Lü et al. (2014) and Porfiriet al. (2014) for Tyrannosauroidea, and Choiniere et al. (2014b) for basalmost Coelurosauria.

PalArch Foundation 11 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) gathered Allosaurus, Sinraptoridae, and Carcha- Sues et al. 2011; Langer & Ferigolo 2013; Fig- rodontosauridae, to be the sister-group of Coelu- ure 4), and over the monophyly or of rosauria. Following these preliminary analyses, Coelophysoidea (i.e., Coelophysidae + Dilopho- Sereno’s (1997, 1998, 1999) major phylogenetic sauridae; e.g., Tykoski 2005; Yates 2005; Ezcurra analyses of dinosaurs proceeded to define ma- & Cuny 2007; Ezcurra & Novas 2007; Smith et jor theropod clades such as Neotheropoda, Coe- al. 2007; Nesbitt et al. 2009; Ezcurra & Brusatte lophysoidea, Megalosauroidea, Allosauroidea, 2011; Xing 2012), and Deinonychosauria (i.e., Tyrannosauroidea, Ornithomimosauria (‘Orni- Dromaeosauridae + Troodontidae; e.g., Senter thomimoidea’ sensu Sereno 1998), Therizino- 2011; Turner et al. 2012; Godefroit et al. 2013a, sauroidea, , and Deinonychosauria (Fig- b; Brusatte et al. 2014; Choiniere et al. 2014b; ure 5). Foth et al. 2014; Tsuihiji et al. 2014). Recent de- Subsequent studies on theropod systematics, bate also focuses on the position of megarap- whose results are summarized by Holtz (1998), torans within neovenatorid allosauroids (Ben- Rauhut (2003a), Senter (2007), Carrano & son et al. 2010; Carrano et al. 2012) or among Sampson (2008) and Carrano et al. (2012), bet- tyrannosauroid coelurosaurs (Novas et al. 2013; ter resolved the relationships of non-avian Porfiri et al. 2014; Figure 4). theropods and defined additional clades such as (Coria & Salgado 1998), Piat- Current Classification nitzkysauridae (Carrano et al. 2012), Megarap- tora (Benson et al. 2010), and Proceratosauridae First Theropods (Rauhut et al. 2010; Figures 4-5). In 2015, the Theropoda can be defined as the most inclusive current consensus on non-avian theropod clas- clade containing the house sparrow Passer do- sification is based on the results of the most re- mesticus (Linnaeus 1758) but not the titanosau- cent large scaled phylogenetic analyses obtained rid sauropod loricatus Bonaparte by Sues et al. (2011) for non-neotheropod The- & Powell 1980 (Sereno 2005; Table 1 [see ap- ropoda, Smith et al. (2007) and Ezcurra & Bru- pendix]). Regardless of the status of inclusion satte (2011) for non-averostran Neotheropoda, of and herrerasaurids within Thero- Pol & Rauhut (2012) and Tortosa et al. (2014) poda, the oldest definitive theropod remains for Ceratosauria, Carrano et al. (2012) for non- come from the mid-Carnian (early Late Trias- coelurosaur Tetanurae, Loewen et al. (2013), Lü sic; ~231 Ma) of Argentina (Figure 1). Similar et al. (2014; which is based on Brusatte et al., in age to Eoraptor lunensis (Sereno et al. 2013; 2010d) and Porfiri et al. (2014) for Tyrannosau- Figure 6A) and the herrerasaurids Herrerasau- roidea, and Godefroit et al. (2013a), Choiniere rus ischigualastensis (Sereno & Novas 1994; Fig- et al. (2014b) and Brusatte et al. (2014; the most ure 6B) and Sanjuansaurus gordilloi (Alcober & updated version of the Theropod Working Martinez 2010), the oldest unquestioned the- Group (TWIG) dataset) for non-tyrannosauroid ropod taxon murphi (Martinez et Coelurosauria (Figures 4-5). al. 2011) is from the of As noted by Turner et al. (2012), Theropoda San Juan Province. Eodromaeus, Eoraptor and is now comprised of numerous well-supported herrerasaurids were small to large sized (1-6m ‘family’ or ‘super-family’-level subclades that long; Sereno & Novas 1992) bipedal sauris- form a pectinate, ladder-like organization, with chians with relatively elongated skulls. These each rung corresponding to a node-based clade primitive saurischians retained the ancestral that has not always received a name. Although dinosauromorph habit of obligate bipedality the relationships between most theropod clades and the ziphodont dentition present in more are currently well understood, several aspects primitive archosauriforms (Holtz et al. 1998; of theropod systematics remain controversial. Barrett et al. 2010; Holtz 2012), leading to their Current debate occurs over the phylogenetic consideration as carnivorous dinosaurs. Never- placement of Eoraptor and/or herrerasaurids theless, Eoraptor, recently interpreted to be a within non-theropod saurischians (e.g., Langer basal sauropodomorph (Martinez et al. 2011; & Benton 2006; Alcober & Martinez 2010; Ez- Sereno et al. 2013), exhibits constricted crowns curra 2010; Martinez et al. 2011; Sereno et al. and pointed denticles that suggest that this 2013) or at the base of Theropoda (Nesbitt et primitive saurischian, as well as the first dino- al. 2009; Ezcurra & Brusatte 2011; Nesbitt 2011; saurs, might have been omnivorous (Barrett et

PalArch Foundation 12 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 5. Cladogram of non-tyrannosauroid Coelurosauria showing the relationships of compsognathids and maniraptoriforms. The phylogenetic classification follows the results of the cladistic analyses obtained by Choiniere et al. (2014b) for basalmost Coelurosauria and Compsognathidae, Longrich & Currie (2009a) and Choiniere et al. (2010b) for Alvarezsauroidea, Lee et al. (2014) for Ornithomimosauria, Senter et al. (2012a) and Pu et al. (2013) for Therizinosauria, Lamanna et al. (2014) for Oviraptorosauria, Turner et al. (2012) for Paraves, and Foth et al. (2014) for Avialae.

PalArch Foundation 13 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 6. Skeletal reconstructions of three non-neotheropod saurischians (and possibly three basalmost theropods). A) The possible primitive sauropodomorph Eoraptor lunensis; B) The herrerasaurid ischigualastensis; C) The very basal theropod Tawa hallae. Reconstructions by Scott Hartman. al. 2010; Langer et al. 2010; Sereno et al. 2013). contrasts with the expanded antorbital fossa Tawa hallae (Nesbitt et al. 2009; Figure 6C) and of Eoraptor and Eodromaeus. Daemonosaurus Daemonosaurus chauliodus (Sues et al. 2011) is unique in having a short and tall skull filled from the and possibly of New with procumbent premaxillary and dentary , respectively, are currently recovered be- teeth (Sues et al. 2011). Tawa is closer to coelo- tween Eodromaeus and neotheropods (Figure 4). physoids than Daemonosaurus and other primi- Unlike Eoraptor, these two recently reported tive theropods in having an elongated snout taxa possess the short subnarial gap present in and a more gracile body. Tawa shares with Dae- basal neotheropods and an antorbital fossa re- monosaurus greatly enlarged maxillary teeth as stricted to the vicinity of the , well as pneumatic fossae (pleurocoels) in the as seen in Herrerasaurus (Nesbitt et al. 2009; (Nesbitt et al. 2009; Sues et Sues et al. 2011; Langer 2014). This condition al. 2011).

PalArch Foundation 14 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Coelophysoidea and Dilophosauridae rhodesiensis; Raath 1969, 1977; Bristowe & Neotheropoda (Bakker 1986), the least inclusive Raath 2004), and North America (Coelophysis clade containing Coelophysis bauri (Cope 1889) kayentakatae; Rowe 1989; n.b., this taxon was and Passer domesticus (Linnaeus 1758) (Sereno originally coined ‘Syntarsus’ by Rowe, 1989; it 2005), currently comprises theropods more de- is also referred to as by some rived than Tawa (Nesbitt et al. 2009; Nesbitt authors as the genus name ‘Syntarsus’ was pre- 2011; Sues et al. 2011). Among their derived occupied by a beetle, and the entomologists features, neotheropods are characterized by Ivie et al. 2001 replaced it with Megapnosaurus; an intramandibular and a hinge between ‘Syntarsus’ is thought to be a junior synonym the dentary and the postdentary bones (Holtz of Coelophysis by many authors such as Downs 2012). Current consensus on basal theropod 2000, Bristowe & Raath 2004 and Carrano et al. phylogeny suggests that neotheropods encom- 2012). Zupaysaurus rougieri (Arcucci & Coria pass a basal clade that can be referred to Coe- 2003; Ezcurra 2007) and lilienster- lophysoidea and a slightly more derived clade ni (Huene 1934) from the Norian of Argentina named Dilophosauridae (sensu Charig & Milner and Germany, respectively, are either classified 1990; Figure 4; the clade Dilophosauridae is as coelophysoids (e.g., You et al. 2014) or recov- here defined phylogenetically for the first time, ered as more derived neotheropods positioned see Table 1). Dilophosaurus is thought to belong between Coelophysoidea and Dilophosauridae to Coelophysoidea by some authors (e.g., Car- (Nesbitt et al. 2009; Ezcurra & Brusatte 2011; rano et al. 2005; Tykoski 2005; Ezcurra & Cuny Sues et al. 2011; Ezcurra 2012; Figure 4). 2007; Ezcurra & Novas 2007; Xing 2012). How- Dilophosauridae is a poorly supported clade ever, results of more recent and/or larger that may contain medium to large sized (4-7m analyses recover Dilophosauridae as a more long) theropods, such as Dilophosaurus wether- derived clade of neotheropods, and the sister- illi (Welles 19841; Figure 7B) and group of (e.g., Smith et al. 2007; Nes- regenti (Yates 2005) from the Early Jurassic of bitt et al. 2009; Ezcurra & Brusatte 2011; Sues et North America and South Africa, respectively. al. 2011; Ezcurra 2012). Consequently, though Similar to coelophysoids, these two taxa pos- the phylogenetic relationships of dilophosau- sess a subnarial gap and anteriormost maxillary rids remains unresolved, these basal theropods teeth facing anteroventrally, yet they share with seem to be more derived than coelophysoids. averostrans a promaxillary fenestra and a re- Coelophysoidea (sensu Sereno 2005; Table 1) duced number of maxillary teeth (Holtz 2012). encompasses small to medium sized theropods The clade has been recovered by some authors (2-6m long) with slender skulls, and lightly (Yates 2005; Smith et al. 2007; Xu et al. 2009b); built, gracile, and elongated bodies character- however, an over-atomization of cranial crest ized by elongated cervical centra (Tykoski & characters may have been leading phylogenetic Rowe 2004; Brusatte et al. 2010c; Holtz 2012). analyses to artificially find such a dilophosaurid The first coelophysoids are already present in clade (Brusatte et al. 2010a). In fact, ‘Dilopho- the Norian of Europe ( trias- saurus’ sinensis (Hu 1993), considered to be a sicus, arizonensis; Sereno & Wild synonym junior of triassicus (Dong 1992; Rauhut & Hungerbühler 1998; Ezcurra & 2003; Xing et al. 2013a, 2014), and Cryolopho- Brusatte 2011) and North America (Coelophysis saurus ellioti (Smith et al. 2007) from the Early bauri; Colbert 1989; Figure 7A). Although coe- Jurassic of and Antarctica, respectively, lophysoids form the first radiation of neothero- were formerly interpreted as dilophosaurid taxa pods, they were not apex terrestrial predators in and are now classified among basal tetanurans the , as pseudosuchian (Benson 2010a; Brusatte et al. 2010c; Carrano et such as rauisuchians and were larg- al. 2012; Xing 2012). The cranial crest of Dilo- er and more abundant at that time (Brusatte et phosaurus, Cryolophosaurus, and ‘Dilophosau- al. 2010c; Holtz 2012). Unlike most large pseu- rus’ sinensis was convergently acquired in these dosuchian archosaurs, coelophysoids survived taxa and evolved independently in dilophosau- the Triassic/Jurassic boundary, and Jurassic rids and basal tetanurans (Brusatte et al. 2010a; coelophysoids are known from the - Xing 2012), or was a derived feature present in Pliensbachian of China (Panguraptor lufengen- the common ancestor of dilophosaurids and sis; You et al. 2014), South Africa (Coelophysis basal averostrans. Although relatively common

PalArch Foundation 15 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 7. Skeletal reconstructions of two non-averostran neotheropods and one basal ceratosaur. A) The coelophysoid Coelophysis bauri; B) The dilophosaurid Dilophosaurus wetherilli; C) The ‘elaphrosaur’ Limusaurus inextricabilis. Reconstructions by Gregory Paul for Coelophysis and Dilophosaurus (modified), and Ville Sinkkonen for Limusaurus (modified). and diverse entering the Jurassic, coelophysoids fined as a transversally narrow and dorsoven- and dilophosaurids became extinct at or near trally high skull (Holtz 2012). According to Car- the end of Early Jurassic (Carrano & Sampson rano et al. (2012), the derived features shared by 2004; Ezcurra & Novas 2007; Langer et al. 2010). averostrans include a reduced prefrontal which remains unfused to the postorbital in adults, Ceratosauria the moderate size of the acromion of Averostra (Paul 2002), the least inclusive clade the , a ridge-like medial epicondyle on containing Ceratosaurus nasicornis Marsh the femur, an interpubic fenestra, the subtri- 1884a and Passer domesticus (Linnaeus 1758) angular morphology of the distal end of the is- (Allain et al. 2012; Table 1), radiated into two chium, and a centrally positioned fibular fossa main clades, Ceratosauria and Tetanurae (Fig- on the medial surface of the . The first ure 4). Basal averostrans are characterized by averostrans are known from the Early Juras- the oreinirostral condition of their head, de- sic and are distributed widely across the globe

PalArch Foundation 16 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) with remains found in China (‘Dilophosaurus’ Jurassic (-) ecosystems sinensis; Hu 1993), Antarctica (Cryolophosaurus of Europe, North America, and possibly South ellioti; Smith et al. 2007), Africa (Berberosau- America and Africa (Henderson 1998; Bakker & rus liassicus; Allain et al. 2007), South America Bir 2004; Soto & Perea 2008; Rauhut 2011). (Tachiraptor admirabilis; Langer et al. 2014), and falls into two divergent sub- possibly Europe (‘Saltriosaurus’; Dal Sasso 2003; clades, the Noasauridae and (Wil- Benson 2010b). Ceratosaurs currently include a son et al. 2003; Sereno et al. 2004; Carrano & basal clade informally referred to as ‘elaphro- Sampson 2008; Pol & Rauhut 2012; Tortosa et saurs’, a more derived family named Ceratosau- al. 2014; Figure 4). Noasaurids form a relatively ridae, and a major clade known as the Abelisau- poorly known group of small, slender abelis- roidea (Wilson et al. 2003; Sereno et al. 2004; auroids with forelimbs bearing well-developed Carrano & Sampson 2008; Pol & Rauhut 2012; claws (Bonaparte 1991a; Carrano & Sampson Tortosa et al. 2014). ‘Elaphrosaurs’ are a poorly 2008; Agnolín & Chiarelli 2010; Carrano et al. known group of primitive ceratosaurs including 2011). They are only known from the Creta- bambergi from the Kimmeridg- ceous and may have already been present in ian-Tithonian of Tendaguru (Carrano & Samp- the -early Aptian of Argentina (Li- son 2008), Limusaurus inextricabilis from the gabueino andesi; Bonaparte 1996; Carrano & of China (Xu et al. 2009b; Figure 7C), Sampson 2008). Noasaurids are well-known in and Spinostropheus gauthieri from the Middle the latest part of the Cretaceous of , Jurassic of Niger (Carrano & Sampson 2008; having been unearthed in Santonian-Maas- Rauhut and López-Arbarello 2009; Remes et al. trichtian deposits in Argentina (Noasaurus 2009). The ‘elaphrosaur’ clade was retrieved in leali, unicus; Bonaparte & Powell all recent cladistic analyses on ceratosaurs (Xu 1980; Bonaparte 1991b, 1996), Madagascar (Ma- et al. 2009b; Pol & Rauhut 2012; Farke & Sertich siakasaurus knopfleri; Carrano et al. 2002, 2011) 2013; Tortosa et al. 2014) and always gathers and India (; Huene & Matley 1933). the taxa Elaphrosaurus and Limusaurus. The lat- knopfleri (Figure 8B), the best ter is the only ‘elaphrosaur’ known from cranial known noasaurid taxon, shows the peculiar- material and the only non-maniraptoriform ity of having procumbent dentary teeth with a theropod to possess an edentulous skull conver- constriction at the crown base and flutes on the gent with that of ornithomimids (Figure 7C). lingual surface (Carrano et al. 2002, 2011). Although recovered as ‘elaphrosaurs’ in all re- Abelisauridae is a well-supported clade of cent large scaled cladistic analyses on cerato- medium to large (5-9m long) stubby-armed saurs (Pol & Rauhut 2012; Tortosa et al. 2014), theropods with short rounded snouts, deep, Elaphrosaurus and Limusaurus have also been heavily sculptured skulls bearing bony protu- suggested to belong to Noasauridae (Canale et berances and weakly recurved teeth (Bonaparte al. 2009; Stiegler et al. 2014). 1991a; Wilson et al. 2003; Carrano & Sampson Ceratosauridae only contains two taxa, the 2008; Canale et al. 2009; Pol & Rauhut 2012). eponymous Ceratosaurus from the Kimmerid- The inclusion of Eoabelisaurus mefi (Pol & gian-Tithonian of North America (C. nasicornis; Rauhut 2012) from the - of Pa- Gilmore 1920; Madsen & Welles 2000; Carrano tagonia within abelisaurids is subject of debate & Sampson 2008; Figure 8A) and Europe (Cera- (Pol & Rauhut 2012; Tortosa et al. 2014) and the tosaurus sp.; Mateus & Antunes 2000; Malafaia first definitive Abelisauridae, Kryptops palaios, et al. 2015), and Genyodectes serus from the comes from the Aptian-Albian of North Africa Aptian-Albian of Argentina (Rauhut 2004b). (Sereno and Brusatte 2008). Abelisaurids were Ceratosaurids were large theropods (6-8m long) not the dominant predators in Gondwanian characterized by strongly elongated maxillary ecosystems in the and early teeth longer than the dentary height, and at least of South America and North Ceratosaurus showed a fused nasal horn, two Africa, as they were dominated by the larger lacrimal horns, and osteoderms on the dorsal spinosaurids and carcharodontosaurids during midline of the animal (Marsh 1884a; Gilmore that time (Holtz 2012; Novas et al. 2013). Fol- 1920; Madsen & Welles 2000; Rauhut 2004b). lowing the extinction and/or decline of Spino- Along with megalosaurids and allosaurids, sauridae and after the ceratosaurids were apex predators in the Late Cenomanian- transition, abelisaurids

PalArch Foundation 17 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 8. Skeletal reconstructions of three ceratosaurs. A) The ceratosaurid Ceratosaurus nasicornis; B) The noasaurid Masiakasaurus knopfleri; C) The abelisaurid Majungasaurus crenatissimus. Reconstructions by Scott Hartman. became apex predators in Africa, Western Eu- Megalosauroidea rope, and South America in the latest part of the Tetanurae (Gauthier 1986), the most inclusive Cretaceous (Buffetaut et al. 2005; Candeiro & clade containing Passer domesticus (Linnaeus Martinelli 2005; Carrano et al. 2012; Novas et al. 1758) but not Ceratosaurus nasicornis Marsh 2013; Tortosa et al. 2014; Csiki-Sava et al. 2015). 1884a (Allain et al. 2012; Table 1), is diagnosed The best-known taxa are from the - by an antorbital tooth row, a moderately extend- Maastrichtian of Europe and Gondwana, includ- ed anterior ramus of the , a maxillary ing Majungasaurus crenatissimus (Sampson et fenestra piercing the lateral wall of the maxilla, al. 1998; Sampson & Witmer 2007; Figure 8C) separated interdental plates, and a prominent from Madagascar, garridoi (Coria et deltopectoral crest of the (Carrano et al. 2002), Skorpiovenator bustingorryi (Canale et al. 2012). Several relatively complete basal tet- al. 2009) and sastrei (Bonaparte et anurans are known from the Early and Middle al. 1990; Carabajal 2011) from Argentina, Ra- Jurassic of China and Antarctica (i.e., ‘Dilopho- jasaurus narmadensis (Wilson et al. 2003) from saurus’ sinensis, Cryolophosaurus, and Mono- India, and Arcovenator escotae (Tortosa et al. lophosaurus). These primitive tetanurans are 2014) from France. recovered between basal averostrans and the re- cent clade Orionides which comprises two major radiations, the Megalosauroidea and Avethero-

PalArch Foundation 18 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) poda (Carrano et al. 2012). The first one, Mega- Spinosauridae, the sister group of Mega- losauroidea, currently gathers three subclades, losauridae, is a well-supported clade of highly namely the Piatnitzkysauridae, Megalosauridae, specialized theropods united by an elongated and Spinosauridae (Figure 4). Piatnitzkysauridae crocodile-like skull, spatulate snout with sig- is the sister group of Megalosauria, which is di- moid alveolar margins, fluted conical teeth with vided into Megalosauridae and Spinosauridae. minute or no denticles, and an hypertrophied Piatnitzkysaurids as currently known comprise manual ungual (Charig & Milner 1997; Sereno medium sized (5-6m long) American forms such et al. 1998; Sues et al. 2002; Bertin 2010; Allain as bicentesimus (Madsen 1976a; et al. 2012; Ibrahim et al. 2014). These derived Figure 9A) from the Kimmeridgian-Tithonian anatomical features, associated with computer of North-America, and floresi modeling of the skull (Rayfieldet al. 2007; Cuff & (Bonaparte 1986; Rauhut 2004a) and Condorrap- Rayfield 2013), oxygen isotope ratios (Amiot tor currumili (Rauhut 2005) from the Toarcian- et al. 2010), morphofunctional analysis of the Bajocian of Argentina (Cúneo et al. 2013). These mandibular articulation (Hendrickx et al. 2008) basal megalosauroids are characterized by a and gut contents (Charig & Milner 1997; Buffe- maxilla with a short anterior ramus and vertical- taut et al. 2004), suggest that spinosaurids were ly ridged interdental plates (Carrano et al. 2012). at least partially piscivorous, while also feed- Megalosauridae is a diverse clade of thero- ing on dinosaurs and . Spinosaurids pods restricted to the Middle to , were large to very large theropods (8-17m long) which suggests they went extinct at the Juras- and include the largest terrestrial predators dis- sic-Cretaceous boundary (Carrano et al. 2012). covered hitherto. They were also characterized Megalosaurids are medium to very large (4-10m by elongated neural spines which evolved into long) theropods exhibiting relatively elongate a bony sail in some members (e.g., Spinosaurus skulls that lack cranial protuberances, and pow- aegyptiacus, Ichthyovenator laosensis; Stromer erful arms possibly bearing a large claw at 1915; Allain et al. 2012; Ibrahim et al. 2014). one (Hendrickx et al. 2015; Sadleir et al. 2008; Spinosaurid teeth seem to be already present Benson 2010a; Allain et al. 2012; Carrano et al. in the Kimmeridgian-Tithonian of 2012). The most primitive and one of the oldest (Buffetaut 2011; but for a different opinion see theropod embryos, found to date, from the Late Rauhut 2011), yet the earliest definitive spino- Kimmeridgian-Early Tithonian of Portugal have saurid is currently Baryonyx walkeri (Figure been ascribed to this clade (Araújo et al. 2013). 9C) from the Barremian of England and Portu- Megalosaurids are known as early as the Bajo- gal (Charig & Milner 1986, 1997; Mateus et al. cian of England (Magnosaurus nethercombensis, 2011). Spinosauridae are also known from the Duriavenator hesperis; Benson 2008a, 2010b) and Aptian and/or Albian of Niger ( te- include forms from the Bajocian-Callovian of nerensis; Sereno et al. 1998; n.b., Suchomimus te- England and France (Megalosaurus bucklandii, nerensis most likely represents the same animal Figure 9B; valesdunensis; Al- as the non-diagnostic lapparenti lain 2002; Benson et al. 2008; Benson 2010a), the Taquet & Russell 1998 from the same deposits; Middle Jurassic of Africa ( abakensis; Carrano et al. 2012), Brazil (Angaturama limai, Sereno et al. 1996), the Late Jurassic of China challengeri; Kellner & Campos 1996; (Leshansaurus qianweiensis; Li et al. 2009), and Sues et al. 2002; n.b., these two taxa known the Kimmeridgian-Tithonian of North-America from non-overlapping cranial material recov- and Portugal ( tanneri, Torvosaurus ered from the same deposits may in fact rep- gurneyi; Britt 1991; Hendrickx & Mateus 2014a). resent the same taxon/individual; Sereno et al. albersdoerferi, a possible megalo- 1998; Sues et al. 2002; Dal Sasso et al. 2005) and saurid from the Kimmeridgian of Germany, is South-eastern Asia (Ichthyovenator laosensis; Al- the most complete megalosauroid discovered so lain et al. 2012). The most derived spinosaurid, far (Rauhut et al. 2012). It is also currently the Spinosaurus aegyptiacus, comes from the Albi- most primitive theropod preserved with direct an-Cenomanian of North Africa (e.g., Stromer evidence of filamentous integument, indicating 1915; Taquet & Russell 1998; Buffetaut & that protofeathers were already covering some Ouaja 2002; Dal Sasso et al. 2005; Ibrahim et tetanurans early in their evolution (Rauhut et al. al. 2014). Recent studies have shown that this 2012). taxon had many adaptations for a semi-aquatic

PalArch Foundation 19 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 9. Skeletal reconstructions of three megalosauroids. A) The piatnitzkysaurid Marshosaurus bicentissimus; B) The megalosaurid Megalosaurus bucklandii; C) The spinosaurid Baryonyx walkeri. Reconstructions by Scott Hartman. lifestyle, including short hind-limbs, downsized Allosauroidea pelvic girdle, flat-bottomed pedal claws and sol- Avetheropoda (also known as ‘Neotetanurae’; id long bones (Ibrahim et al. 2014). e.g., Sereno et al. 1994; Sereno 1998, 1999; Al- Despite the presence of the tetanuran Chilan- lain et al. 2012; Table 1), the least inclusive clade taisaurus from the Turonian (or younger ) containing Allosaurus fragilis Marsh 1877 and of China and considered to be a spinosaurid by Passer domesticus (Linnaeus 1758) (Allain et al. Allain et al. (2012; n.b., is recov- 2012), is comprised of two major subclades: the ered as a neovenatorid allosauroid by Benson Allosauroidea, and the Coelurosauria (Figure et al. 2010 and Carrano et al. 2012) as well as 4). According to Carrano et al. (2012), avethe- isolated teeth tentatively assigned to Spinosau- ropods differ from more primitive theropods ridae from post-Cenomanian deposits of South by possessing strongly curved chevrons, a America and Asia (Salgado et al. 2009; Hone et poorly developed ridge on the medial surface al. 2010; for a different opinion see Hasegawa of the , and a subtriangular flange-like ac- et al. 2010), spinosaurids seem to go extinct in cessory trochanter on the femur. Allosauroids the early Late Cretaceous. were dominant terrestrial predators in the Late

PalArch Foundation 20 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Jurassic, Early Cretaceous, and early Late Cre- inclusive clade including and meg- taceous worldwide. Allosauroids are currently araptorans (Benson et al. 2010; Carrano et al. divided into four subclades: the Metriacantho- 2012; Zanno & Makovicky 2013). According to sauridae, Allosauridae, Neovenatoridae, and Benson et al. (2010), neovenatorids are united Carcharodontosauridae (Figure 4). Metriacan- by postcranial synapomorphies such as a short thosauridae (formerly known as ‘Sinraptori- and broad scapula and a pneumatic ilium. The dae’; Carrano et al. 2012) is the most primitive recent discovery of a relatively well-preserved and contains forms from the Middle and Late megaraptoran with cranial material, however, Jurassic of China such as dongi (Cur- seems to suggest a placement of Megaraptora rie & Zhao 1993a), ‘’ hepi- within Tyrannosauroidea (Porfiri et al. 2014). gensis, and Yangchuanosaurus shangyouensis Though this is still an active debate in theropod (Dong et al. 1983). These taxa, which are known systematics, megaraptorans will be described in from exceptionally well-preserved , the next section. share a maxilla with a promaxillary fenestra Carcharodontosauridae, on the other hand, larger than the maxillary fenestra, a pneumatic forms a well-supported clade comprising me- recess on the lateral surface of the ascending dium to very large theropods (6-14m long) ramus, and the absence of an anterior ramus characterized by a massive and deep skull (Currie & Zhao 1993a; Carrano et al. 2012). Me- with sculptured facial bones, and cranial pro- triacanthosaurus parkeri (Huene 1923) from tuberances on the lacrimals and postorbitals the Oxfordian of England is the only definitive (Novas et al. 2005, 2013; Coria & Currie 2006; non-Asian metriacanthosaurid reported to date Brusatte & Sereno 2007; Ortega et al. 2010; Cau (though antunesi from the et al. 2013). The earliest carcharodontosaurid Kimmeridgian-Tithonian of Portugal may also is currently Veterupristisaurus milneri (Rauhut be referred to this clade; see Benson 2010a), and 2011) known from caudal vertebrae from the isanensis (Buffetaut et al. 1996) Kimmeridgian-Tithonian of Tanzania. In the from the Barremian-Aptian of Thailand is the Cretaceous, carcharodontosaurids became a only known metriacanthosaurid that survived diversified clade of allosauroids distributed into the Cretaceous (Carrano et al. 2012). worldwide. Due to their very large sized, car- Allosauridae, a more derived clade of allo- charodontosaurids were at the apex of the food sauroids and the sister-clade of Carcharodon- chain in most ‘mid’ Cretaceous ecosystems. The tosauria, is a small group of Kimmeridgian- best preserved carcharodontosaurids are Con- Tithonian tetanurans comprising several North cavenator corcovatus (Ortega et al. 2010) from American and Portuguese taxa, namely Allo- the Barremian of Spain, ato- saurus fragilis (Gilmore 1920; Madsen 1976b; kensis (Harris 1998; Currie & Carpenter 2000; Chure 2000; Loewen 2010; Figure 10A), Allosau- Eddy and Clarke 2011) and chub- rus europaeus (Mateus et al. 2006), Allosaurus utensis (Novas et al. 2005; Canale et al. 2015) n. sp. (Allosaurus jimmadseni sensu Chure 2000; from the Aptian-Albian of North America and Chure et al. 2006; Loewen 2010), and Sauropha- Argentina, respectively, ganax maximus (Chure 1995). Allosaurids were saharicus (Rauhut 1995; Brusatte & Sereno medium to large (8-10m long) theropods with 2007) from the Cenomanian of North Africa, thin and dorsally-developed lacrimal horns, and carolinii (Coria & Salgado 1995; were one of the dominant predators in Late Ju- Calvo and Coria 1998; Figure 10C) and Ma- rassic ecosystems of North America and Europe pusaurus roseae (Coria & Currie 2006) from (Chure 2000; Loewen 2010). the Cenomanian-?Santonian of Argentina, and Carcharodontosauria falls into two sub- maortuensis (Brusatte et al. 2009, clades, the Neovenatoridae and the Carchar- 2010b) from the Turonian of China (Carrano odontosauridae (Carrano et al. 2012). It has et al. 2012). The carcharodontosaurid been debated whether Neovenatoridae is a may have extended to the latest part of the Cre- monospecific clade including the taxon Neove- taceous in South America as material assigned nator salerii (Brusatte et al. 2008; Figure 10B) to Carcharodontosauridae have been reported from the -Barremian of England from the Campanian-Maastrichtian of Brazil (Novas et al. 2013; Porfiriet al. 2014), or a more (e.g., Candeiro et al. 2012; Azevedo et al. 2013).

PalArch Foundation 21 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 10. Skeletal reconstructions of three allosauroids. A) The allosaurid Allosaurus ‘jimmadseni’; B) The neovenatorid Neovenator salerii; C) The carcharodontosaurid Giganotosaurus carolinii. Reconstructions by Scott Hartman.

Basal Coelurosauria and Tyrannosauroidea lationships are complex, including several well- Coelurosauria (Huene 1914a), the most inclu- defined coelurosaur groups nested in -differ sive clade containing Passer domesticus (Lin- ent subclades (Figures 4-5). The oldest definite naeus 1758) but not Allosaurus fragilis Marsh coelurosaurs are known from the Bathonian 1877, Sinraptor dongi Currie & Zhao 1993a, and of Eurasia (Averianov et al. 2010; Rauhut et Carcharodontosaurus saharicus (Depéret & Sa- al. 2010), though putative coelurosaur remains vornin 1927) (Sereno 2005), is a well-supported have been described from the Early Jurassic clade that contains a large diversity of herbivo- of China (Zhao & Xu 1998; Barrett 2009). The rous and carnivorous non-avian theropods as majority of recent cladistic analyses on coeluro- well as living birds. According to Turner et al. saurs recovered Tyrannosauroidea as the basal- (2012), members of this group differ from more most clade of Coelurosauria (e.g., Dal Sasso & basal theropods by possessing a well-developed Maganuco 2011; Senter et al. 2012b; Turner medial shelf on the maxilla, a reversed L-shape et al. 2012; Godefroit et al. 2013a; Loewen et quadratojugal, and amphiplatyan cervical and al. 2013; Brusatte et al. 2014; Choiniere et al. anterior dorsal vertebrae. Coelurosaur interre- 2014b; n.b., Tyrannosauroidea are found more

PalArch Foundation 22 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) derived than Compsognathidae in Zanno et et al. 2010) from the Bathonian of England and al. 2009, Rauhut et al. 2010 and Novas et al. Siberia, respectively. Proceratosaurids are also 2013). There are, however, several coelurosaur known from the Oxfordian of China (Guanlong taxa that fall outside Tyrannosauroidea, at the wucaii; Xu et al. 2006; Figure 11A), and the very base of Coelurosauria (Figure 4). These youngest member is kazuoensis include zhaoi (Choiniere et al. 2014b) (Ji et al. 2009) from the Aptian of China (Bru- and sallei (Choiniere et al. 2010a) from satte et al. 2010d). the Oxfordian-Callovian of China, Primitive non-proceratosaurid tyrannosau- argentina from the Cenomanian of Argentina roids (i.e., non-proceratosaurid tyrannosauroids (Novas et al. 2012), and possibly more basal than Tyrannosauridae) encompass topwilsoni from the Kimmeridgian-Tithonian several small to medium sized forms from the of and Tugulusaurus faciles from the Late Jurassic of Europe (Aviatyrannis jurassica, ?-Albian of China (Rauhut & Xu langhami; Rauhut 2003b; Benson 2005). The latter two are also recovered as sister- 2008b; Brusatte & Benson 2013) and North taxa among the Coeluridae, a clade recovered America ( clevelandi; Benson at the base of Coelurosauria by Li et al. (2010), 2008b; Brusatte & Benson 2013), and the Early but also at the base of the tyrannosauroid clade Cretaceous of Europe ( lengi; Hutt et (e.g., Dal Sasso & Maganuco 2011; Novas et al. al. 2001) and China (Dilong paradoxus, Yutyran- 2012; Senter et al. 2012b; Brusatte et al. 2014), nus huali, baimoensis; Xu et al. or slightly more derived than tyrannosauroids 2004, 2012; Li et al. 2010). They are also known (Choiniere et al. 2014b). in the Late Cretaceous of North America (e.g., Due to the iconic status of aquilunguis, rex and numerous tyrannosauroid specimens, montgomeriensis, Bistahieversor sealeyi; Carr et tyrannosauroids are the most studied and best al. 2005; Carr & Williamson 2010; Brusatte et al. known non-avian theropods (Brusatte et al. 2011) and Asia (e.g., kriegsteini, Alec- 2010d). The recent discovery of a large number trosaurus olseni; Mader & Bradley 1989; Sereno of basal and derived tyrannosauroids has dra- et al. 2009). matically increased the known diversity of this Based on the recent description of a relative- group, resulting in a well-characterized phylo- ly complete juvenile specimen of genetic sequence. Tyrannosauroids encompass namunhuaiquii, megaraptorans are thought to small to very large-bodied theropods (3-13m have evolved from primitive tyrannosauroids long) diagnosed by premaxillary teeth signifi- more derived than proceratosaurids (Novas et cantly smaller than anterior maxillary teeth and al. 2013; Porfiri et al. 2014). Megaraptorans are with a U-shaped cross-section, small premaxil- gracile theropods characterized by an elongated lae with elongated nasal and maxillary (sub- skull, and elongated and robust forelimbs with narial) processes, and fused nasals (Holtz 2004, enlarged thumb claws on digits I and II (Ben- 2012; Brusatte et al. 2010d). The discovery of son et al. 2010; Porfiri et al. 2014). They were several well-preserved tyrannosauroids from distributed widely across the globe as they en- China has revealed that small to large bodied compass kitadaniensis (Azuma & primitive forms such as Dilong paradoxus (Xu et Currie 2000; Currie & Azuma 2006) from the al. 2004) and huali (Xu et al. 2012) Barremian of Japan, wintonen- were covered with filamentous integument. sis (Hocknull et al. 2009) from the Albian of Some recent phylogenetic analyses of Tyran- Australia, and riocoloradensis (Sere- nosauroidea suggest that three main subclades no et al. 2008) from the Campanian of North radiated independently: the Proceratosauridae, Argentina. Megaraptorans seem also to extend Megaraptora, and Tyrannosauridae (Figure 4). to the end of the Cretaceous, with Orkoraptor The most basal clade, the Proceratosauridae, burkei (Novas et al. 2008) from the Maastrich- comprises small-bodied tyrannosauroids char- tian of as the most recent member of acterized by elaborated cranial crests (Brusatte this clade. et al. 2010d; Figure 11A). Proceratosaurids orig- Tyrannosaurids are the most derived and inated in the Middle Jurassic of Eurasia, includ- the largest tyrannosauroids. Within Tyranno- ing the taxa Proceratosaurus bradleyi (Rauhut sauroidea, they show the derived features of et al. 2010) and aristotocus (Averianov large body size (6-13m long), robust and broad

PalArch Foundation 23 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 11. Skeletal reconstructions of three tyrannosauroids. A) The proceratosaurid Guanlong wucaii; B) The basal tyrannosauroid Eotyrannus lengi; C) The tyrannosaurid Tyrannosaurus rex. Reconstructions by Scott Hartman. skulls with powerful jaws bearing incrassate Witmer & Ridgely 2009; Zelenitsky et al. 2009). teeth with long roots, and reduced forelimbs Studies have shown that they had accelerated ending in two functional fingers (the third digit grow rates and underwent well-characterized is vestigial and does not carry phalanges; Currie changes during (Carr 1999; Erickson 2003; Holtz 2004, 2012; Brusatte et al. 2010d). et al. 2004; Horner & Padian 2004). The best Tyrannosaurids were apex predators in all Late known tyrannosaurids are from the Campan- Cretaceous ecosystems of North America and ian-Maastrichtian of Asia and North-America Asia. They were hypercarnivores and were able and include Albertosaurus sarcophagus, Gor- to produce extremely powerful bite forces ca- gosaurus libratus, torosus, and pable of crushing bone (Erickson et al. 1996; Tyrannosaurus rex (Figure 11C) from USA and Bates and Falkingham 2012). Tyrannosaurids (e.g., Russell 1970; Molnar 1991; Brochu also possessed a higher degree of stereoscopic 2003; Currie 2003), and altai and Tar- vision than other non-avian theropods, and bosaurus baatar from (e.g., Hurum & their olfactory ratios are particularly high, sug- Sabath 2003; Tsuihiji et al. 2011; Brusatte et al. gestive of a keen of smell (Stevens 2006; 2012a).

PalArch Foundation 24 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Compsognathidae and Ornithomimosauria muscles, and blood vessels (Dal Sasso & Maga- Compsognathidae and Ornithomimosauria are nuco 2011). Compsognathid feeding behavior typically recovered as more derived than Tyran- is among the best known in non-avian thero- nosauroidea and more basal than Alvarezsau- pods, as stomach contents are preserved in both roidea, Therizinosauria, and Oviraptorosauria. specimens of Compsognathus (Bidar et al. 1972; Several recent large scale cladistic analyses Ostrom 1976a; Evans 1994; Peyer 2006), Hux- have placed Compsognathidae and Ornitho- iagnathus (Hwang et al. 2004), (Dal mimosauria as the second and third basalmost Sasso & Maganuco 2011), and two specimens clades of coelurosaurs, respectively (e.g., Csiki of (Currie & Chen 2001; Ji et al. et al. 2010; Senter 2011; Turner et al. 2012; 2007b) and (Xing et al. 2012). Godefroit et al. 2013a; Choiniere et al. 2014b; These reveal that compsognathids ingested Figure 5). Compsognathids are characterized and had an extremely diverse diet by small body size (1-2.5m long), a gracile and composed of fish, , non-avian theropods slender body, and an elongated skull with slen- (dromaeosaurids), primitive birds, and mam- der jaws bearing ziphodont teeth (Figure 12A). mals. Similar to more basal tetanurans, evidenc- Many specimens are immature individuals re- es of filamentous integument in well-preserved taining a primitive and unspecialized anatomy, compsognathids such as Sinosauropteryx (Cur- and Compsognathidae have sometimes been rie & Chen 2001) and (Chiappe & thought to be paraphyletic, with some comp- Göhlich 2010) suggest that protofeathers par- sognathid taxa recovered outside the clade in tially or extensively covered the body of these phylogenetic analyses by Butler & Upchurch basal coelurosaurs. A recent study on the fossil- (2007), Godefroit et al. (2013a), Choiniere et ized melanosomes in Sinosauropteryx has also al. (2014b) and others. Nevertheless, the clade revealed that the tail of this animal had stripes is strongly supported (i.e., united by 18 un- which exhibited chestnut to rufous (reddish- ambiguous synapomorphies in Brusatte et al., brown) tones (Zhang et al. 2010). 2014), which is currently the largest and most (Holtz 1995), the least recent cladistic analyses performed on coeluro- inclusive clade containing Passer domesti- saurs. According to Brusatte et al. (2014), comp- cus (Linnaeus 1758) and Ornithomimus velox sognathids are diagnosed by a dentition with Marsh 1890 (Maryańska et al. 2002), is largely some unserrated teeth, premaxillary teeth with composed of non-strictly-carnivorous thero- a subcircular cross-section, the presence of an pods that are partially or fully edentulous and/ anterior ramus on the maxilla, a vertically ori- or possess reduced lanceolate crowns, with a ented pubis shaft, and ossified sternal plates. In few derived maniraptoriforms (i.e., dromaeo- this study, compsognathids include Juravenator saurids) being secondarily carnivorous (Holtz starki (Chiappe & Göhlich 2010) and Compsog- 2012). The first radiation of non-strictly- car nathus longipes (Bidar et al. 1972; Ostrom 1978; nivorous (i.e., herbivorous to omnivorous; see Peyer 2006; Figure 12A) from the Kimmerid- Barrett 2005; Zanno & Makovicky 2011; Lee et gian-Tithonian of Germany and Germany and al. 2014) coelurosaurs were ornithomimosaurs. France, respectively, asymmetrica (Na- The latter are small to very large (2-10m long) ish et al. 2004) from the Albian of Brazil, as well lightly to heavily built theropods character- as Huxiagnathus orientalis (Hwang et al. 2004), ized by a low and delicate skull, slender neck, Sinocalliopteryx gigas (Ji et al. 2007a) and Sino- elongate forehands bearing three non-raptorial sauropteryx prima (Currie & Chen 2001; Ji et al. clawed fingers, and in the ostrich-like ornitho- 2007b) from the Barremian-early Aptian Yixian mimids long powerful legs that were adapted Formation of China. pusillus, from for rapid locomotion (Russell 1972; Nicholls the Barremian of England, and Scipionyx sam- & Russell 1981; Makovicky et al. 2004; Barrett niticus, from the Albian of Italy, are also consid- 2005; Kobayashi & Barsbold 2005a; Liyong et ered as compsognathids by some authors (e.g., al. 2012; Figure 12B). The jaws of basal orni- Naish 2002, 2011; Dal Sasso & Maganuco 2011; thomimosaurs bear a large number of small Loewen et al. 2013; Choiniere et al. 2014b). The conical teeth, intermediate taxa possess small latter taxon is remarkable for being a hatchling teeth restricted to the anterior extremity of specimen preserving exquisitely fossilized soft the dentary and derived forms are fully eden- tissues and internal organs such as intestines, tulous, possessing only a rhamphotheca (some

PalArch Foundation 25 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 12. Skeletal reconstructions of three basal maniraptoriforms. A) The compsognathid Compsognathus longipes; B) The ornithomimosaur Deinocheirus mirificus; C) The basal maniraptoran Ornitholestes hermanni. Reconstructions by Scott Hartman. exhibit columnar structures that may have odon (Pérez-Moreno et al. 1994), another basal been used as a filter-feeding system; Norell et ornithomimosaur taxon from the Hauterivian al. 2001; for an alternative hypothesis, see Bar- of Spain, possessed more than 200 unserrated rett 2005). Some derived ornithomimids pos- teeth on the jaws, which makes it the theropod sessed filamentous protofeathers and possibly bearing the largest number of teeth. More de- long shafted (pennibrachium) on the rived ornithomimosaurs with dentulous lower forearms, forming wings (Zelenitsky et al. 2012; jaws are mostly known from the Valanginian- for a different opinion see Foth et al. 2014). Or- Albian of China such as qingyi (Liyong et nithomimosaurs originated in the earliest part al. 2012), grandis (Makovicky et al. of the Cretaceous and the oldest and basalmost 2010), orientalis (Ji et al. 2003), member of the clade is thwazi and okladnikovi (Kobayashi & from the Berriasian-Valanginian of South Af- Barsbold 2005b). Edentulous ornithomimo- rica (Choiniere et al. 2012). Pelecanimimus poly- saurs are only known from the Upper Creta-

PalArch Foundation 26 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) ceous of Asia and North America, and the best roids bear three fingers in which digit II and known taxa are brevipes (Ko- III are reduced in size and were even lost in bayashi & Barsbold 2005a) and Sinornithomi- some derived taxa (Perle et al. 1993; Chiappe mus dongi (Kobayashi and Lü 2003) from the et al. 1998; Longrich & Currie 2009a; Choiniere early Late Cretaceous of China, Ornithomimus et al. 2010b, 2014a; Nesbitt et al. 2011; Xu et al. edmontonicus and altus (Rus- 2011b). The basalmost member is sell 1972) from the Campanian-Maastrichtian sollers from the Oxfordian of China; all alva- of Canada, and bullatus (Osmólska rezsauroids more derived than Haplocheirus be- et al. 1972) and Deinocheirus mirificus (Lee et long to (Choiniere et al. 2010a, al. 2014; Figure 12B) from the Maastrichtian of 2014a). Alvarezsaurids are restricted to the Late Mongolia. The latter was recently revealed to be Cretaceous of North-America, South-America, a very large omnivorous ornithomimosaur with Asia, and Europe (Naish and Dyke 2004; Lon- a deep jaw, tall neural spines, elongated fore- grich & Currie 2009a; Agnolín et al. 2012; Xu limbs and short hind limbs. It was recovered et al. 2013). They comprise taxa with a large as a derived member of a new lineage of Asian number of minute and lanceolate crowns, short ornithomimosaurs known as Deinocheiridae forelimbs bearing either a single first digit, or a (Lee et al. 2014). Deinocheirids, which include hypertrophied thumb, in both case ended by a Beishanlong, Garudimimus and Deinocheirus, massive claw used for digging, a pubis oriented do not seem to be adapted for speed, in con- backward, and elongated hind limbs adapted trast to ornithomimids such as Gal- for cursoriality. The best known members are limimus, Struthiomimus and Ornithomimus that puertai (Novas 1997a) from the are widely interpreted as fast runners (Russell Turonian-Coniacian of Argentina, and the par- 1972; Thulborn 1990; Lee et al. 2014). vicursorines Xixianykus zhengi (Xu et al. 2010b) and Linhenykus monodactylus (Xu et al. 2011b, Therizinosauria, Alvarezsauroidea and Ovirap- 2013) from the Coniacian-Santonian and Cam- torosauria panian of China, respectively, and Maniraptora (Gauthier 1986), the most-inclu- olecranus (Perle et al. 1993, 1994), de- sive clade containing Passer domesticus (Lin- serti (Chiappe et al. 1998; Suzuki et al. 2002; Fig- naeus 1758) but not Ornithomimus edmon- ure 13A), and Ceratonykus oculatus (Alifanov & tonicus Marsh 1890 (Maryańska et al. 2002), Barsbold 2009) from the Campanian-Maastrich- includes theropods characterized by a well-de- tian of Mongolia. At least one member of this veloped lateral process of the quadrate, a large group (i.e., Shuvuuia) possessed filamentous bony with co-ossified sternal plates, integuments similar to those of more primitive and a semilunate carpal (Holtz 2012; Turner et tetanurans (Schweitzer et al. 1999). al. 2012). Many maniraptorans convergently Therizinosaurs are small to very large (2- acquired a retroverted pubis superficially simi- 10m long) ‘prosauropod’-like theropods char- lar to ornithischians (Holtz 2012). Ornitholestes acterized by a small head bearing reduced and hermanni (Osborn 1903; Carpenter et al. 2005; basally constricted crowns, an elongated neck, Figure 12C) from the Upper Jurassic of North long and robust arms terminated by large America is either recovered as the basalmost claws, broad abdomen and pelvis, and a rela- maniraptoran (e.g., Dal Sasso & Maganuco tively vertical position of the body (Barsbold & 2011; Novas et al. 2012; Senter et al. 2012b; Perle 1980; Clark et al. 2004; Zanno 2010a, b; Turner et al. 2012; Foth et al. 2014) or as a basal Lautenschlager et al. 2014; Figure 13B). Therizi- coelurosaur closely related to some compsog- nosaurs seem to be restricted to North America nathids (e.g., Godefroit et al. 2013a; Choiniere and Asia in the Cretaceous, yet the therizinosaur et al. 2014b). The basalmost clade within Mani- deguchiianus, said to be found in raptora is the Alvarezsauroidea (Figure 5). Al- the Lower of the varezsauroids were small (1-2.5m long) coelu- Province, China, may attest to the presence of rosaurs characterized by a gracile and low skull the clade back to the Lower Jurassic (Zhao & with large cranial openings, elongate rostrum, Xu 1998; Xu et al. 2001a). However, given the and slender jaws bearing a large number of fact that the time separating this taxon from the teeth that are, at least for some crowns, lanceo- most basal therizinosaur is anomalous, an Early late (Figure 13A). The forelimbs of alvarezsau- Jurassic age of Eshanosaurus requires confirma-

PalArch Foundation 27 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 13. Skeletal reconstructions of three basal maniraptorans. A) The alvarezsauroid Shuvuuia deserti; B) The therizinosauroid graffami; C) The oviraptorosaur mangas. Reconstructions by Scott Hartman. tion (Kirkland et al. 2005; Barrett 2009). The na that are slightly more derived than . most primitive known member is currently Fal- The body of these two primitive therizinosaurs carius utahensis (Zanno 2006, 2010b) from the was covered with filamentous integument (Xu Barremian of . Jianchangosaurus yixianen- et al. 2009a; Pu et al. 2013), which suggests that sis (Pu et al. 2013) and inexpectus most, if not all, therizinosaurs had protofeath- (Xu et al. 1999a) are two basal therizinosaurs ers. Therizinosaur taxa more derived than Ji- from the Early Cretaceous (Barremian?) of Chi- anchangosaurus form the clade Therizinosau-

PalArch Foundation 28 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) roidea (Pu et al. 2013). Jianchangosaurus and and dentaries, and the peculiarity of bearing therizinosauroids share a downturned anterior premaxillary teeth that are much larger than extremity of the dentary, large apically inclined the lateral teeth (Xu et al. 2002a; Balanoff et denticles of the crowns, and an edentulous pre- al. 2009). Contemporaneous, yet more derived, maxilla bearing a rhamphotheca (which may non-caenagnathoid oviraptorosaurs such as not be present in Falcarius). Derived therizino- zoui and Similicaudipteryx yixi- sauroids (therizinosaurids sensu Zanno et al. anensis from China retained only premaxillary 2009; Table 1) possess important basicranial teeth, and several well-preserved specimens pneumaticity, long scythe-like manual unguals, possessed branching feathers such as remiges and a flattened pubic shaft (Zanno 2010a). The on the forelimbs, and rectrices on the caudal best known therizinosauroids are vertebrae (Ji et al. 1998; Zhou et al. 2000; He elesitaiensis (Russell & Dong 1993) from the et al. 2008; Xu et al. 2010a). This suggests that Albian of China, Nothronychus graffami (Zanno some, if not all oviraptorosaurs had feathered et al. 2009; Figure 13B) from the Turonian of bodies and wings, yet they appear entirely Utah, andrewsi and flightless. Caenagnathoidea is divided into two galbinensis (Barsbold & Perle 1980; Barsbold main subclades, Oviraptoridae and Caenag- 1983; Clark et al. 1994; Lautenschlager et al. nathidae (Osmólska et al. 2004; Longrich et al. 2014) from the Cenomanian-Turonian of Mon- 2013; Lamanna et al. 2014). Caenagnathids are golia, and yangi (Zhang et al. characterized by fused dentaries and long, shal- 2001) from the Campanian-Maastrichtian of low pneumatized , whereas ovirapto- China (Zanno 2010a). rids had deep lower jaws and an external naris The clade containing theropods more de- extending back and over the antorbital fenes- rived than therizinosaurs, including Ovirapto- tra (Longrich et al. 2013). Oviraptorids such as rosauria and Paraves, has recently been named Khaan mckennai (Clark et al. 1999; Balanoff & based on definitive evidence of Norell 2012; Figure 13C) inhabited xeric envi- pennaceous feathers in multiple pennarap- ronments (i.e., deserts) whereas caenagnathids toran taxa (Foth et al. 2014). Oviraptorosauria occurred in fluvial-dominated and costal flood- is a well-supported clade of small to large (1- plain environments (Longrich et al. 2013). Taxa 8m long) theropods easily recognized by their from both clades convergently acquired cranial short skulls with parrot-like , forelimbs crests, as shown in osmolskae (Clark with elongated manual fingers, and short et al. 2002), barsboldi (Lü et al. (Clark et al. 2001; Osmólska et al. 2004; Bala- 2004), and Anzu wyliei (Lamanna et al. 2014). noff et al. 2009; Longrich et al. 2010; Balanoff & Norell 2012; Lamanna et al. 2014; Figure 13C). Paraves Oviraptorosaurs are restricted to the Cretaceous The remaining maniraptorans, comprising birds of Asia, North America and possibly South and two non-avian theropod clades traditionally America (Frey & Martill 1995; Frankfurt & Chi- labeled deinonychosaurs, are grouped within appe 1999; for a different opinion, see Agnolín Paraves (Figure 5). The latter is defined as the & Martinelli 2007), and most taxa come from most inclusive clade containing Passer domes- Campanian-Maastrichtian deposits. Members ticus (Linnaeus 1758) but not philoc- of this clade were partially to strictly herbivo- eratops (Holtz & Osmólska 2004). Deinonycho- rous coelurosaurs who adopted an avian-like sauria, on the other hand, is either defined as a brooding posture on their nests (Clark et al. node-based clade containing the last common 1999; Varricchio et al. 2008; Zanno & Makov- ancestor of Troodon formosus and icky 2011). Similar to ornithomimosaurs, basal mongoliensis and all of its descendants (Turner oviraptorosaurs retained teeth that were subse- et al. 2012), or the most-inclusive clade contain- quently lost in more derived taxa; the majority ing albertensis but not Passer of oviraptorosaur taxa, which form the clade domesticus (Linnaeus 1758) (Godefroit et al. Caenagnathoidea, were edentulous. The basal- 2013a). Deinonychosaurs are typically divided most oviraptorosaur is currently Incisivosaurus into Dromaeosauridae and Troodontidae, thero- gauthieri from the Aptian of China (Balanoff pods that share a raptorial sickle-shaped claw on et al. 2009). Incisivosaurus shows the primi- the hyperextendable pedal digit II (Holtz 2012; tive condition of having dentulous maxillae Turner et al. 2012). Deinonychosauria was con-

PalArch Foundation 29 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) sidered a well-supported clade until recently Although Agnolín & Novas (2011, 2013) (e.g., Turner et al. 2012), but newly discovered have defended an avialan affinity of unenlagi- basal paravians and the description of addi- ines, it is commonly accepted that Unenlagiinae tional specimens of Archaeopteryx (Mayr et al. was the first dromaeosaurid radiation and is the 2005; Foth et al. 2014) have led to analyses that most basal lineage of Dromaeosauridae. These find troodontids more closely related to avialans primitive dromaeosaurids are characterized by than to dromaeosaurids, rendering the taxon an elongate rostrum, unserrated teeth, and a Deinonychosauria paraphyletic or equivalent to vertically oriented pubis (Gianechini & Apesteg- Dromaeosauridae, depending on the phylogenet- uía 2011; Gianechini et al. 2011; Turner et al. ic definition given to this cladee.g. ( , Godefroit 2012; Figure 14A). They are exclusively found et al. 2013a; Brusatte et al. 2014; Choiniere et al. in the Upper Cretaceous of Gondwana, and are 2014b; Foth et al. 2014; Figure 5). mostly known from South America. The best Dromaeosaurids are the only definitively preserved forms are Buitreraptor gonzalezorum carnivorous maniraptoriforms (with perhaps from the Cenomanian (Makovicky et al. 2005; the exception of Ornitholestes). They share un- Figure 13A), comahuensis from the constricted ziphodont teeth and a hinge joint Turonian-Coniacian (Novas & Puerta 1997), (ginglymus) on the distal end of metatarsal cabazai from the Maastrichtian II that permits an extended range of motion of Argentina (Novas et al. 2009), and in the second and its hypertrophied and ostromi from the Maastrichtian of Madagascar highly modified claw (Norell & Makovicky (Forster et al. 1998; Turner et al. 2012). 2004; Turner et al. 2012). Dromaeosaurids are The remaining dromaeosaurids are distrib- a widespread group of very small to large bod- uted among three subclades, Microraptorinae ied (0.6-7m long) paravians that were present (‘’ sensu Senter et al. 2004, 2012b), on all continents by the Late Cretaceous. Al- and Dromaeosaurinae (Turner though isolated teeth from the Late Jurassic et al. 2012; Figure 5). As suggested by the ety- of Europe have been assigned to members of mology, microraptorines were small to very this clade (e.g., Zinke 1998; Lubbe et al. 2009; small (0.6-2m long) dromaeosaurids thought Hendrickx & Mateus 2014b) and the presence to have aerial or subaerial abilities (i.e., gliding, of dromaeosaurids in the Jurassic is evidenced powered flight, or other semi-aerial locomo- by the appearance of closely related paravians tion) that are known from the Early to Late Cre- in the Late Jurassic (Figure 1), definitive drom- taceous of China and North America (Xu et al. aeosaurids currently range from the Barremian 2003; Longrich & Currie 2009b; Han et al. 2014). (China) to the Maastrichtian (North America). The best preserved members of this clade, all A large array of evidence indicates that some, from the Early Cretaceous of in China, and most likely all Dromaeosauridae were cov- are sp. (Hwang et al. 2002; Xu et al. ered with filamentous integuments, and at least 2003; O’Connor et al. 2011; Xing et al. 2013b), two dromaeosaurid taxa (i.e., Microraptor and millenii (Xu et al. 1999b; Xu ) possessed four wings (i.e., pen- and Wu 2001; Gong et al. 2010), naceous fore- and hind limbs) with branching ostromi (Zheng et al. 2010), and Changyuraptor feathers like those seen in extant birds (Xu et al. yangi (Han et al. 2014). eliza- 1999b, 2001b, 2003; Ji et al. 2001; Turner et al. bethae, from the Campanian of , is the 2007; Han et al. 2014). The majority of recent youngest known microraptorine, and the only phylogenetic analyses performed on paravians one found outside China (Longrich & Currie typically recover three dromaeosaurid subclades: 2009b). Velociraptorinae includes North Ameri- Unenlagiinae, Microraptorinae, and Eudromaeo- can, Asian and possibly European dromaeosau- sauria (e.g., Senter et al. 2012b; Turner et al. 2012; rids, which are characterized by pleurocoels in Brusatte et al. 2014; Choiniere et al. 2014b; Foth all dorsal vertebrae (Turner et al. 2012). Velo- et al. 2014). A different topology was obtained ciraptorines encompass the famous theropods by Agnolín & Novas (2013) who found Microrap- Velociraptor mongoliensis from the Campanian torinae and Unenlagiinae outside Dromaeosauri- of Mongolia (Sues 1977; Norell & Makovicky dae and gathered within the new clade ‘Averap- 1997, 1999; Barsbold and Osmólska 1999), Dei- tora’ with Avialae, a configuration not recovered nonychus antirrhopus from the Aptian-Albian by other theropod workers. of Montana (Ostrom 1969, 1976b), and Bambi-

PalArch Foundation 30 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 14. Skeletal reconstructions of three basal paravians. A) The unenlagiine dromaeosaurid Buitreraptor gonzalezorum; B) The velociraptorine dromaeosaurid antirrhopus; C) The troodontid Troodon formosus. Reconstructions by Scott Hartman. raptor feinbergi from the Campanian of Mon- dromaeosaurids, includes small to large-sized tana (Burnham et al. 2000; Burnham 2004). theropods with a lateral dentition bearing me- While , from the Maastrichtian sial denticles, a ventrodorsally tall jugal process of Romanian, may represent the only definitive of the maxilla, and a vertically oriented pubis velociraptorine from Europe (Csiki et al. 2010; (Turner et al. 2012). This clade is mostly com- Brusatte et al. 2013, 2014), two recent large prised by North American dromaeosaurid taxa scale phylogenetic analyses on coelurosaurs re- such as ostrommaysi from the Bar- covered it as a basal avialan (i.e., Godefroit et remian of Utah (Kirkland et al. 1993), Dromaeo- al. 2013a; Foth et al. 2014) and the position of saurus albertensis (Colbert & Russell 1969; Cur- this taxon among paravians remains unclear. rie 1995; Figure 14B) and marshalli Dromaeosaurinae, the remaining subclade of (Currie & Varricchio 2004) from the Campanian

PalArch Foundation 31 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) of Alberta. Achillobator gigantibus (Perle et al. penna (Godefroit et al. 2013b), all from the Mid- 1999) from the Cenomanian-Santonian of Mon- dle to Late Jurassic of the golia also attests the presence of dromaeosau- of China, have brought new data to bear on the rines in central Asia in the Late Cretaceous. relationships of the earliest avian theropods. Troodontidae is a clade of lightly built non- According to two of the most recent phyloge- avian maniraptorans with taxa that rank among netic analyses (e.g., Godefroit et al. 2013a; Foth the smallest non-avian body sizes and the high- et al. 2014), the latter taxa are gathered within est encephalization quotients (Makovicky & Avialae, the most-inclusive clade containing Norell 2004; Lü et al. 2010; Zanno et al. 2011; Passer domesticus (Linnaeus 1758) but not Tsuihiji et al. 2014). Troodontids share an an- Dromaeosaurus albertensis Matthew & Brown teroventrally inclined quadrate and jaws with 1922 or Troodon formosus Leidy 1856 (Gode- a large number of small, constricted teeth set froit et al. 2013a). Yet, these taxa were recovered in an open groove in the dentary (Makovicky & in the same clade at the base of Troodontidae in Norell 2004; Turner et al. 2012). The crowns another large scaled phylogenetic analyses (i.e., are unserrated in basalmost forms and bear Brusatte et al. 2014), and their exact position very large hooked denticles in derived taxa, among paravians remains unsettled. For de- which suggests an herbivorous diet in primitive cades, the most basal and earliest avialan taxon troodontids and a carnivorous or omnivorous was considered to be Archaeopteryx sp. (Figure diet in advanced forms bearing serrated teeth 15B), but with the inclusion of these recently re- (Currie 1987; Holtz et al. 1998; Currie & Dong ported paravians from the Tiaojishan Formation 2001; Lü et al. 2010; Zanno & Makovicky 2011). into cladistic analyses, Archaeopteryx’s system- Troodontids are known from the Cretaceous atic position has become uncertain. Currently, of Asia, North America, Europe, and possibly Archaeopteryx is either recovered as the basal- from the Late Jurassic of China, depending on most avialan (e.g., Turner et al. 2012; Agnolín & the troodontid affinities of newly discovered Novas 2013; Brusatte et al. 2014a; Choiniere et forms such as , , and Eos- al. 2014b), a deinonychosaur closely related to inopteryx (Makovicky & Norell 2004; Hu et al. troodontids and dromaeosaurids (e.g., Xu et al. 2009; Vullo & Néraudeau 2010; Xu et al. 2011a; 2011a; Godefroit et al. 2013b; Xu & Pol 2014), Turner et al. 2012; Godefroit et al. 2013b; Bru- or an avialan theropod more derived than the satte et al. 2014). Isolated teeth from the Late basalmost avialans Aurornis and Anchiornis Jurassic of North America and Portugal, and (e.g., Godefroit et al. 2013a; Foth et al. 2014). the Late Cretaceous of India, have also been The anatomical distinctions between non-avian assigned to Troodontidae (Chure 1994; Zinke and avian theropods are, therefore, particularly 1998; Goswami et al. 2013). If Troodon formo- subtle and vary according to the phylogenetic sus from the Campanian of Canada is the most analysis performed by authors. For instance, famous troodontid and the first to be discov- in one of the largest and most recent cladistic ered (Russell 1948; Currie 1985, 1987; Currie & analyses provided by Foth et al. (2014) on coe- Zhao 1993b; Figure 14C), the best preserved lurosaurs, avialan synapomorphies include the troodontid taxa all come from the Cretaceous of presence of roots of dentary teeth subcircular in Asia. They include magnodens (Xu & cross-section, extensive contact between pubes, Wang 2004), (Xu & Norell 2004; Gao humerus and femur subequal in thickness, and et al. 2012), and changii (Xu et al. dorsal margin of the antorbital fossa formed by 2002b) from the Early Cretaceous of China, and lacrimal and nasal. In another large scaled phy- jaffei (Norell et al. 2000; Makov- logenetic analysis on coelurosaurs performed icky et al. 2003), Gobivenator mongoliensis (Tsui- by Brusatte et al. (2014a), Avialae are diagnosed hiji et al. 2014), mongoliensis by asymmetrical feathers on forelimbs, unfused and Zanabazar junior (Barsbold 1974; Norell et parietals, less than 26 caudal vertebrae, a dorsal al. 2009) from the Campanian of Mongolia. margin of the antorbital fossa formed by lacri- The recent discovery of a large number of mal and nasal, and a humerus longer than the paravian taxa closely related to birds such as femur. Anchiornis huxleyi (Hu et al. 2009; Figure 15A), A similar situation occurs with Scansoriop- Xiaotingia zhengi (Xu et al. 2011a), Aurornis xui terygidae and their unsettled phylogenetic po- (Godefroit et al. 2013a), and brevi- sition within Pennaraptora. Scansoriopterygids

PalArch Foundation 32 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Figure 15. Skeletal reconstructions of three basal avialan? theropods. A) The basal avialan Anchiornis huxleyi; B) The archaeopterygid Archaeopteryx sp.; C) The scansoriopterygid Epidendrosaurus ninchengensis. Reconstructions by Ville Sinkkonen for Anchiornis and Scott Hartman for Archaeopteryx and Epidendrosaurus.

PalArch Foundation 33 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) form an aberrant subclade of very small-sized avian theropod subclades, most in a ladder- maniraptorans (the only subadult specimen of like organization. While a consensus of high- has a body length of less er-level theropod relationships has emerged than 30 centimeters; Zhang et al. 2008) char- and the systematics of non-avian theropods acterized by a short and high skull, a small seems to be relatively well understood, some number of procumbent teeth restricted to the significant points of contention remain. New- anterior portion of the jaws, propubic pelvis, ly discovered non-avian theropods will hope- and elongated ribbon-like tail-feathers (Zhang fully shed light on the systematic position of et al. 2002, 2008; Agnolín & Novas 2013). Their herrerasaurids within saurischians, megarap- distinctive feature is, however, the slender and torans within avetheropods, scansoriopteryg- hypertrophied manual digit III which suggests ids within pennaraptorans, and troodontids climbing ability and arboreal habits (Zhang et within paravians. Though one might expect al. 2008) or gathering strategy (as the living few major changes in theropod relationships Ayes Ayes which uses its elongated fingers to in the future, large portions of theropod phy - pull bugs out of trees; Lhota et al. 2008). This letic history remain obscure; future discover- clade currently includes two or three taxa from ies of theropods in the Jurassic of Australia or the Middle Jurassic Daohugou beds (Tiaojishan the Cretaceous of Antarctica, where theropod Formation; Zhou et al. 2013) of Ningcheng, In- are almost unknown, may change the ner Mongolia, China: Epidendrosaurus ninchen- current view of non-avian theropod systemat- gensis (= heilmanni; Padian ics dramatically. 2004; Figure 15C) known from a partial skel- eton (Zhang et al. 2002), hui, the Acknowledgements most complete scansoriopterygid preserving a complete skull (Zhang et al. 2008), and possibly We are particularly thankful of Ville Sink- daohugouensis known from a par- konen and Gregory Paul for allowing us to use tial right leg covered with pennaceous feathers their skeletal reconstructions of theropods. We (Xu and Zhang 2005). Scansoriopterygids are also thank Steve Brusatte (University of Edin- currently recovered as basal Oviraptorosauria burg) and Oliver Rauhut (Ludwig-Maximilians- (Agnolín & Novas 2013; Brusatte et al. 2014), University) for excellent critiques and helpful basal Paraves (Godefroit et al. 2013a, b), and recommendations on the manuscript, which basal Avialae (Zhang et al. 2008; Choiniere et al. resulted in substantial improvement. We ac- 2010b; Novas et al. 2012; Senter et al. 2012b). knowledge the use of Phylopic for the theropod The clade is also found unresolved by some silhouettes, and thank Michael Bech Hussein, workers (e.g., Turner et al. 2012). Jaime Headden, Michael Keesey, William Park- er, and Travis Tischler for providing their art- Conclusions works on Phylopic. A special thanks goes to the Wikipaleo group on Facebook, archive.org and Theropod dinosaurs form one of the most suc - biodiversitylibrary.org, which generously share cessful and morphologically diverse groups a huge number of old books and papers. Many of tetrapods, surviving the Cretaceous-Paleo- thanks to Jay Nair and Edio-Ernst Kischlat for gene extinction event and radiating as birds sharing scientific publications otherwise- un in the Cenozoic. Even before the K-Pg extinc - available. This research was supported by the tion non-avian theropods were an extremely Fundação para a Ciência e a Tecnologia (FCT) diverse group of archosaurs with complex scholarship SFRH/BD/62979/2009 (Ministério interrelationships. The adoption of cladistic da Ciência, Tecnologia e Ensino superior, Por- techniques in the 1980s was a major step in tugal). C.H. dedicates this article to Philippe Ta- the study of theropod ; modern quet. analyses currently recover around 25 non-

PalArch Foundation 34 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Cited Literature Allain, R. & Chure, D. J. 2002. Poekilopleuron bucklandii, the theropod dinosaur from the Agnolín, F. L. & Martinelli, A. G. 2007. Did ovi- Middle Jurassic (Bathonian) of Normandy. – raptorosaurs (Dinosauria; Theropoda) in- Palaeontology 45 (6): 1107-1121. habit Argentina? – Cretaceous Research 28 Allain, R., Xaisanavong, T., Richir, P. & Khen- (5): 785-790. tavong, B. 2012. The first definitive Asian Agnolín, F. L. & Chiarelli, P. 2010. The posi- spinosaurid (Dinosauria: Theropoda) from tion of the claws in Noasauridae (Dinosau- the early cretaceous of Laos. – Naturwissen- ria: Abelisauroidea) and its implications for schaften 99 (5): 369-377. abelisauroid manus evolution. – Paläontolo- Allain, R., Tykoski, R., Aquesbi, N., Jalil, N.-E., gische Zeitschrift 84 (2): 293-300. Monbaron, M., Russell, D. & Taquet, P. 2007. Agnolín, F. L. & Novas, F. E. 2011. Unenlagiid An abelisauroid (Dinosauria: Theropoda) theropods: are they members of the Drom- from the Early Jurassic of the High aeosauridae (Theropoda, Maniraptora)? – Mountains, Morocco, and the radiation of Anais da Academia Brasileira de Ciências 83 ceratosaurs. – Journal of Vertebrate Paleon- (1): 117-162. tology 27 (3): 610-624. Agnolín, F. L. & Novas, F. E. 2013. Avian An- Ameghino, F. 1899. Nota preliminar sobre el cestors - A review of the phylogenetic rela- Loncosaurus argentinus, un representante tionships of the theropods Unenlagiidae, de la familia de los Megalosauridae en la Microraptoria, Anchiornis and Scansoriop- República Argentina. – Anales de la Socie- terygidae. In: Lohmann, G., Mysak, L. A., dad Científica Argentina 47: 61-62. Notholt, J., Rabassa, J. and Unnithan (eds.). Ameghino, F. 1900. L’âge des formations sédi- SpringerBriefs in Earth System Sciences - mentaires de Patagonie. Anales de la Socie- South America and the Southern Hemi- dad Científica Argentina 50: 145-165. sphere. – Dordrecht/Heidelberg/New York/ Ameghino, F. 1906. Les formations sédimen- London, Springer Verlag. taires du Crétacé supérieur et du Tertiaire de Agnolín, F. L., Ezcurra, M. D., Pais, D. F. & Salis- Patagonie. – Anales del Museo Nacional de bury, S. W. 2010. A reappraisal of the Creta- Buenos Aires 3 (8): 1-568. ceous non-avian dinosaur faunas from Aus- Amiot, R., Buffetaut, E., Lécuyer, C., Wang, X., tralia and : evidence for their Boudad, L., Ding, Z., Fourel, F., Hutt, S., Mar- Gondwanan affinities. – Journal of System- tineau, F., Medeiros, M. A., Mo, J., Simon, atic Palaeontology 8 (2): 257-300. L., Suteethorn, V., Sweetman, S., Tong, H., Agnolín, F. L., Powell, J. E., Novas, F. E. & Kun- Zhang, F. & Zhou, Z. 2010. Oxygen isotope drát, M. 2012. New alvarezsaurid (Dinosau- evidence for semi-aquatic habits among spi- ria, Theropoda) from uppermost Cretaceous nosaurid theropods. – Geology 38 (2): 139- of north-western Patagonia with associated 142. . – Cretaceous Research 35: 33-56. Araújo, R., Castanhinha, R., Martins, R. M. S., Alcober, O. A. & Martinez, R. N. 2010. A new Mateus, O., Hendrickx, C., Beckmann, F., herrerasaurid (Dinosauria, Saurischia) from Schell, N. & Alves, L. C. 2013. Filling the gaps the Upper Triassic Ischigualasto Formation of dinosaur eggshell phylogeny: Late Juras- of northwestern Argentina. – ZooKeys 63: sic theropod clutch with embryos from Por- 55-81. tugal. – Scientific Reports 3 (1924): 1-8. Alifanov, V. R. & Barsbold, R. 2009. Ceratonykus Arcucci, A. B. & Coria, R. A. 2003. A new Trias- oculatus gen. et sp. nov., a new dinosaur sic carnivorous dinosaur from Argentina. – (?Theropoda, Alvarezsauria) from the Late Ameghiniana 40 (2): 217-228. Cretaceous of Mongolia. – Paleontological Averianov, A. O., Krasnolutskii, S. A. & Ivantsov, Journal 43 (1): 94-106. S. V. 2010. A new basal coelurosaur (Dino- Allain, R. 2002. Discovery of megalosaur (Dino- sauria: Theropoda) from the Middle Jurassic sauria, Theropoda) in the middle Bathonian of Siberia. – Proceedings of the Zoological of Normandy (France) and its implications Institute RAS 314 (1): 42-57. for the phylogeny of basal Tetanurae. – Jour- Azevedo, R. P. F. de, Simbras, F. M., Furtado, nal of Vertebrate Paleontology 22 (3): 548- M. R., Candeiro, C. R. A. & Bergqvist, L. P. 563. 2013. First Brazilian carcharodontosaurid

PalArch Foundation 35 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

and other new theropod dinosaur fossils vrov. – The Joint Soviet-Mongolian Paleon- from the Campanian-Maastrichtian Presi- tological Expedition, Transactions 3: 68-75. dente Prudente Formation, São Paulo State, Barsbold, R. 1976b. On a new Late Cretaceous southeastern Brazil. – Cretaceous Research family of small theropods (Oviraptoridae 40: 131-142. fam. n.) of Mongolia. – Doklady Akademia Azuma, Y. & Currie, P. J. 2000. A new Nauk SSSR 226: 685-688. (Dinosauria: Theropoda) from the Lower Barsbold, R. 1977. K evolyutsii khishchnykh dino- Cretaceous of Japan. – Canadian Journal of zavrov. – Transactions of the Joint Soviet Mon- Earth Sciences 37 (12): 1735-1753. golian Paleontological Expedition 4: 48-56. Bailey, J. B. 1997. Neural spine elongation in di- Barsbold, R. 1981. Toothless carnivorous di- nosaurs: Sailbacks or buffalo-backs? – Jour- nosaurs of Mongolia. – Trudy Sovmestnoi nal of Paleontology 71(6): 1124-1146. Sovetsko-Mongol’skoi Paleontologicheskoi Bakker, R. T. 1986. The dinosaur heresies: New Ekspeditsii 15: 28-39. theories unlocking the mystery of the dino- Barsbold, R. 1983. Carnivorous dinosaurs from saurs and their extinction. – New York, Wil- the Cretaceous of Mongolia. – Transactions liam Morrow. of the Joint Soviet-Mongolian Paleontologi- Bakker, R. T. & Bir, G. 2004. Dinosaur crime cal Expedition 19: 1-120. scene investigations: theropod behavior at Barsbold, R. 1997. Oviraptorosauria. In: Currie, , Wyoming, and the evolution of P. J. & Padian, K. (eds.). Encyclopedia of dino- birdness. In: Currie, P. J., Koppelhus, E. B., saurs. – San Diego, Academic Press: 505-509. Shugar, M. A. & Wright, J. L. (eds.). Feath- Barsbold, R. & Perle, A. 1980. Segnosauria, a ered dragons: Studies on the transition from new infraorder of carnivorous dinosaurs. – dinosaurs to birds. – Bloomington, Indiana, Acta Palaeontologica Polonica 25 (2): 187- Indiana University Press: 301-342. 195. Balanoff, A. M. & Norell, M. A. 2012. Osteology Barsbold, R. & Osmólska, H. 1999. The skull of of Khaan mckennai (Oviraptorosauria: The- Velociraptor (Theropoda) from the Late Cre- ropoda). – Bulletin of the American Museum taceous of Mongolia. – Acta Palaeontologica of Natural History: 1-77. Polonica 44 (2): 189-219. Balanoff, A. M., Xu, X., Kobayashi, Y., Matsu- Bates, K. T. & Falkingham, P. L. 2012. Estimating fune, Y. & Norell, M. A. 2009. Cranial osteol- maximum bite performance in Tyrannosau- ogy of the theropod dinosaur Incisivosaurus rus rex using multi-body dynamics. – Biol- gauthieri (Theropoda: Oviraptorosauria). – ogy Letters 8 (4): 660-664. American Museum Novitates 3651: 1-35. Benedetto, J. L. 1973. , nueva Barrett, P. M. 2005. The diet of ostrich dinosaurs familia de saurisquios triásicos. – Ameghini- (Theropoda: Ornithomimosauria). – Palae- ana 10 (1): 89-102. ontology 48 (2): 347-358. Benson, R. B. J. 2008a. A redescription of ‘Mega- Barrett, P. M. 2009. The affinities of the enig- losaurus’ hesperis (Dinosauria, Theropoda) matic dinosaur Eshanosaurus deguchiianus from the Inferior Oolite (Bajocian, Middle from the Early Jurassic of Yunnan Province, Jurassic) of Dorset, United Kingdom. – Zoo- People’s Republic of China. – Palaeontology taxa 1931: 57-67. 52 (4): 681-688. Benson, R. B. J. 2008b. New information on Barrett, P. M., Butler, R. J. & Nesbitt, S. J. 2010. Stokesosaurus, a tyrannosauroid (Dinosau- The roles of herbivory and omnivory in ria: Theropoda) from North America and early dinosaur evolution. – Earth and Envi- the United Kingdom. – Journal of Vertebrate ronmental Science Transactions of the Royal Paleontology 28 (3): 732-750. Society of Edinburgh 101 (Special Issue 3-4): Benson, R. B. J. 2010a. A description of Mega- 383-396. losaurus bucklandii (Dinosauria: Theropoda) Barsbold, R. 1974. Saurornithoididae, a new from the Bathonian of the UK and the re- family of small theropod dinosaurs from lationships of Middle Jurassic theropods. – central Asia and North America. – Palaeon- Zoological Journal of the Linnean Society tologia Polonica 30: 5-22. 158 (4): 882-935. Barsbold, R. 1976a. K evolyutsii i sistematike Benson, R. B. J. 2010b. The osteology of Magno- pozdnemezozoyskikh khishchnykh dinoza- saurus nethercombensis (Dinosauria, Thero-

PalArch Foundation 36 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

poda) from the Bajocian (Middle Jurassic) Bonaparte, J. F. & Powell, J. E. 1980. A continen- of the United Kingdom and a re-examina- tal assemblage of tetrapods from the Upper tion of the oldest records of tetanurans. – Cretaceous beds of El Brete, northwestern Journal of Systematic Palaeontology 8 (1): Argentina (Sauropoda-Coelurosauria-Car- 131-146. nosauria-Aves). – Mémoires de la Société Benson, R. B. J., Barrett, P. M., Powell, H. P. & Géologique de France, Nouvelle Série 139: Norman, D. B. 2008. The taxonomic status of 19-28. Megalosaurus bucklandii (Dinosauria, The- Bonaparte, J. F. & Novas, F. E. 1985. Abelisaurus ropoda) from the Middle Jurassic of Oxford- comahuensis, n.g., Carnosauria del Crétacico shire, UK. – Palaeontology 51 (2): 419-424. Tardio de Patagonia. – Ameghiniana 21 (2- Benton, M. J. 1986. The late Triassic reptile Ter- 4): 259-265. atosaurus—a rauisuchian, not a dinosaur. – Bonaparte, J. F., Novas, F. E. & Coria, R. A. 1990. Palaeontology 29 (2): 293-301. Carnotaurus sastrei Bonaparte, the horned, Benson, R. T, Carrano, M. T. & Brusatte, S. L. lightly built carnosaur from the Middle Cre- 2010. A new clade of archaic large-bodied taceous of Patagonia. – Natural History Mu- predatory dinosaurs (Theropoda: Allosauroi- seum of Los Angeles County Contributions dea) that survived to the latest . – in Science 416 (416): 1-42. Naturwissenschaften 97 (1): 71-78. Breithaupt, B. H. 1999. The first discoveries of Bertin, T. 2010. A catalogue of material and re- dinosaurs in the American West. – Verte- view of the Spinosauridae. – PalArch’s Jour- brate Paleontology in Utah: 59-65. nal of Vertebrate Palaeontology 7 (4): 1-39. Breithaupt, B. H. & Elizabeth, H. 2008. Wyo- Bidar, A., Demay, L. & Thomel, G. 1972. Comp- ming’s Dynamosaurus imperiosus and other sognathus corallestris: nouvelle espèce de early discoveries of Tyrannosaurus rex in dinosaurien théropode du Portlandien de the rocky mountain West. In: Larson, P. L. & Canjuers (sud-est de la France). – Annales Carpenter, K. (eds.). Tyrannosaurus rex, the du Muséum d’Histoire Naturelle de Nice 1: Tyrant King. – Bloomington, Indiana Uni- 9-40. versity Press: 57-61. Bonaparte, C. L. J. L. 1850. Conspectus systema- Bristowe, A. & Raath, M. A. 2004. A juvenile tum herpetologiae et amphibiologiae. Editio coelophysoid skull from the Early Jurassic of Altera Reformata. – Leyden, E. J. Brill. Zimbabwe, and the synonymy of Coelophy- Bonaparte, J. F. 1986. Les dinosaures (Carno- sis and Syntarsus. – Palaeontologia Africana saures, Allosauridés, Sauropodes, Cétiosauri- 40: 31-41. dés) du Jurassique Moyen de Cerro Cóndor Britt, B. B. 1991. Theropods of (Chubut, Argentina). – Annales de Paléon- (, Late Jurassic), Colora- tologie (Vert.-Invert.) 72 (3): 247-289. do, with emphasis on the osteology of Torvo- Bonaparte, J. F. 1991a. The Gondwanian thero- saurus tanneri. – Brigham Young University pod families Abelisauridae and Noasauri- Geology Studies 37: 1-72. dae. – Historical Biology 5 (1): 1-25. Brochu, C. A. 2003. Osteology of Tyrannosaurus Bonaparte, J. F. 1991b. Los vertebrados fósiles rex: Insights from a nearly complete skeleton de la Formación Río Colorado, de la ciudad and high-resolution computed tomographic de Neuquén y cercanías, Cretácico Superior, analysis of the skull. – Journal of Vertebrate Argentina. – Revista del Museo Argentino Paleontology 22 (sup. 4): 1-138. de Ciencias naturales ‘Bernardino Rivadavia’ Brookes, R. 1763. The natural history of waters, e Instituto Nacional de Investigacion de las earths, stones, fossils, and minerals, with Ciencias Naturales. 4 (3): 17-123. their virtues, properties, and medicinal uses: Bonaparte, J. F. 1996. Cretaceous tetrapods of to which is added, the method in which LIN- Argentina. – Münchener Geowissenschaftli- NAEUS has treated these subjects. Vol. 5. – che Abhandlungen, A 30: 73-130. London, J. Newbery. Bonaparte, J. F. 1999. faunas from Brusatte, S. & Benson, R. B. J. 2013. The system- South America and India: a palaeobiogeo- atics of Late Jurassic tyrannosauroids (Dino- graphic interpretation. – Proceedings of the sauria: Theropoda) from Europe and North Indian National Science Association 65A (3): America. – Acta Palaeontologica Polonica 58 427-437. (1): 47-54.

PalArch Foundation 37 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Brusatte, S. L. & Sereno, P. C. 2007. A new spe- Brusatte, S. L., Benson, R. B. J., Chure, D. J., Xu, cies of Carcharodontosaurus (Dinosauria: X., Sullivan, C. & Hone, D. W. E. 2009. The Theropoda) from the Cenomanian of Niger first definitive carcharodontosaurid (Dino- and a revision of the genus. – Journal of Ver- sauria: Theropoda) from Asia and the de- tebrate Paleontology 27 (4): 902-916. layed ascent of tyrannosaurids. – Naturwis- Brusatte, S. L. & Sereno, P. C. 2008. Phylogeny senschaften 96 (9): 1051-1058. of Allosauroidea (Dinosauria: Theropoda): Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, comparative analysis and resolution. – Jour- R. J., Benton, M. J. & Norell, M. A. 2010c. The nal of Systematic Palaeontology 6 (2): 155- origin and early radiation of dinosaurs. – 182. Earth-Science Reviews 101 (1-2): 68-100. Brusatte, S. L., Benson, R. B. J. & Hutt, S. 2008. Brusatte, S. L., Vremir, M., Csiki-Sava, Z., Turner, The osteology of Neovenator salerii (Dino- A. H., Watanabe, A., Erickson, G. M. & Norell, sauria: Theropoda) from the M. A. 2013. The osteology of Balaur bondoc, (Barremian) of the . – Palaeon- an island-dwelling dromaeosaurid (Dinosau- tographical Society 162 (631): 1-75. ria: Theropoda) from the Late Cretaceous of Brusatte, S. L., Benson, R. B. J. & Norell, M. A. . – Bulletin of the American Muse- 2011. The anatomy of Dryptosaurus aquilun- um of Natural History: 1-100. guis (Dinosauria: Theropoda) and a review Brusatte, S. L., Norell, M. A., Carr, T. D., Erickson, of its tyrannosauroid affinities. – American G. M., Hutchinson, J. R., Balanoff, A. M., Bev- Museum Novitates 3717: 1-53. er, G. S., Choiniere, J. N., Makovicky, P. J. & Brusatte, S. L., Carr, T. D. & Norell, M. A. 2012a. Xu, X. 2010d. Tyrannosaur paleobiology: The osteology of Alioramus, a gracile and new research on ancient exemplar organ- long-snouted tyrannosaurid (Dinosauria: isms. – Science 329 (5998): 1481-1485. Theropoda) from the Late Cretaceous of Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, Mongolia. – Bulletin of the American Mu- M. T., Evans, D. C., Lloyd, G. T., Mannion, P. seum of Natural History 366: 1-197. D., Norell, M. A., Peppe, D. J., Upchurch, P. & Brusatte, S. L., Benson, R. B. J., Currie, P. J. & Xi- Williamson, T. E. 2015. The extinction of the jin, Z. 2010a. The skull of dinosaurs. – Biological Reviews 90 (2): 628- jiangi (Dinosauria: Theropoda) and its im- 642. plications for early theropod phylogeny and Buckland, W. 1824. Notice on the Megalosaurus evolution. – Zoological Journal of the Lin- or great fossil lizard of Stonesfield. – Trans- nean Society 158 (3): 573-607. actions of the Geological Society 21: 390-397. Brusatte, S. L., Chure, D. J., Benson, R. B. J. & Buffetaut, E. 1994. Les dinosaures. – Paris, Xu, X. 2010b. The osteology of Shaochilong Presses Universitaires de France. maortuensis, a carcharodontosaurid (Dino- Buffetaut, E. 2005. Les premiers dinosaures sa- sauria: Theropoda) from the Late Cretaceous hariens. – Pour la Science (331): 8-11. of Asia. – Zootaxa 2334: 1-46. Buffetaut, E. 2007. The spinosaurid dinosaur Brusatte, S. L., Butler, R. J., Prieto-Márquez, A. & Baryonyx (Saurischia, Theropoda) in the Norell, M. A. 2012b. Dinosaur morphological Early Cretaceous of Portugal. – Geological diversity and the end-Cretaceous extinction. – Magazine 144 (6): 1021-1025. Communications 3 (804): 1-8. Buffetaut, E. 2010. Spinosaurs before Stromer: Brusatte, S. L., Sakamoto, M., Montanari, S. & early finds of spinosaurid dinosaurs and Harcourt Smith, W. E. H. 2012c. The evo- their interpretations. In: Moody, R. T. J., Buf- lution of cranial form and function in the- fetaut, E., Naish, D. & Martill, D. M. (eds.). Di- ropod dinosaurs: insights from geometric nosaurs and other extinct saurians: a histori- morphometrics. – Journal of Evolutionary cal perspective. Vol. 343. London, Geological Biology 25 (2): 365-377. Society, Special Publication: 175–188. Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, Buffetaut, E. 2011. An early spinosaurid dino- M. A. 2014. Gradual assembly of avian body saur from the Late Jurassic of Tendaguru plan culminated in rapid rates of evolution (Tanzania) and the evolution of the spino- across the dinosaur-bird transition. – Cur- saurid dentition. – Oryctos 10: 1-8. rent Biology 24 (20): 2386-2392. Buffetaut, E. & Ouaja, M. 2002. A new specimen of Spinosaurus (Dinosauria, Theropoda)

PalArch Foundation 38 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

from the Lower Cretaceous of Tunisia, with and the evolution of abelisaurid theropods. – remarks on the evolutionary history of the Naturwissenschaften 96 (3): 409-414. Spinosauridae. – Bulletin de la Societe Ge- Candeiro, C. R., Currie, P. J. & Bergqvist, L. P. ologique de France 173 (5): 415-421. 2012. Theropod teeth from the Marília For- Buffetaut, E., Suteethorn, V. & Tong, H. 1996. mation (late Maastrichtian) at the paleon- The earliest known tyrannosaur from the tological site of Peirópolis in Minas Gerais Lower Cretaceous of Thailand. – Nature 381 State, Brazil. – Brazilian Journal of Geology (6584): 689-691. 42 (2): 323-330. Buffetaut, E., Martill, D. & Escuillié, F. 2004. Candeiro, C. R. A. & Martinelli, A. G. 2005. Pterosaurs as part of a spinosaur diet. – Na- Abelisauroidea and Carcharodontosauridae ture 430 (6995): 33-33. (Theropoda, Dinosauria) in the Cretaceous Buffetaut, E., Escuillié, F. & Pohl, B. 2005. First of South America. Paleogeographical and theropod dinosaur from the Maastrichtian geocronological implications. – Sociedade e phosphates of Morocco. – Kaupia 14: 3-8. Natureza, Uberlândia 17 (33): 5-19. Burch, S. H. & Carrano, M. T. 2012. An articu- Carabajal, A. P. 2011. The braincase anatomy of lated pectoral girdle and forelimb of the Carnotaurus sastrei (Theropoda: Abelisauri- abelisaurid theropod Majungasaurus crena- dae) from the Upper Cretaceous of Patago- tissimus from the Late Cretaceous of Mada- nia. – Journal of Vertebrate Paleontology 31 gascar. – Journal of Vertebrate Paleontology (2): 378-386. 32 (1): 1-16. Carpenter, K., Miles, C., Ostrom, J. H. & Cloward, Burnham, D. A. 2004. New information on Bam- K. 2005. Redescription of the small manirap- biraptor feinbergi (Theropoda: Dromaeosau- toran theropods Ornitholestes and ridae) from the Late Cretaceous of Montana. from the Upper Jurassic Morrison Forma- In: Currie, P. J., Koppelhus, E. B., Shugar, M. tion of Wyoming. In: Carpenter, K. (ed.). The A. & Wright, J. L. (eds.). Feathered dragons: carnivorous dinosaurs. – Bloomington, Indi- Studies on the transition from dinosaurs to ana University Press: 49-71. birds. – Bloomington, Indiana University Carrano, M. T. & Sampson, S. D. 2004. A review Press: 67-111. of coelophysoids (Dinosauria: Theropoda) Burnham, D. A., Derstler, K. L., Currie, P. J., Bak- from the Lower Jurassic of Europe, with ker, R. T., Zhou, Z. & Ostrom, J. H. 2000. Re- comments on the late history of the Coelo- markable new birdlike dinosaur (Theropo- physoidea. – Neues Jahrbuch für Geologie da: Maniraptora) from the Upper Cretaceous und Paläontologie Monatshefte 2004 (9): of Montana. – The Paleontological Institute, 537-558. The University of Kansas 13: 1-14. Carrano, M. T. & Sampson, S. D. 2008. The phy- Butler, R. J. & Upchurch, P. 2007. Highly incom- logeny of Ceratosauria (Dinosauria: Thero- plete taxa and the phylogenetic relation- poda). – Journal of Systematic Palaeontology ships of the theropod dinosaur Juravenator 6 (2): 183-236. starki. – Journal of Vertebrate Paleontology Carrano, M. T., Sampson, S. D. & Forster, C. A. 27 (1): 253-256. 2002. The osteology of Masiakasaurus knop- Calvo, J. O. & Coria, R. 1998. New specimen of fleri, a small abelisauroid (Dinosauria: The- Giganotosaurus carolinii (Coria & Salgado, ropoda) from the Late Cretaceous of Mada- 1995), supports it as the largest theropod gascar. – Journal of Vertebrate Paleontology ever found. – Gaia 15: 117-122. 22 (3): 510-534. Canale, J. I., Novas, F. E. & Pol, D. 2015. Oste- Carrano, M. T., Hutchinson, J. R. & Sampson, S. ology and phylogenetic relationships of D. 2005. New information on hal- Tyrannotitan chubutensis Novas, de Valais, li, a small theropod dinosaur from the Early Vickers-Rich & Rich, 2005 (Theropoda: Car- Jurassic of . – Journal of Vertebrate charodontosauridae) from the Lower Creta- Paleontology 25 (4): 835-849. ceous of Patagonia, Argentina. – Historical Carrano, M. T., Wilson, J. A. & Barrett, P. M. Biology 27 (1): 1-32. 2010. The history of dinosaur collecting in Canale, J. I., Scanferla, C. A., Agnolín, F. L. & central India, 1828-1947. In: Moody, R. T. Novas, F. E. 2009. New carnivorous dinosaur J., Buffetaut, E., Naish, D. & Martill, D. M. from the Late Cretaceous of NW Patagonia (eds.). Dinosaurs and other extinct sauri-

PalArch Foundation 39 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

ans: a historical perspective. Vol. 343. – tives. – Cambridge/New York, Cambridge London, Geological Society, Special Publi- University Press: 127-140. cation: 161-173. Charig, A. J. & Milner, A. C. 1997. Baryonyx Carrano, M. T., Loewen, M. A. & Sertich, J. J. W. walkeri, a fish-eating dinosaur from the 2011. New materials of Masiakasaurus knop- Wealden of Surrey. – Bulletin of the Natural fleri Sampson, Carrano, and Forster, 2001, History Museum 53 (1): 11-70. and implications for the morphology of the Chiappe, L. M. & Witmer, L. M. 2002. Mesozoic Noasauridae (Theropoda: Ceratosauria). – birds: Above the heads of dinosaurs. – Berke- Smithsonian Contributions to Paleobiology ley, University of Press. 95: 1-53. Chiappe, L. M. & Göhlich, U. B. 2010. Anatomy Carrano, M. T., Benson, R. B. J. & Sampson, S. of Juravenator starki (Theropoda: Coeluro- D. 2012. The phylogeny of Tetanurae (Dino- sauria) from the Late Jurassic of Germany. – sauria: Theropoda). – Journal of Systematic Neues Jahrbuch für Geologie und Paläontol- Palaeontology 10 (2): 211-300. ogie Abhandlungen 258 (3): 257-296. Carroll, R. L. 1988. Vertebrate paleontology and Chiappe, L. M., Norell, M. A. & Clark, J. M. 1998. evolution. – New York, W. H. Freeman and The skull of a relative of the stem-group bird Company. Mononykus. – Nature 392 (6673): 275-278. Carr, T. D. 1999. Craniofacial ontogeny in Tyran- Choiniere, J. N., Forster, C. A. & de Klerk, W. J. nosauridae (Dinosauria, Coelurosauria). – 2012. New information on Nqwebasaurus Journal of Vertebrate Paleontology 19 (3): thwazi, a coelurosaurian theropod from the 497-520. Early Cretaceous in Carr, T. D. & Williamson, T. E. 2010. Bistahiever- South Africa. – Journal of African Earth Sci- sor sealeyi, gen. et sp. nov., a new tyranno- ences 71-72: 1-17. sauroid from and the origin of Choiniere, J. N., Clark, J. M., Forster, C. A. & Xu, deep snouts in Tyrannosauroidea. – Journal X. 2010a. A basal coelurosaur (Dinosauria: of Vertebrate Paleontology 30 (1): 1-16. Theropoda) from the Late Jurassic (Oxford- Carr, T. D., Williamson, T. E. & Schwimmer, D. R. ian) of the in Wucai- 2005. A new genus and species of tyranno- wan, People’s Republic of China. – Journal of sauroid from the Late Cretaceous (Middle Vertebrate Paleontology 30 (6): 1773-1796. Campanian) Demopolis Formation of Ala- Choiniere, J. N., Clark, J. M., Norell, M. A. & Xu, bama. – Journal of Vertebrate Paleontology X. 2014a. Cranial osteology of Haplocheirus 25 (1): 119-143. sollers Choiniere et al., 2010 (Theropoda, Al- Cau, A., Dalla Vecchia, F. M. & Fabbri, M. 2013. varezsauroidea). – American Museum Novi- A thick-skulled theropod (Dinosauria, Sau- tates 3816. rischia) from the Upper Cretaceous of Mo- Choiniere, J. N., Xu, X., Clark, J. M., Forster, C. A., rocco with implications for carcharodon- Guo, Y. & Han, F. 2010b. A basal alvarezsau- tosaurid cranial evolution. – Cretaceous roid theropod from the Early Late Jurassic of Research 40: 251-260. , China. – Science 327 (5965): 571- Chabou, M. C., Laghouag, M. Y. & Bendaoud, A. 574. 2015. Dinosaur track sites in Algeria: A sig- Choiniere, J. N., Clark, J. M., Forster, C. A., Norell, nificant national geological heritage in dan- M. A., Eberth, D. A., Erickson, G. M., Chu, H. & ger. In: Errami, E., Brocx, M. & Semeniuk, V. Xu, X. 2014b. A juvenile specimen of a new (eds.). From Geoheritage to Geoparks. – Hei- coelurosaur (Dinosauria: Theropoda) from delberg, Springer International Publishing: the Middle-Late Jurassic Shishugou Forma- 157-166. tion of Xinjiang, People’s Republic of China. – Charig, A. J. & Milner, A. C. 1986. Baryonyx, a re- Journal of Systematic Palaeontology 12 (2): markable new theropod dinosaur. – Nature 177-215. 324 (6095): 359-361. Chure, D. J. 1994. Koparion douglassi, a new di- Charig, A. J. & Milner, A. C. 1990. The systematic nosaur from the Morrison Formation (Upper position of Baryonyx walkeri, in the light of Jurassic) of Dinosaur National Monument; Gauthier’s reclassification of the Theropoda. the oldest troodontid (Theropoda: Manirap- In: Carpenter, K. & Currie, P. J. (eds.). Dino- tora). – Brigham Young University Geology saur systematics: Approaches and perspec- Studies 40 (1): 11-15.

PalArch Foundation 40 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Chure, D. J. 1995. A reassessment of the gigan- Cope, E. D. 1866. [On the anomalous relations tic theropod Saurophagus maximus from existing between the tibia and fibula in cer- the Morrison Formation (Upper Jurassic) of tain of the dinosauria]. – Proceedings of the , USA. In: Sun, A.-L. & Y. Wang Academy of Natural Sciences of Philadel- (Eds.), Sixth Symposium on Mesozoic Terres- phia 18: 316-317. trial Ecosystems and Biota, Short Papers. – Cope, E. D. 1871. On the homologies of some : China Press: 103-106. of the cranial bones of the Reptilia, and on Chure, D. J. 2000. A new species of Allosaurus the systematic arrangement of the class. – from the Morrison Formation of Dinosaur Proceedings of the American Association for National Monument (Utah-Colorado) and a the Advancement of Science 1870: 194-247. revision of the theropod family Allosauri- Cope, E. D. 1889. On a new genus of Triassic dae. – Ph.D. Dissertation, Columbia Univer- Dinosauria. – American Naturalist 23: 626. sity, New York. Coria, R. A. & Salgado, L. 1995. A new giant car- Chure, D. J., Litwin, R., Hasiotis, S. T., Evanoff, E. nivorous dinosaur from the Cretaceous of & Carpenter, K. 2006. The and flora of Patagonia. – Nature 377 (6546): 224-226. the Morrison Formation: 2006. – New Mex- Coria, R. A. & Salgado, L. 1996. ‘Loncosaurus ico Museum of Natural History and Science argentinus’ Ameghino, 1899 (Ornithischia, Bulletin 36: 233-249. Ornithopoda): a revised description with Clark, J. M., Perle, A. & Norell, M. A. 1994. The comments on its phylogenetic relationships. – skull of Erlicosaurus andrewsi, a late Creta- Ameghiniana 33 (4): 373-376. ceous ‘Segnosaur’ (Theropoda, Therizinosau- Coria, R. A. & Salgado, L. 1998. A basal Abelis- ridae) from Mongolia. – American Museum auria Novas, 1992 (Theropoda-Ceratosauria) Novitates 3115: 1-39. from the Cretaceous of Patagonia, Argenti- Clark, J. M., Norell, M. A. & Chiappe, L. M. 1999. na. – Gaia 15: 89-102. An oviraptorid skeleton from the late Creta- Coria, R. A. & Currie, P. J. 2006. A new carchar- ceous of Ukhaa Tolgod, Mongolia, preserved odontosaurid (Dinosauria, Theropoda) from in an avianlike brooding position over an the Upper Cretaceous of Argentina. – Geodi- oviraptorid nest. – American Museum Novi- versitas 28 (1): 71-118. tates 3265: 1-36. Coria, R. A., Chiappe, L. M. & Dingus, L. 2002. Clark, J. M., Norell, M. A. & Barsbold, R. 2001. A new close relative of Carnotaurus sastrei Two new oviraptorids (Theropoda: Ovirapto- Bonaparte 1985 (Theropoda: Abelisauridae) rosauria), Upper Cretaceous Djadokhta For- from the Late Cretaceous of Patagonia. – mation, Ukhaa Tolgod, Mongolia. – Journal of Journal of Vertebrate Paleontology 22 (2): Vertebrate Paleontology 21 (2): 209-213. 460-465. Clark, J. M., Norell, M. A. & Rowe, T. 2002. Crani- Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Su- al anatomy of Citipati osmolskae (Theropo- berbiola, X. & Brusatte, S. L. 2015. Island life da, Oviraptorosauria), and a reinterpretation in the Cretaceous - faunal composition, bio- of the of Oviraptor philoceratops. – geography, evolution, and extinction of land- American Museum Novitates 3364: 1-24. living vertebrates on the Late Cretaceous Eu- Clark, J. M., Maryańska, T. & Barsbold, R. 2004. ropean archipelago. – ZooKeys 469: 1-161. Therizinosauroidea. In: Weishampel, D. B., Csiki, Z., Vremir, M., Brusatte, S. L. & Norell, M. Dodson, P. & Osmólska, H. (eds.). The Dino- A. 2010. An aberrant island-dwelling the- sauria. Second edition). – Berkeley, Univer- ropod dinosaur from the Late Cretaceous sity of California Press: 151-164. of Romania. – Proceedings of the National Colbert, E. H. 1964. Relationships of the sauris- Academy of Sciences 107 (35): 15357-15361. chian dinosaurs. – American Museum Novi- Cuff, A. R. & Rayfield, E. J. 2013. Feeding me- tates 2181. chanics in spinosaurid theropods and extant Colbert, E. H. 1989. The Triassic dinosaur Coelo- crocodilians. – PLoS ONE 8 (5): e65295. physis. – Museum of Northern Arizona Bul- Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Esca- letin 57: 1-174. pa, I., Zavattieri, A. M. & Bowring, S. A. 2013. Colbert, E. H. & Russell, D. A. 1969. The small High-precision U-Pb geochronology and a Cretaceous dinosaur Dromaeosaurus. – new chronostratigraphy for the Cañadón American Museum Novitates 2380: 1-49. Asfalto Basin, Chubut, central Patagonia:

PalArch Foundation 41 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Implications for terrestrial faunal and floral Formation (upper Cretaceous) of Alberta, evolution in Jurassic. – Gondwana Research Canada. In: Currie, P. J., Koppelhus, E. B., 24 (3-4): 1267-1275. Shugar, M. A. and Wright, J. L. (eds.). Feath- Currie, P. J. 1985. Cranial anatomy of Stenony- ered dragons: Studies on the transition from chosaurus inequalis (Saurischia, Theropoda) dinosaurs to birds. – Bloomington, Indiana and its bearing on the . – Ca- University Press: 112-132. nadian Journal of Earth Sciences 22 (11): Currie, P. J. & Azuma, Y. 2006. New specimens, 1643-1658. including a growth series, of Fukuiraptor Currie, P. J. 1987. Bird-like characteristics of the (Dinosauria, Theropoda) from the Lower jaws and teeth of troodontid theropods (Di- Cretaceous Kitadani Quarry of Japan. – Jour- nosauria, Saurischia). – Journal of Vertebrate nal of the Paleontological Society of Korea Paleontology 7 (1): 72-81. 22 (1): 173-193. Currie, P. J. 1995. New information on the anat- Cuvier, G. 1808. Sur les ossements fossiles de omy and relationships of Dromaeosaurus al- : et particulièrement sur ceux bertensis (Dinosauria: Theropoda). – Journal des environs du Havre et de Honfleur, avec of Vertebrate Paleontology 15 (3): 576-591. des remarques sur les squelettes des Sau- Currie, P. J. 2000. Theropods from the Creta- riens de la Thuringe. – Annales du Muséum ceous of Mongolia. In: Benton, M. J., Shish- d’Histoire naturelle de Paris XII: 73-110. kin, M. A., Unwin, D. M. & Kurochkin, E. N. Cuvier, G. 1812. Recherches sur les ossemens (eds.). The age of dinosaurs in Russia and fossiles de quadrupèdes, où l’on rétablit les Mongolia. Vol. 1325. – Cambridge, Cam- caractères de plusieurs espèces d’animaux bridge University Press: 434-455. que les révolutions du globe paroissent avoir Currie, P. J. 2003. Cranial anatomy of tyranno- détruites. – Paris, Chez Deterville, libraire, saurid dinosaurs from the Late Cretaceous rue Hautefeuille, n°8. of Alberta, Canada. – Acta Palaeontologica Cuvier, G. 1824. Recherches sur les ossemens Polonica 48 (2): 191-226. fossiles, où l’on rétablit les caractères de Currie, P. J. & Zhao, X.-J. 1993a. A new carnosaur plusieurs animaux dont les révolutions du (Dinosauria, Theropoda) from the Jurassic of globe ont détruit les espèces. – Paris, Chez Xinjiang, People’s Republic of China. – Ca- G. Dufour et E. D’Ocagne, libraires, quai Vol- nadian Journal of Earth Sciences 30 (10): taire, n°13. 2037-2081. Czerkas, S. A. & Yuan, C. 2002. An arboreal Currie, P. J. & Zhao, X.-J. 1993b. A new troodon- maniraptoran from northeast China. Feath- tid (Dinosauria, Theropoda) braincase from ered Dinosaurs and the Origin of Flight. – the (Campanian) The Dinosaur Museum Journal 1: 63-95. of Alberta. – Canadian Journal of Earth Sci- D’Amore, D. C. 2009. A functional explanation ences 30 (10): 2231-2247. for denticulation in theropod dinosaur teeth. Currie, P. J. & Carpenter, K. 2000. A new speci- The anatomical record. – Advances in Inte- men of Acrocanthosaurus atokensis (The- grative Anatomy and Evolutionary Biology ropoda, Dinosauria) from the Lower Creta- 292 (9): 1297-1314. ceous (Lower Cretaceous, Dal Sasso, C. 2003. Dinosaurs of Italy. – Compt- Aptian) of Oklahoma, USA. – Geodiversitas es Rendus Palevol 2 (1): 46-66. 22 (2): 207-246. Dal Sasso, C. & Maganuco, S. 2011. Scipionyx Currie, P. J. & Chen, P. 2001. Anatomy of Sino- samniticus (Theropoda: Compsognathidae) sauropteryx prima from Liaoning, northeast- from the Lower Cretaceous of Italy: Osteol- ern China. – Canadian Journal of Earth Sci- ogy, ontogenetic assessment, phylogeny, soft ences 38 (12): 1705-1727. tissue anatomy, and palaeobiol- Currie, P. J. & Dong, Z. 2001. New information ogy. – Memorie della Società Italiana di Sci- on Cretaceous troodontids (Dinosauria, The- enze Naturali e del Museo Civico di Storia ropoda) from the People’s Republic of Chi- Naturale di Milano 37 (1): 1-281. na. – Canadian Journal of Earth Sciences 38 Dal Sasso, C., Maganuco, S., Buffetaut, E. & (12): 1753-1766. Mendez, M. A. 2005. New information on Currie, P. J. & Varricchio, D. J. 2004. A new the skull of the enigmatic theropod Spino- dromaeosaurid from the Horseshoe Canyon saurus, with remarks on its size and affini-

PalArch Foundation 42 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

ties. – Journal of Vertebrate Paleontology 25 fossile, intermédiaire entre les crocodiles et (4): 888-896. les lézards, découvert dans les carrières de Delair, J. B. & Sarjeant, W. A. 1975. The earliest la Maladrerie, près Caen, au mois de juillet discoveries of dinosaurs. – Isis: 5-25. 1835. – Caen, Impr. A. Hardel. Delair, J. B. & Sarjeant, W. A. S. 2002. The earli- Evans, M. 2010. The roles played by museums, est discoveries of dinosaurs: The records re- collections and collectors in the early his- examined. – Proceedings of the Geologists’ tory of reptile palaeontology. In: Moody, Association 113 (3): 185-197. R. T. J., Buffetaut, E., Naish, D. & Martill, D. Depéret, C. 1896a. Note sur les dinosauriens M. (eds.). Dinosaurs and other extinct sau- sauropodes et théropodes du Crétacé supéri- rians: A historical perspective. Vol. 343. – eur de Madagascar. – Bulletin de la Société London, Geological Society, Special Publica- Géologique de France 21: 176-194. tion: 5-29. Depéret, C. 1896b. Sur l’existence de dinosau- Evans, S. E. 1994. The Solnhofen (Jurassic: Ti- riens, sauropodes et théropodes dans le Cré- thonian) genus Bavarisaurus: new material tacé supérieur de Madagascar. – Comptes and a new interpretation. – Neues Jahrbuch Rendus de l’Académie des Sciences (Paris), fur Geologie und Palaontologie Abhandlun- Série II 122: 483-485. gen 192: 37-52. Depéret, C. & Savornin, J. 1927. La faune de Ezcurra, M. D. 2006. A review of the systematic reptiles et de poissons albiens de Timimoun position of the dinosauriform Eu- (Sahara algérien). – Bulletin de la Société coelophysis baldwini Sullivan & Lucas, 1999 Géologique de France, 4e Série 27 (4e série): from the Upper Triassic of New Mexico, 257-265. USA. – Geodiversitas 28 (4): 649-684. Dong, Z., Zhou, S. W. & Zhang, Y. 1983. Dino- Ezcurra, M. D. 2007. The cranial anatomy of the saurs from the Jurassic of Sichuan. – Palae- coelophysoid theropod Zupaysaurus rougieri ontologica Sinica, New Series C 162 (23): from the Upper Triassic of Argentina. – His- 1-136. torical Biology 19 (2): 185-202. Dong, Z.-M. 2003. Contributions of new dino- Ezcurra, M. D. 2010. A new early dinosaur saur materials from China to dinosaurology. – (Saurischia: Sauropodomorpha) from the Memoir of the Fukui Prefectural Dinosaur Late Triassic of Argentina: a reassessment Museum 2: 123-131. of dinosaur origin and phylogeny. – Jour- Downs, A. 2000. Coelophysis bauri and Syntar- nal of Systematic Palaeontology 8 (3): 371- sus rhodesiensis compared, with comments 425. on the preparation and preservation of fos- Ezcurra, M. D. 2012. Phylogenetic analysis of sils from the Ghost Ranch Coelophysis Quar- Late Triassic - Early Jurassic neotheropod di- ry. – New Mexico Museum of Natural His- nosaurs. In: [No Editors]. 72nd Annual Meet- tory and Science Bulletin 17: 33-38. ing Society of Vertebrate Paleontology, Ra- Eddy, D. R. & Clarke, J. A. 2011. New informa- leigh, USA. (October 17-20, 2012), Program tion on the cranial anatomy of Acrocantho- and Abstracts: 91. saurus atokensis and its implications for the Ezcurra, M. D. & Cuny, G. 2007. The coelophyso- phylogeny of Allosauroidea (Dinosauria: id airelensis, gen. nov.: A re- Theropoda). – PLoS ONE 6 (3): e17932. view of the systematics of ‘Liliensternus’ aire- Erickson, G. M., Kirk, S. D. V., Su, J., Levenston, lensis from the Triassic-Jurassic outcrops of M. E., Caler, W. E. & Carter, D. R. 1996. Bite- Normandy (France). – Journal of Vertebrate force estimation for Tyrannosaurus rex from Paleontology 27 (1): 73-86. tooth-marked bones. – Nature 382 (6593): Ezcurra, M. D. & Novas, F. E. 2007. Phylogenetic 706-708. relationships of the Triassic theropod Zupay- Erickson, G. M., Makovicky, P. J., Currie, P. J., saurus rougieri from NW Argentina. – His- Norell, M. A., Yerby, S. A. & Brochu, C. A. torical Biology 19 (1): 35-72. 2004. Gigantism and comparative life-histo- Ezcurra, M. D. & Brusatte, S. L. 2011. Taxonomic ry parameters of tyrannosaurid dinosaurs. – and phylogenetic reassessment of the early Nature 430 (7001): 772-775. neotheropod dinosaur Camposaurus arizo- Eudes-Deslongchamps, J. A. 1837. Mémoire sur nensis from the Late Triassic of North Amer- le Poekilopleuron bucklandii, grand saurien ica. – Palaeontology 54 (4): 763-772.

PalArch Foundation 43 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Farke, A. A. & Sertich, J. J. W. 2013. An abelisau- rus. – Bulletin of the National roid theropod dinosaur from the Turonian Museum 110: 1-159. of Madagascar. – PLoS ONE 8 (4): e62047. Gilmore, C. W. 1924. On Troodon validus, an Fitzinger, L. 1843. Systema reptilium. Fascicu- ornithopodus dinosaur from the Belly River lus primus: Amblyglossae. Vienna, Apud Cretaceous of Alberta, Canada. – Bulletin of Braumüller and Seidel Bibliopolas. the Department of Geology, University of Al- Forster, C. A., Sampson, S. D., Chiappe, L. M. & berta 1: 1-143. Krause, D. W. 1998. The theropod ancestry Godefroit, P., Cau, A., Dong-Yu, H., Escuillié, F., of birds: New evidence from the Late Creta- Wenhao, W. and Dyke, G. 2013a. A Jurassic ceous of Madagascar. – Science 279 (5358): avialan dinosaur from China resolves the 1915-1919. early phylogenetic history of birds. – Nature Foth, C. & Rauhut, O. W. M. 2013. Macroevo- 498: 359-362. lutionary and morphofunctional patterns in Godefroit, P., Demuynck, H., Dyke, G., Hu, D., theropod skulls: A morphometric approach. – Escuillié, F. & Claeys, P. 2013b. Reduced Acta Palaeontologica Polonica 58 (1): 1-16. plumage and flight ability of a new -Juras Foth, C., Tischlinger, H. & Rauhut, O. W. M. sic paravian theropod from China. – Nature 2014. New specimen of Archaeopteryx pro- Communications 4 (1394): 1-6. vides insights into the evolution of penna- Gong, E., Martin, L. D., Burnham, D. A. & Falk, ceous feathers. – Nature 511 (7507): 79-82. A. R. 2010. The birdlike raptor Sinornitho- Frankfurt, N. G. & Chiappe, L. M. 1999. A possi- saurus was venomous. – Proceedings of the ble oviraptorosaur from the Late Cretaceous National Academy of Sciences 107 (2): 766- of northwestern Argentina. – Journal of Ver- 768. tebrate Paleontology 19 (1): 101-105. Goswami, A., Prasad, G. V. R., Verma, O., Flynn, Frey, E. & Martill, D. M. 1995. A possible ovi- J. J. & Benson, R. B. J. 2013. A troodontid di- raptorosaurid theropod from the Santana nosaur from the latest Cretaceous of India. – Formation (Lower Cretaceous,? Albian) of Nature Communications 4 (1703): 1-5. Brazil. – Neues Jahrbuch fur Geologie und Halstead, L. B. 1970. Scrotum humanum Palaontologie-Monatshefte (7): 397-412. Brookes 1763–the first named dinosaur. – Gao, C., Morschhauser, E. M., Varricchio, D. J., Journal of Insignificant Research 5: 14-15. Liu, J. & Zhao, B. 2012. A second soundly Halstead, L. B. & Sarjeant, W. A. S. 1993. Scro- sleeping dragon: New anatomical details of tum humanum Brookes–the earliest name the Chinese troodontid Mei long with im- for a dinosaur? – Modern Geology 18: 221- plications for phylogeny and taphonomy. – 224. PLoS ONE 7 (9): e45203. Hammer, W. R. & Hickerson, W. J. 1994. A crest- Gauthier, J. 1986. Saurischian monophyly and ed theropod dinosaur from Antarctica. – Sci- . In: Padian, K. (ed.). The ence 264 (5160): 828-830. origin of birds and the evolution of flight. Han, G., Chiappe, L. M., Ji, S.-A., Habib, M., Turn- Vol. 8. – San Francisco, California: 1-55. er, A. H., Chinsamy, A., Liu, X. & Han, L. 2014. Gianechini, F. A. & Apesteguía, S. 2011. Unen- A new raptorial dinosaur with exceptionally lagiinae revisited: dromaeosaurid theropods long feathering provides insights into drom- from South America. – Anais da Academia aeosaurid flight performance. – Nature Com- Brasileira de Ciências 83 (1): 163-195. munications 5 (4382): 1-9. Gianechini, F. A., Makovicky, P. J. and Apesteg- Harris, J. D. 1998. A reanalysis of Acrocantho- uía, S. 2011. The teeth of the unenlagiine saurus atokensis, its phylogenetic status, and theropod Buitreraptor from the Cretaceous paleobiogeographic implications, based on of Patagonia, Argentina, and the unusual a new specimen from . – New Mexico dentition of the Gondwanan dromaeosau- Museum of Natural History and Science Bul- rids. – Acta Palaeontologica Polonica 56 (2): letin 13: 1-75. 279-290. Hasegawa, Y., Tanaka, G., Takakuwa, Y. & Koike, Gilmore, C. W. 1920. Osteology of the carnivo- S. 2010. Fine sculptures on a tooth of Spino- rous Dinosauria in the United State National saurus (Dinosauria, Theropoda) from Moroc- museum: with special reference to the gen- co. – Bulletin of Gunma Museum of Natural era Antrodemus (Allosaurus) and Ceratosau- History 14: 11-20.

PalArch Foundation 44 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Haug, E. 1904. Sur la faune des couches à Cerato- bian) dinosaurs from Winton, Queensland, dus crétacées du Djoua, Près de Timassanine Australia. – PLoS ONE 4 (7): e6190. (Sahara). – Comptes Rendus de l’Académie Holtz, T. R. 1994. The phylogenetic position of des Sciences 138: 1529-1531. the Tyrannosauridae: implications for thero- Haug, E. 1905. Documents scientifiques de la pod systematics. – Journal of Paleontology mission saharienne, mission Foureau-Lamy. 68 (5): 1100-1117. « D’Alger au Congo par le Tchad ». – Pub- Holtz, T. R. 1996. Phylogenetic of the lication de la Société de Géographie Paris: Coelurosauria (Dinosauria: Theropoda). – 751-832. Journal of Paleontology 70: 536-538. Henderson, D. M. 1998. Skull and tooth mor- Holtz, T. R. J. 1995. A new phylogeny of the The- phology as indicators of niche partitioning ropoda. – Journal of Vertebrate Paleontology in sympatric Morrison Formation thero- 15 (suppl 3): 35A. pods. – Gaia 15: 219-226. Holtz, T. R. J. 1998. A new phylogeny of the car- Hendrickx, C. & Buffetaut, E. 2008. Function- nivorous Dinosaurs. – Gaia 15: 5-61. al interpretation of spinosaurid quadrates Holtz, T. R. J. 2001. The phylogeny and taxon- (Dinosauria: Theropoda) from the Mid-Cre- omy of the Tyrannosauridae. In: Tanke, D. taceous of Morocco. In: [No Editors]. 56th H., Carpenter, K. & Skrepnick, M. W. (eds.). Annual Symposium of Vertebrate Palaeon- Mesozoic vertebrate life. – Bloomington, In- tology and Comparative Anatomy. Dublin diana University Press: 64-83. (September 2nd-6th 2008): 25-26. Holtz, T. R. J. 2004. Tyrannosauroidea. In: Hendrickx, C. & Mateus, O. 2014a. Torvosaurus Weishampel, D. B., Dodson, P. & Osmólska, gurneyi n. sp., the largest terrestrial predator H. (eds.). The dinosauria. Second Edition. – from Europe, and a proposed terminology of Berkeley, University of California Press: 111- the maxilla anatomy in nonavian theropods. – 136. PLoS ONE 9 (3): e88905. Holtz, T. R. J. 2012. Theropods. In: Brett-Surman, Hendrickx, C. & Mateus, O. 2014b. Abelisauri- M. K., Holtz, T. R. J. & Farlow, J. O. (eds.). The dae (Dinosauria: Theropoda) from the Late complete dinosaur. Second edition. – Bloom- Jurassic of Portugal and dentition-based phy- ington, Indiana University Press: 347-378. logeny as a contribution for the identifica- Holtz, T. R. J. & Padian, K. 1995. Definition and tion of isolated theropod teeth. – Zootaxa diagnosis of Theropoda and related taxa. – 3759 (1): 1-74. Journal of Vertebrate Paleontology 15 (suppl Hendrickx, C., Mateus, O. & Araújo, R. 2015. The 3): 35A. dentition of megalosaurid theropods. – Acta Holtz, T. R. J. & Osmólska, H. 2004. Saurischia. Palaeontologica Polonica 60 (3): 627-642. In: Weishampel, D. B., Dodson, P. & Osmól- Hennig, W. 1950. Grundzüge einer Theorie ska, H. (eds.). The Dinosauria. Second edi- der phylogenetischen Systematik. – Berlin, tion. – Berkeley, University of California Deutscher Zentralverlag. Press: 21-24. He, T., Wang, X.-L. & Zhou, Z.-H. 2008. A new Holtz, T. R. J., Brinkman, D. L. & Chandler, C. genus and species of caudipterid dinosaur L. 1998. morphometrics and a pos- from the Lower Cretaceous Jiufotang Forma- sibly omnivorous feeding habit for the the- tion of western Liaoning, China. – Vertebra- ropod dinosaur Troodon. – Gaia 15: 159-166. ta PalAsiatica 46 (3): 178-189. Holtz, T. R. J., Molnar, R. E. & Currie, P. J. 2004. Hislop, S. 1861. Remarks on the geology of Nág- Basal Tetanurae. In: Weishampel, D. B., Dod- pur. – Journal of the Bombay Branch of the son, P. & Osmólska, H. (eds.). The Dinosau- Royal Asiatic Society 6: 194-206. ria. Second edition. – Berkeley, University of Hislop, S. 1864. Extracts from letters relating California Press: 71-110. to the further discovery of fossil teeth and Hone, D. W. E., Xu, X. & Wang, D. Y. 2010. A bones of reptiles in Central India. – Quarter- probable baryonychine (Theropoda: Spino- ly Journal of the Geological Society 20 (1-2): sauridae) tooth from the Upper Cretaceous 280-282. of Henan Province, China. – Vertebrata Hocknull, S. A., White, M. A., Tischler, T. R., PalAsiatica 48 (1): 19-26. Cook, A. G., Calleja, N. D., Sloan, T. & Elliott, Horner, J. R. & Padian, K. 2004. Age and growth D. A. 2009. New mid-Cretaceous (Latest Al- dynamics of Tyrannosaurus rex. – Proceed-

PalArch Foundation 45 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

ings of the Royal Society of London. Series Hu, S. 1993. A new Theropoda (Dilophosaurus B: Biological Sciences 271 (1551): 1875-1880. sinensis sp. nov.) from Yunnan, China. – Ver- Hu, D., Hou, L., Zhang, L. & Xu, X. 2009. A pre- tebrata PalAsiatica 31 (1): 65-69. Archaeopteryx troodontid theropod from Hutt, S., Naish, D., Martill, D. M., Barker, M. J. & China with long feathers on the metatarsus. – Newbery, P. 2001. A preliminary account of a Nature 461 (7264): 640-643. new tyrannosauroid theropod from the Wes- Huene, von, F. R. 1929a. Los saurischios y or- sex Formation (Early Cretaceous) of south- nithiscquios de Cretaceo Argentine. – An- ern England. – Cretaceous Research 22 (2): nales de Museo de La Plata 3 (2): 1-196. 227-242. Huene, von, F. R. 1909. Skizze zu einer systema- Hwang, S. H., Norell, M. A., Ji, Q. & Keqin, G. tik und stammesgeschichte der dinosaurier. – 2002. New specimens of Microraptor zhao- Centralblatt für Mineralogie, Geologie und ianus (Theropoda: Dromaeosauridae) from Paläontologie 1909: 12-22. Northeastern China. – American Museum Huene, von, F. R. 1914a. Das natürliche System Novitates 3381: 1-44. der Saurischia. – Zentralblatt für Mineralo- Hwang, S. H., Norell, M. A., Qiang, J. & Keqin, G. gie, Geologie, und Paläontologie B 1914: 154- 2004. A large compsognathid from the Early 158. Cretaceous of China. – Huene, von, F. R. 1914b. Saurischia and Ornith- Journal of Systematic Palaeontology 2 (1): ischia. – Geological Magazine 1 (10): 444-445. 13-30. Huene, F. R. von. 1914c. Beiträge zur Geschichte Ibrahim, N., Sereno, P. C., Sasso, C. D., Maga- der Archosaurier. – Geologie und Paläontolo- nuco, S., Fabbri, M., Martill, D. M., Zouhri, gie Abhandlungen 13 (7): 1-56. S., Myhrvold, N. & Iurino, D. A. 2014. Semi- Huene, von, F. R. 1923. Carnivorous Saurischia aquatic adaptations in a giant predatory di- in Europe since the Triassic. – Bulletin of the nosaur. – Science 345 (6204): 1613-1616. Geological Society of America 34: 449-458. Ivie, M. A., Slipinski, S. A. & Wegrzynowicz, P. Huene, von, F. R. 1926a. The carnivorous Sau- 2001. Generic homonyms in the colydiinae rischia in the Jura and Cretaceous forma- (Coleoptera: Zopheridae). – Insecta Mundi tions, principally in Europe. – Revista del 15 (1): 63-64. Museo de La Plata 29: 35-167. Ji, Q., Ji, S. A. & Zhang, L. J. 2009. First large ty- Huene, von, F. R. 1926b. On several known and rannosauroid theropod from the Early Cre- unknown reptiles of the order Saurischia taceous Jehol Biota in northeastern China. – from England and France. – Journal of Natu- Geological Bulletin of China 28 (10): 1369- ral History Series 9 17 (101): 473-489. 1374. Huene, von, F. R. 1929b. Kurze Übersicht über Ji, Q., Currie, P. J., Norell, M. A. & Shu-An, J. die Saurischia und ihre natürlichen Zusam- 1998. Two feathered dinosaurs from north- menhänge. – Palaeontologische Zeitschrift eastern China. – Nature 393 (6687): 753-761. 11 (3): 269-273. Ji, Q., Ji, S., Lü, J. & Yuan, C. 2007a. A new giant Huene, F. R. von. 1932. Die fossile Reptil-Ord- compsognathid dinosaur with long filamen- nung Saurischia, ihre Entwicklung und Ge- tous integuments from lower Cretaceous of schichte. – Monographien zur Geologie und Northeastern China. – Acta Geologica Sinica Palaontologie, Series 1, 4: 1-361. 81: 8-15. Huene, von, F. R. 1934. Ein neuer coelurosau- Ji, Q., Norell, M. A., Gao, K.-Q., Ji, S.-A. & Ren, rier in der thüringischen Trias. – Paläontolo- D. 2001. The distribution of integumentary gische Zeitschrift 16 (3): 145-170. structures in a . – Nature Huene, von, F. R. & Matley, C. A. 1933. The Cre- 410 (6832): 1084-1088. taceous Saurischia and Ornithischia of the Ji, Q., Norell, M. A., Makovicky, P. J., Gao, K.-Q., Central Provinces. – Memoirs of the Geologi- Ji, S. & Yuan, C. 2003. An early ostrich dino- cal Survey of India, New Series 21: 1-74. saur and implications for ornithomimosaur Hurum, J. H. & Sabath, K. 2003. Giant theropod phylogeny. – American Museum Novitates dinosaurs from Asia and North America: 3420: 1-19. Skulls of bataar and Tyranno- Ji, S., Gao, C., Liu, J., Meng, Q. & Qiang, J. 2007b. saurus rex compared. – Acta Palaeontologica New material of Sinosauropteryx (Theropo- Polonica 48 (2): 161-190. da: Compsognathidae) from Western Liaon-

PalArch Foundation 46 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

ing, China. – Acta Geologica Sinica 81 (2): Langer, M. C. & Benton, M. J. 2006. Early dino- 177-182. saurs: A phylogenetic study. – Journal of Sys- Karhu, A. A. & Rautian, A. S. 1996. A new fam- tematic Palaeontology 4 (04): 309-358. ily of Maniraptora (Dinosauria: Saurischia) Langer, M. C. & Ferigolo, J. 2013. The Late Tri- from the Late Cretaceous of Mongolia. – Pa- assic dinosauromorph Sacisaurus agudoen- leontological Journal 30 (5): 583-592. sis (Caturrita Formation; Rio Grande do Sul, Kellner, A. W. A. & Campos, D. A. 1996. First Brazil): anatomy and affinities. – Geological Early Cretaceous theropod dinosaur from Society, London. Special Publications 379: Brazil with comments on Spinosauridae. 353-392. Neues Jahrbuch für Geologie und Paläontol- Langer, M. C., Ezcurra, M. D., Bittencourt, J. S. & ogie. Abhandlungen 199 (2): 151-166. Novas, F. E. 2010. The origin and early evo- Kirkland, J. I., Gaston, R. & Burge, D. 1993. A lution of dinosaurs. – Biological Reviews 85 large dromaeosaur (Theropoda) from the (1): 55-110. Lower Cretaceous of eastern Utah. – Hunt- Langer, M. C., Rincón, A. D., Ramezani, J., Solór- eria 2 (10): 1-16. zano, A. & Rauhut, O. W. M. 2014. New dino- Kirkland, J. I., Zanno, L. E., Sampson, S. D., saur (Theropoda, stem-Averostra) from the Clark, J. M. & DeBlieux, D. D. 2005. A primi- earliest Jurassic of the La Quinta formation, tive therizinosauroid dinosaur from the - Venezuelan Andes. – Royal Society Open ly Cretaceous of Utah. – Nature 435 (7038): Science 1 (2): 140-184. 84-87. Lautenschlager, S., Witmer, L. M., Altangerel, P., Kobayashi, Y. & Lü, J.-C. 2003. A new ornitho- Zanno, L. E. & Rayfield, E. J. 2014. Cranial mimid dinosaur with gregarious habits from anatomy of Erlikosaurus andrewsi (Dinosau- the Late Cretaceous of China. – Acta Palae- ria, Therizinosauria): New insights based on ontologica Polonica 48 (2): 235-259. digital reconstruction. – Journal of Verte- Kobayashi, Y. & Barsbold, R. 2005a. Reexamina- brate Paleontology 34 (6): 1263-1291. tion of a primitive ornithomimosaur, Garu- Lebrun, P. 2004. Dinosaures carnivores: une his- dimimus brevipes Barsbold, 1981 (Dinosau- toire naturelle des théropodes non aviaires. ria: Theropoda), from the Late Cretaceous of Tome 1: histoire des découvertes, anatomie Mongolia. – Canadian Journal of Earth Sci- et physiologie, phylogenèse, théropodes ba- ences 42 (9): 1501-1521. saux et carnosauriens. – Paris, Minéraux & Kobayashi, Y. & Barsbold, R. 2005b. Anatomy Fossiles Hors-série n°18. CEDIM. of Harpymimus okladnikovi Barsbold & Perle Lee, Y.-N., Barsbold, R., Currie, P. J., Kobayashi, 1984 (Dinosauria; Theropoda) of Mongolia. Y., Lee, H.-J., Godefroit, P., Escuillié, F. & In: Carpenter, K. (ed.). The carnivorous di- Chinzorig, T. 2014. Resolving the long-stand- nosaurs. – Bloomington, Indiana University ing enigmas of a giant ornithomimosaur Press: 97-126. Deinocheirus mirificus. – Nature 515 (7526): Krause, D. W., Sampson, S. D., Carrano, M. T. & 257-260. O’Connor, P. M. 2007. Overview of the his- Leidy, J. 1856. Notice of remains of extinct tory of discovery, taxonomy, phylogeny, and reptiles and , discovered by Dr. F.V. biogeography of Majungasaurus crenatis- Hayden in the Bad Lands of the Judith Riv- simus (Theropoda: Abelisauridae) from the er, Nebraska Territory. – Proceedings of the Late Cretaceous of Madagascar. – Society of Academy of Natural Sciences of Philadel- Vertebrate Paleontology Memoir 8: 1-20. phia 8: 72-73. Lamanna, M. C., Sues, H.-D., Schachner, E. R. & Leidy, J. 1860. Extinct Vertebrata from the Ju- Lyson, T. R. 2014. A new large-bodied ovirap- dith River and Great Lignite Formations of torosaurian theropod dinosaur from the Lat- Nebraska. Transactions of the American – est Cretaceous of Western North America. – Philosophical Society 11: 139-154. PLoS ONE 9 (3): e92022. Leonardi, G. 1984. Le impronte fossili di dino- Langer, M. C. 2014. The origins of Dinosauria: sauri. In: Bonaparte, J. F., Colbert, E. H., Cur- Much ado about nothing. – Palaeontology 57 rie, P. J., de Ricqlès, A., Kielen-Jaworowska, Z., (3): 469-478. Leonardi, G., Morello, N. & Taquet, P. (eds.).

PalArch Foundation 47 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Sulle Orme Dei Dinosauri. – Venezia, Erizzo of Alberta, Canada: Implications for the sys- Editrice: 165-186. tematics and of the Alvarezsauridae. – Lhota, S., Jůnek, T., Bartoš, L. & Kuběna, A. A. Cretaceous Research 30 (1): 239-252. 2008. Specialized use of two fingers in free- Longrich, N. R. & Currie, P. J. 2009b. A microrap- ranging aye-ayes (Daubentonia madagas- torine (Dinosauria-Dromaeosauridae) from cariensis). – American Journal of Primatol- the Late Cretaceous of North America. – Pro- ogy 70 (8): 786-795. ceedings of the National Academy of Scienc- Lhuyd, E. 1699. Lithophylacii Britannici ichno- es 106 (13): 5002-5007. graphia. E typographeo clarendoniano. Pros- Longrich, N. R., Currie, P. J. & Zhi-Ming, D. 2010. tant apud bibliopolas oxonieses. – London J. A new oviraptorid (Dinosauria: Theropoda) Rivington in Cœmeterio Paulino / London, from the Upper Cretaceous of Bayan Man- J. Whiston & B. White in Fleetstreet. dahu, . – Palaeontology 53 Li, D., Norell, M. A., Gao, K. Q., Smith, N. D. & (5): 945-960. Makovicky, P. J. 2010. A longirostrine ty- Longrich, N. R., Barnes, K., Clark, S. & Millar, L. rannosauroid from the Early Cretaceous of 2013. Caenagnathidae from the Upper Cam- China. – Proceedings of the Royal Society B: panian of West Texas, and Biological Sciences 277 (1679): 183-190. a revision of the Caenagnathinae. – Bulletin Li, F., Peng, G., Ye, Y., Jiang, S. & Huang, D. 2009. of the Peabody Museum of Natural History A new carnosaur from the Late Jurassic of 54 (1): 23-49. Qianwei, Sichuan, China. – Acta Geologica Lubbe, van der, T., Richter, U. & Knötschke, N. Sinica 83: 1203-1213. 2009. Velociraptorine dromaeosaurid teeth Linnaeus, C. 1758. Systema naturæ per regna from the Kimmeridgian (Late Jurassic) of tria naturæ, secundum classes, ordines, gen- Germany. – Acta Palaeontologica Polonica era, species, cum characteribus, differentiis, 54 (3): 401-408. synonymis, locis. Tomus I. Editio decima, re- Lü, J., Tomida, Y., Azunia, Y., Dong, Z. & Lee, Y. formata. Holmiae: Impensis Direct. – Stock- N. 2004. New oviraptorid dinosaur (Dino- holm, Laurentii Salvii. sauria: Oviraptorosauria) from the Nemegt Livezey, B. C. & Zusi, R. L. 2007. Higher-order Formation of Southwestern Mongolia. – Bul- phylogeny of modern birds (Theropoda, letin of the National Science Museum: Geol- Aves: Neornithes) based on comparative ogy & paleontology 30: 95-130. anatomy. II. Analysis and discussion. – Zoo- Lü, J., Xu, L., Liu, Y., Zhang, X., Jia, S. & Ji, Q. logical Journal of the Linnean Society 149 2010. A new troodontid theropod from the (1): 1-95. Late Cretaceous of central China, and the ra- Liyong, J., Jun, C. & Godefroit, P. 2012. A new diation of Asian troodontids. – Acta Palaeon- basal ornithomimosaur (Dinosauria: The- tologica Polonica 55 (3): 381-388. ropoda) from the Early Cretaceous Yixian Lü, J., , L., Brusatte, S. L., Yang, L., Li, H. & Formation, Northeast China. In: Godefroit, P. Chen, L. 2014. A new clade of Asian Late (ed.). Bernissart dinosaurs and Early Creta- Cretaceous long-snouted tyrannosaurids. – ceous terrestrial ecosystems. – Bloomington, Nature Communications 5 (3788): 1-10. Indiana University Press: 466-487. Lydekker, R. 1879. Indian pretertiary vertebra- Loewen, M. A. 2010. Variation in the Late Ju- ta. 3. Fossil reptilia and batrachia. – Memoirs rassic theropod dinosaur Allosaurus: Onto- of the Geological Survey of India: Palaeonto- genetic, functional, and taxonomic implica- logia Indica 4 (1): 1-35. tions. – Ph.D. Dissertation, The University of Lydekker, R. 1885. Indian pretertiary vertebra- Utah, Texas. ta. Vol I. Part 5. The reptilia & amphibia of Loewen, M. A., Irmis, R. B., Sertich, J. J. W., Cur- the Maleri and Denwa Groups. – Memoirs of rie, P. J. & Sampson, S. D. 2013. Tyrant di- the Geological Survey of India: Palaeontolo- nosaur evolution tracks the rise and fall of gia Indica: 1-38. Late Cretaceous . – PLoS ONE 8 (11): Lydekker, R. 1890. Note on certain vertebrate re- e79420. mains from the Nagpur district. – Records of Longrich, N. R. & Currie, P. J. 2009a. Albertonykus the Geological Survey of India 23 (1): 20-24. borealis, a new alvarezsaur (Dinosauria: Mader, B. J. & Bradley, R. L. 1989. A redescrip- Theropoda) from the Early Maastrichtian tion and revised diagnosis of the syntypes

PalArch Foundation 48 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

of the Mongolian tyrannosaur fossils of Tilgate Forest. – London, Lupton olseni. – Journal of Vertebrate Paleontology Relfe. 9 (1): 41-55. Mantell, G. A. 1833. The geology of the South- Madsen, J. H. 1976a. A second new theropod di- East of England. – London, Green and Long- nosaur from the Late Jurassic of east central man. Utah. – Utah geology 3 (1): 51-60. Marsh, O. C. 1877. Notice of new dinosaurian Madsen, J. H. 1976b. Allosaurus fragilis: A re- reptiles from the Jurassic Formation. – vised osteology. – Utah Geological Survey American Journal of Science 14 (5): 14-516. Bulletin 109: 1-177. Marsh, O. C. 1878. Notice of new dinosaurian Madsen, J. H. & Welles, S. P. 2000. Ceratosaurus reptiles. – American Journal of Science (87): (Dinosauria, Theropoda): A revised osteolo- 241-244. gy. – Utah Geological Survey, Miscellaneous Marsh, O. C. 1881. Principal characters of Amer- Publication 00-2: 1-89. ican Jurassic dinosaurs. Part V. – American Makovicky, P. J. & Norell, M. A. 2004. Troodon- Journal of Science (Series 3) 21: 417-423. tidae. In: Weishampel, D. B., Dodson, P. & Marsh, O. C. 1882. Classification of the Dinosau- Osmólska, H. (eds.). The Dinosauria. Second ria. – American Journal of Science (Series 3) edition. – Berkeley, University of California 23: 81-86. Press: 184-195. Marsh, O. C. 1884a. Principal characters of the Makovicky, P. J., Kobayashi, Y. & Currie, P. J. American Jurassic dinosaurs. Part VIII. The 2004. Ornithomimosauria. In: Weishampel, order Theropoda. – American Journal of Sci- D. B., Dodson, P. & Osmólska, H. (eds.). The ence, Series 3 27: 329-340. Dinosauria. Second edition. – Berkeley, Uni- Marsh, O. C. 1884b. The classification and af- versity of California Press: 137-150. finities of dinosaurian reptiles. – Nature 31: Makovicky, P. J., Apesteguía, S. & Agnolín, F. L. 68-69. 2005. The earliest dromaeosaurid theropod Marsh, O. C. 1890. Description of new dinosau- from South America. – Nature 437 (7061): rian reptiles. – American Journal of Science 1007-1011. (229): 81-86. Makovicky, P. J., Norell, M. A., Clark, J. M. & Marsh, O. C. 1895. On the affinities and classi- Rowe, T. 2003. Osteology and relationships fication of the dinosaurian reptiles. – Ameri- of Byronosaurus jaffei (Theropoda: Troodon- can Journal of Science (300): 483-498. tidae). – American Museum Novitates 3402: Marsh, O. C. 1896. The dinosaurs of North 1-32. America. The Sixteenth Annual Report of Makovicky, P. J., Li, D., Gao, K.-Q., Lewin, M., Er- the U.S. – Washington, Geological Survey. ickson, G. M. & Norell, M. A. 2010. A giant Martinez, R. N., Sereno, P. C., Alcober, O. A., Co- ornithomimosaur from the Early Cretaceous lombi, C. E., Renne, P. R., Montañez, I. P. & of China. – Proceedings of the Royal Society Currie, B. S. 2011. A basal dinosaur from the B: Biological Sciences 277 (1679): 191-198. dawn of the dinosaur era in southwestern Malafaia, E., Ortega, F., Escaso, F. & Silva, B. Pangaea. – Science 331 (6014): 206-210. 2015. New evidence of Ceratosaurus (Dino- Maryańska, T., Osmólska, H. & Wolsan, M. 2002. sauria: Theropoda) from the Late Jurassic of Avialan status for Oviraptorosauria. – Acta the Lusitanian Basin, Portugal. – Historical Palaeontologica Polonica 47 (1): 97-116. Biology 27 (7): 938-946. Mateus, O. & Antunes, M. T. 2000. Ceratosaurus Maleev, E. A. 1954. Noviy cherepachoobrazhniy sp. (Dinosauria: Theropoda) in the Late Ju- yashcher v Mongolii. – Priroda 1954 (3): 106- rassic of Portugal. In: [No Editors]. Abstracts, 108. 31st International Geological Congress [No Mantell, G. A. 1822. The fossils of the South Page Numbers]. Downs, or, illustrations of the geology of Mateus, O., Walen, A. & Antunes, M. T. 2006. Sussex. – London, Thomas Davison, White- The large theropod fauna of the Lourinhã friars / Cornhill, Lupton Relfe, 13. Formation (Portugal) and its similarity to the Mantell, G. A. 1827. Illustrations of the geology Morrison Formation, with a description of of Sussex: A general view of the geological a new species of Allosaurus. – New Mexico relations of the South-Eastern part of Eng- Museum of Natural History and Science Bul- land, with figures and descriptions of the letin 36: 123-129.

PalArch Foundation 49 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Mateus, O., Araújo, R., Natário, C. & Castan- Naish, D. & Dyke, G. J. 2004. was hinha, R. 2011. A new specimen of the the- no ornithomimid, troodontid, dromaeosau- ropod dinosaur Baryonyx from the early Cre- rid or : The first alvarezsaurid (Dino- taceous of Portugal and taxonomic validity sauria: Theropoda) from Europe. – Neues of Suchosaurus. – Zootaxa 2827: 54-68. Jahrbuch für Geologie und Paläontologie 7: Matthew, W. D. & Brown, B. 1922. The family 385-401. Deinodontidae, with notice of a new genus Naish, D., Martill, D. M. & Frey, E. 2004. Ecology, from the Cretaceous of Alberta. – Bulletin of systematics and biogeographical relation- the American Museum of Natural History 46 ships of dinosaurs, including a new thero- (6): 367-385. pod, from the Santana Formation (?Albian, Mayor, A. & Sarjeant, W. A. S. 2001. The folklore Early Cretaceous) of Brazil. – Historical Biol- of footprints in stone: from classical antiq- ogy 16 (2-4): 57-70. uity to the present. – Ichnos 8 (2): 143-163. Nesbitt, S. J. 2011. The early evolution of archo- Mayr, G., Pohl, B. & Peters, D. S. 2005. A well- saurs: Relationships and the origin of major preserved Archaeopteryx specimen with the- clades. – Bulletin of the American Museum ropod features. – Science 310 (5753): 1483- of Natural History: 1-292. 1486. Nesbitt, S. J., Clarke, J. A., Turner, A. H. & Norell, Mesle, Le, G. & Peron, P. A. 1880. Sur des empre- M. A. 2011. A small alvarezsaurid from the intes de pas d’oiseaux observées par M. le eastern offers insight into evo- Mesle dans le Sud de l’Algérie. – Association lutionary patterns in the Alvarezsauroidea. – Française pour l’Avancement des Sciences. Journal of Vertebrate Paleontology 31 (1): Congrès de Reims: 528-533. 144-153. Meyer, H. von. 1832. Paleologica zur Geschichte Nesbitt, S. J., Smith, N. D., Irmis, R. B., Turner, A. der Erde. Frankfurt am Main, S. Schmerber. H., Downs, A. & Norell, M. A. 2009. A com- Milner, A. C. 2002. Theropod dinosaurs of the plete skeleton of a Late Triassic saurischian Purbeck limestone group, Southern Eng- and the early evolution of dinosaurs. – Sci- land. – Special Papers in Palaeontology 68: ence 326 (5959): 1530-1533. 191-202. Nicholls, E. L. & Russell, A. P. 1981. A new spec- Milner, A. C. 2003. Fish-eating theropods: A imen of Struthiomimus altus from Alberta, short review of the systematics, biology and with comments on the classificatory charac- palaeobiogeography of spinosaurs. – Journa- ters of Upper Cretaceous ornithomimids. – das Internacionales sobre paleontologiá de Canadian Journal of Earth Sciences 18 (3): Dinosaurios y su Entoro 2: 129-138. 518-526. Molnar, R. E. 1991. The cranial morphology of Nopcsa, von, F. 1928. The genera of reptiles. – Tyrannosaurus rex. – Palaeontographica Ab- Palaeobiologica 1: 163-188. teilung A 217 (4-6): 137-176. Norell, M. A. & Makovicky, P. J. 1997. Important Molnar, R. E., Lopez Angriman, A. & Gasparini, features of the dromaeosaur skeleton: Infor- Z. 1996. An Antarctic Cretaceous theropod. – mation from a new specimen. – American Memoirs of the Queensland Museum 39: Museum Novitates 3215: 1-28. 669-674. Norell, M. A. & Makovicky, P. J. 1999. Impor- Naish, D. 2002. The historical taxonomy of the tant features of the dromaeosaurid skeleton. Lower Cretaceous theropods (Dinosauria) 2. Information from newly collected speci- and Aristosuchus from the mens of Velociraptor mongoliensis. – Ameri- Isle of Wight. – Proceedings of the Geolo- can Museum Novitates 3282: 1-45. gists’ Association 113 (2): 153-163. Norell, M. A. & Makovicky, P. J. 2004. Dromaeo- Naish, D. 2011. Theropod dinosaurs. In: Batten, sauridae. In: Weishampel, D., Dodson, P. & D. J. (ed.). English Wealden Fossils. Vol. 10. Osmólska, H. (eds.). The Dinosauria. Second London, The Palaeontological Association: edition. – Berkeley, University of California 526-559. Press: 196-209. Naish, D. 2012. Birds. In: Brett-Surman, M. K., Norell, M. A., Makovicky, P. J. & Clark, J. M. 2000. Holtz, T. R. J. & Farlow, J. O. (eds.). The com- A new troodontid theropod from Ukhaa Tol- plete dinosaur. Second edition. – Blooming- god, Mongolia. – Journal of Vertebrate Pale- ton, Indiana University Press: 379-423. ontology 20 (1): 7-11.

PalArch Foundation 50 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Norell, M. A., Makovicky, P. J. & Currie, P. J. Novas, F. E., Agnolín, F. L., Ezcurra, M. D., Porfiri, 2001. Palaeontology: The beaks of ostrich di- J. & Canale, J. I. 2013. Evolution of the car- nosaurs. – Nature 412 (6850): 873-874. nivorous dinosaurs during the Cretaceous: Norell, M. A., Makovicky, P. J., Bever, G. S., Bala- The evidence from Patagonia. – Cretaceous noff, A. M., Clark, J. M., Barsbold, R. & Rowe, Research 45: 174-215. T. 2009. A review of the Mongolian Creta- O’Connor, J., Zhou, Z. & Xu, X. 2011. Additional ceous dinosaur Saurornithoides (Troodonti- specimen of Microraptor provides unique dae: Theropoda). – American Museum Novi- evidence of dinosaurs preying on birds. – tates 3654: 1-63. Proceedings of the National Academy of Sci- Novas, F. E. 1991. Relaciones filogeneticas de ences 108 (49): 19662-19665. los dinosaurios teropodos ceratosaurios. – Ortega, F., Escaso, F. & Sanz, J. L. 2010. A bizarre, Ameghiniana 28 (3-4): 410. humped Carcharodontosauria (Theropoda) Novas, F. E. 1992. La evolución de los dinosau- from the Lower Cretaceous of Spain. – Na- rios carnivoros. In: Sanz, J. L. and Buscalioni, ture 467 (7312): 203-206. A. D. (eds.). Los Dinosaurios Y Su Entorno Osborn, H. F. 1903. Ornitholestes hermanni, a Biotico: Actas Del Segundo Curso de Paleon- new compsognathoid dinosaur from the Up- tología En Cuenca. – Cuenca, Instituto ‘Juan per Jurassic. – Bulletin of the American Mu- Valdez’: 126-163. seum of Natural History 19: 459-464. Novas, F. E. 1997a. Anatomy of Patagonykus Osborn, H. F. 1906. Tyrannosaurus, Upper Cre- puertai (Theropoda, Avialae, Alvarezsauri- taceous carnivorous dinosaur (second com- dae), from the Late Cretaceous of Patagonia. – munication). – Bulletin of the American Journal of Vertebrate Paleontology 17 (1): Museum of Natural History 22 (16): 281- 137-166. 296. Novas, F. E. 1997b. Abelisauridae. In: Currie, P. Osmólska, H. 1981. Coossified tarsometatarsi in J. & Padian, K. (eds.). Encyclopedia of dino- theropod dinosaurs and their bearing on the saurs. – San Diego, Academic Press: 1-2. problem of bird origins. – Palaeontologica Novas, F. E. & Puerta, P. F. 1997. New evidence Polonica 42: 79-95. concerning avian origins from the Late Cre- Osmólska, H. 1997. Ornithomimosauria. In: taceous of Patagonia. – Nature 387 (6631): Currie, P. J. & Padian, K. (eds.). Encyclopedia 390-392. of dinosaurs. – San Diego, Academic Press: Novas, F. E., Ezcurra, M. D. & Lecuona, A. 2008. 499-503. Orkoraptor burkei nov. gen. et sp., a large Osmólska, H. & Roniewicz, E. 1970. Deinochei- theropod from the Maastrichtian Pari Aike ridae, a new family of theropod dinosaurs. – Formation, Southern Patagonia, Argentina. – Palaeontologica Polonica 21: 5-19. Cretaceous Research 29 (3): 468-480. Osmólska, H., Roniewicz, E. & Barsbold, R. Novas, F. E., Valais, S., Vickers-Rich, P. & Rich, T. 1972. A new dinosaur, Gallimimus bullatus 2005. A large Cretaceous theropod from Pa- n. gen., n. sp.(Ornithomimidae) from the Up- tagonia, Argentina, and the evolution of car- per Cretaceous of Mongolia. – Palaeontolo- charodontosaurids. – Naturwissenschaften gia Polonica 27: 103-143. 92 (5): 226-230. Osmólska, H., Currie, P. J. & Barsbold, R. 2004. Novas, F. E., Pol, D., Canale, J. I., Porfiri, J. D. & Oviraptorosauria. In: Weishampel, D. B., Calvo, J. O. 2009. A bizarre Cretaceous thero- Dodson, P. & Osmólska, H. (eds.). The Dino- pod dinosaur from Patagonia and the evolu- sauria. Second edition. – Berkeley, Univer- tion of Gondwanan dromaeosaurids. – Pro- sity of California Press: 165-183. ceedings of the Royal Society B: Biological Ostrom, J. H. 1969. Osteology of Deinonychus Sciences 276 (1659): 1101-1107. antirrhopus, an unusual theropod from the Novas, F. E., Ezcurra, M. D., Agnolín, F. L., Pol, Lower Cretaceous of Montana. – Bulletin D. & Ortíz, R. 2012. New Patagonian Creta- Peabody Museum of Natural History 30: ceous theropod sheds light about the early 1-165. radiation of Coelurosauria. – Revista del Ostrom, J. H. 1972. Carnivorous dinosaurs. – Museo Argentino de Ciencias Naturales 14 McGraw-Hill Yearbook of Science and Tech- (1): 57-81. nology for 1971: 176-179.

PalArch Foundation 51 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Ostrom, J. H. 1976a. Archaeopteryx and the ori- mosaur dinosaur from the Lower Cretaceous gin of birds. – Biological Journal of the Lin- of Spain. – Nature 370 (6488): 363-367. nean Society 8 (2): 91-182. Perle, A., Chiappe, L. M. & Barsbold, R. 1994. Ostrom, J. H. 1976b. On a new specimen of the Skeletal morphology of Mononykus olecra- Lower Cretaceous theropod dinosaur Dei- nus (Theropoda: Avialae) from the Late Cre- nonychus antirrhopus. – Breviora 439: 1-21. taceous of Mongolia. – American Museum Ostrom, J. H. 1978. The osteology of Compsog- Novitates 3105: 1-29. nathus longipes Wagner. – Zitteliana 4: 73- Perle, A., Norell, M. A. & Clark, J. M. 1999. A 118. new maniraptoran theropod, Achillobator Owen, R. 1840-1845. Odontography; or, a trea- giganticus (Dromaeosauridae), from the tise on the comparative anatomy of the Upper Cretaceous of Burkhant, Mongolia. – teeth; their physiological relations, mode of Contributions from the Geology and Miner- development, and microscopic structure, in alogy Chair, National Museum of Mongolia the vertebrate animals. – London, H. Bail- 101: 1-105. lière. Perle, A., Norell, M. A., Chiappe, L. M. & Clark, J. Owen, R. 1842. Report on British fossil reptiles. – M. 1993. from the Cretaceous Report of the British Association for the Ad- of Mongolia. – Nature 362 (6421): 623-626. vancement of Science 11 (1841): 60-294. Peyer, K. 2006. A reconsideration of Compsog- Owen, R. 1849-1884. A history of British fossil nathus from the upper Tithonian of Can- reptiles. – London, Cassell & Company Lim- juers, southeastern France. – Journal of Ver- ited, La Belle Sauvage Yard. tebrate Paleontology 26 (4): 879-896. Owen, S. R. 1854. On some fossil reptilian and Platt, J. 1758. An account of the fossile - mammalian remains from the Purbecks. – bone of a large animal, dug up at Stonesfield, Quarterly Journal of the Geological Society near Woodstock. – Philosophical Transac- of London 10: 420-433. tions of the Royal Society of London 50: Padian, K. 1997. Deinonychosauria. In: Currie, 524-527. P. J. & Padian, K. (eds.). Encyclopedia of dino- Plot, R. 1677. The natural history of Oxford- saurs. – San Diego, Academic Press: 166-167. shire, being an essay toward the natural Padian, K. 2004. Basal Avialae. In: Weishampel, history of England. – Oxford, Printed at the D. B., Dodson, P. & Osmólska, H. (eds.). The Theater. Dinosauria. Second edition. – Berkeley, Uni- Pol, D. & Rauhut, O. W. M. 2012. A Middle Juras- versity of California Press: 210-231. sic abelisaurid from Patagonia and the early Padian, K. & Hutchinson, J. R. 1997. Allosauroi- diversification of theropod dinosaurs. – Pro- dea. In: Currie, P. J. & Padian, K. (eds.). En- ceedings of the Royal Society B: Biological cyclopedia of dinosaurs. – San Diego, Aca- Sciences 279 (1741): 3170-3175. demic Press: 6-9. Porfiri, J. D., Novas, F. E., Calvo, J. O., Agnolín, Padian, K. & Chiappe, L. M. 1998. The origin F. L., Ezcurra, M. D. & Cerda, I. A. 2014. Ju- and early . – Biological Re- venile specimen of Megaraptor (Dinosauria, views 73 (1): 1-42. Theropoda) sheds light about tyrannosau- Padian, K., Hutchinson, J. R. & Holtz, T. R. 1999. roid radiation. – Cretaceous Research 51: Phylogenetic definitions and nomenclature 35-55. of the major taxonomic categories of the car- Pu, H., Kobayashi, Y., Lü, J., Xu, L., Wu, Y., Chang, nivorous Dinosauria (Theropoda). – Journal H., Zhang, J. & Jia, S. 2013. An unusual basal of Vertebrate Paleontology 19 (1): 69-80. therizinosaur dinosaur with an ornithischi- Paul, G. S. 1988. Predatory dinosaurs of the an dental arrangement from Northeastern world: A complete illustrated guide. – New China. – PLoS ONE 8 (5): e63423. York/London etc., Simon & Schuster. Raath, M. A. 1969. A new coelurosaurian dino- Paul, G. S. 2002. Dinosaurs of the air: The evolu- saur from the Forest of Rhodesia. – tion and loss of flight in dinosaurs and birds. – National Museums of Southern Rhodesia. Baltimore, Johns Hopkins University Press. Arnoldia 4: 1-25. Pérez-Moreno, B. P., Sanz, J. L., Buscalioni, A. D., Raath, M. A. 1977. The anatomy of the Triassic Moratalla, J. J., Ortega, F. & Rasskin-Gutman, theropod Syntarsus rhodesiensis (Saurischia: D. 1994. A unique multitoothed ornithomi- Podokesauridae) and a consideration of its

PalArch Foundation 52 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

biology. – Ph.D. Dissertation, Department of Rauhut, O. W. M., Foth, C., Tischlinger, H. & Zoology and Entomology, Rhodes Univer- Norell, M. A. 2012. Exceptionally preserved sity, Salisbury, Rhodesia. juvenile megalosauroid theropod dinosaur Rauhut, O. W. M. 1995. Zur systematischen with filamentous integument from the Late Stellung der afrikanischen Theropoden Car- Jurassic of Germany. – Proceedings of the charodontosaurus Stromer 1931 und Bahari- National Academy of Sciences 109 (29): asaurusStromer 1934. – Berliner Geowissen- 11746-11751. schaften Abhlandlungen E 16: 357-375. Rayfield, E. J., Milner, A. C., Xuan, V. B. & Young, Rauhut, O. W. M. 2003a. The interrelationships P. G. 2007. Functional morphology of spino- and evolution of basal theropod dinosaurs. – saur ‘crocodile-mimic’ dinosaurs. – Journal Special Papers in Palaeontology 69: 1-213. of Vertebrate Paleontology 27 (4): 892-901. Rauhut, O. W. M. 2003b. A tyrannosauroid dino- Remes, K., Ortega, F., Fierro, I., Joger, U., Kos- saur from the Upper Jurassic of Portugal. – ma, R., Ferrer, J. M. M., Ide, O. A. & Maga, A. Palaeontology 46 (5): 903-910. 2009. A new basal sauropod dinosaur from Rauhut, O. W. M. 2004a. Braincase structure of the Middle Jurassic of Niger and the early the Middle Jurassic theropod dinosaur Piat- evolution of Sauropoda. – PLoS One 4 (9): nitzkysaurus. – Canadian Journal of Earth e6924. Sciences 41 (9): 1109-1122. Ritgen, von, F. A. 1826. Versuchte Herstellung Rauhut, O. W. M. 2004b. Provenance and anat- einiger Becken urweltlichter Thiere. – Nova omy of Genyodectes serus, a large-toothed Acta Academiae Caesarea Leopoldino Caro- ceratosaur (Dinosauria: Theropoda) from Pa- linae Germanicae Naturae Curiosorum 13: tagonia. – Journal of Vertebrate Paleontology 331-358. 24 (4): 894-902. Romer, A. 1956. Osteology of the Reptiles. – Chi- Rauhut, O. W. M. 2005. Osteology and relation- cago, University of Press, Chicago. ships of a new theropod dinosaur from the Rowe, T. 1989. A new species of the theropod Middle Jurassic of Patagonia. – Palaeontol- dinosaur Syntarsus from the Early Jurassic ogy 48 (1): 87-110. Kayenta Formation of Arizona. – Journal of Rauhut, O. W. M. 2011. Theropod dinosaurs Vertebrate Paleontology 9 (2): 125-136. from the Late Jurassic of Tendaguru (Tanza- Rowe, T. and Gauthier, J. 1990. Ceratosauria. In: nia). – Special Papers in Palaeontology 86: Weishampel, D., Dodson, P. & Osmólska, H. 195-239. (eds.). The Dinosauria. First edition. – Berke- Rauhut, O. W. M. & Hungerbühler, A. 1998. A ley, University of California Press: 151-168. review of European Triassic theropods. – Ruiz, J., Torices, A., Serrano, H. & López, V. 2011. Gaia 15: 75-88. The hand structure of Carnotaurus sastrei Rauhut, O. W. M. & López-Arbarello, A. 2009. (Theropoda, Abelisauridae): Implications for Considerations on the age of the Tiouaren hand diversity and evolution in abelisaurids. – Formation (Iullemmeden Basin, Niger, Af- Palaeontology 54 (6): 1271-1277. rica): implications for Gondwanan Mesozoic Russell, A. P. 1997. Therizinosauria. In: Currie, terrestrial vertebrate faunas. – Palaeogeog- P. J. & Padian, K. (eds.). Encyclopedia of dino- raphy, Palaeoclimatology, Palaeoecology 271 saurs. – San Diego, Academic Press: 729-730. (3-4): 259-267. Russell, D. A. 1970. Tyrannosaurs from the Late Rauhut, O. W. M. & Xu, X. 2005. The small Cretaceous of western Canada. – National theropod dinosaurs Tugulusaurus and Pha- Museum of Natural Sciences Publications in edrolosaurus from the early Cretaceous of Paleontology 1: 1-34. Xinjiang, China. – Journal of Vertebrate Pa- Russell, D. A. 1972. Ostrich dinosaurs from the leontology 25 (1): 107-118. Late Cretaceous of Western Canada. – Cana- Rauhut, O. W. M., Milner, A. C. & Moore-Fay, dian Journal of Earth Sciences 9 (4): 375-402. S. 2010. Cranial osteology and phylogenetic Russell, D. A. 1984. A check list of the families position of the theropod dinosaur Procera- and genera of North American dinosaurs. – tosaurus bradleyi (Woodward, 1910) from Syllogeus 53: 1-35. the Middle Jurassic of England. – Zoological Russell, D. A. & Dong, Z. 1993. The affinities of Journal of the Linnean Society 158 (1): 155- a new theropod from the Alxa Desert, Inner 195. Mongolia, People’s Republic of China. – Ca-

PalArch Foundation 53 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

nadian Journal of Earth Sciences 30 (10): pod dinosaur from the Lower Cretaceous of 2107-2127. Utah. – PLoS ONE 7 (8): e43911. Russell, L. S. 1948. The dentary of Troödon, a Senter, P., Barsbold, R., Britt, B. B. & Burnham, D. genus of theropod dinosaurs. – Journal of A. 2004. Systematics and evolution of Drom- Paleontology 22 (5): 625-629. aeosauridae (Dinosauria, Theropoda). – Sadleir, R., Barrett, P. M. & Powell, H. P. 2008. Bulletin of Gunma Museum of Natural His- The anatomy and systematics of Eustrepto- tory 8: 1-20. spondylus oxoniensis, a theropod dinosaur Senter, P., Kirkland, J. I., DeBlieux, D. D., Mad- from the Middle Jurassic of Oxfordshire, sen, S. & Toth, N. 2012b. New dromaeosau- England. – London, Monograph of the Palae- rids (Dinosauria: Theropoda) from the Low- ontographical Society, 160. er Cretaceous of Utah, and the evolution of Salgado, L., Canudo, J. I., Garrido, A. C., Ruiz- the dromaeosaurid tail. – PLoS ONE 7 (5): Omeñaca, J. I., García, R. A., de la Fuente, e36790. M. S., Barco, J. L. & Bollati, R. 2009. Upper Sereno, P. C. 1997. The origin and evolution of Cretaceous vertebrates from El Anfiteatro dinosaurs. – Annual Review of Earth and area, Río Negro, Patagonia, Argentina. – Cre- Planetary Sciences 25 (1): 435-489. taceous Research 30 (3): 767-784. Sereno, P. C. 1998. A rationale for phylogenetic Sampson, S. D. & Witmer, L. M. 2007. Cranio- definitions, with application to the higher- facial anatomy of Majungasaurus crenatis- level taxonomy of Dinosauria. – Neues Jahr- simus (Theropoda: Abelisauridae) from the buch fur Geologie und Palaontologie Abhan- Late Cretaceous of Madagascar. – Society of dlungen 210: 41-83. Vertebrate Paleontology Memoir 8: 32-104. Sereno, P. C. 1999. The evolution of dinosaurs. – Sampson, S. D., Witmer, L. M., Forster, C. A., Science 284 (5423): 2137-2147. Krause, D. W., O’Connor, P. M., Dodson, P. & Sereno, P. C. 2005. Stem Archosauria - Taxon- Ravoavy, F. 1998. Predatory dinosaur re- Search. TaxonSearch Database for Supra- mains from Madagascar: Implications for generic Taxa & Phylogenetic Definitions. – the Cretaceous biogeography of Gondwana. – Online: http://www.taxonsearch.org/dev/file- Science 280 (5366): 1048-1051. home.php [version 1.0, 7 November 2005] . Schweitzer, M. h., Watt, J. A., Avci, R., Knapp, Sereno, P. C. & Novas, F. E. 1992. The complete L., Chiappe, L., Norell, M. A. & Marshall, M. skull and skeleton of an early dinosaur. – 1999. Beta- specific immunological Science 258 (5085): 1137-1140. reactivity in -like structures of the Sereno, P. C. & Wild, R. 1992. Procompsogna- Cretaceous alvarezsaurid, Shuvuuia deserti. – thus: Theropod, ‘thecodont’ or both? – Jour- Journal of Experimental Zoology 285 (2): nal of Vertebrate Paleontology 12 (4): 435- 146-157. 458. Seeley, H. G. 1887. On the classification of the fos- Sereno, P. C. & Novas, F. E. 1994. The skull and sil animals commonly named Dinosauria. – neck of the basal theropod Herrerasaurus is- Proceedings of the Royal Society of London chigualastensis. – Journal of Vertebrate Pale- 43 (258-265): 165-171. ontology 13 (4): 451-476. Senter, P. 2005. Function in the stunted fore- Sereno, P. C. & Brusatte, S. L. 2008. Basal abelis- limbs of Mononykus olecranus (Theropoda), aurid and carcharodontosaurid theropods a dinosaurian anteater. – Paleobiology 31 (3): from the Lower Cretaceous Elrhaz Forma- 373-381. tion of Niger. – Acta Palaeontologica Poloni- Senter, P. 2007. A new look at the phylogeny of ca 53 (1): 15-46. Coelurosauria (Dinosauria: Theropoda). – Sereno, P. C., Wilson, J. A. & Conrad, J. L. 2004. Journal of Systematic Palaeontology 5 (4): New dinosaurs link southern landmasses 429-463. in the Mid-Cretaceous. – Proceedings of the Senter, P. 2011. Using creation science to dem- Royal Society of London. Series B: Biological onstrate evolution 2: Morphological conti- Sciences 271 (1546): 1325-1330. nuity within Dinosauria. – Journal of Evolu- Sereno, P. C., Martínez, R. N. & Alcober, O. A. tionary Biology 24 (10): 2197-2216. 2013. Osteology of Eoraptor lunensis (Dino- Senter, P., Kirkland, J. I. & DeBlieux, D. D. 2012a. sauria, Sauropodomorpha). – Journal of Ver- Martharaptor greenriverensis, a new thero- tebrate Paleontology 32 (sup. 1): 83-179.

PalArch Foundation 54 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Sereno, P. C., Wilson, J. A., Larsson, H. C. E., tors]. 74th Annual Meeting Society of Ver- Dutheil, D. B. & Sues, H.-D. 1994. Early Creta- tebrate Paleontology, Berlin, Germany. (No- ceous dinosaurs from the Sahara. – Science vember 5-8, 2014). Program and Abstracts: 266 (5183): 267-271. 235. Sereno, P. C., Martinez, R. N., Wilson, J. A., Var- Stromer, E. 1915. Ergebnisse der Forschun- ricchio, D. J., Alcober, O. A. & Larsson, H. C. gsreisen Prof. E. Stromers in den Wüsten E. 2008. Evidence for avian intrathoracic air Ägyptens. II. Wirbeltier-Reste der Baharîje- sacs in a new predatory dinosaur from Ar- Stufe (unterstes Cenoman). 3. Das Original gentina. – PLoS ONE 3 (9): e3303. des Theropoden Spinosaurus aegyptiacus Sereno, P. C., Tan, L., Brusatte, S. L., Kriegstein, nov. gen., nov. spec. – Abhandlungen der H. J., Zhao, X. & Cloward, K. 2009. Tyranno- Königlichen Bayerischen Akademie der Wis- saurid skeletal design first evolved at small senschaften, Mathematisch- Physikalische body size. – Science 326 (5951): 418-422. Klasse 28: 1-32. Sereno, P. C., Dutheil, D. B., Larochene, M., Lars- Stromer, E. 1931. Wirbeltier-Reste der Baharije- son, H. C. E., Lyon, G. H., Magwene, P. M., Stufe (unterstes Cenoman). 10. Ein Skelett- Sidor, C. A., Varricchio, D. J. & Wilson, J. A. Rest von Carcharodontosaurus nov. gen. – 1996. Predatory dinosaurs from the Sahara Abhandlungen der Bayerischen Akademie and Late Cretaceous faunal differentiation. – der Wissenschaften Mathematisch-natur- Science 272 (5264): 986-991. wissenschaftliche Abteilung 9: 1-31. Sereno, P. C., Beck, A. L., Dutheil, D. B., Gado, B., Sues, H.-D. 1977. The skull of Velociraptor mon- Larsson, H. C. E., Lyon, G. H., Marcot, J. D., goliensis, a small Cretaceous theropod di- Rauhut, O. W. M., Sadleir, R. W., Sidor, C. A., nosaur from Mongolia. – Paläontologische Varricchio, D. D., Wilson, G. P. & Wilson, J. Zeitschrift 51 (3-4): 173-184. A. 1998. A long-snouted predatory dinosaur Sues, H.-D. 1997. On , a Late Cre- from Africa and the evolution of spinosau- taceous oviraptorosaur (Dinosauria: Therop- rids. – Science 282 (5392): 1298-1302. oda) from western North America. – Journal Smith, N. D., Makovicky, P. J., Hammer, W. R. & of Vertebrate Paleontology 17 (4): 698-716. Currie, P. J. 2007. Osteology of Cryolophosau- Sues, H.-D., Frey, E., Martill, D. M. & Scott, D. rus ellioti (Dinosauria: Theropoda) from the M. 2002. Irritator challengeri, a spinosaurid Early Jurassic of Antarctica and implications (Dinosauria: Theropoda) from the Lower for early theropod evolution. – Zoological Cretaceous of Brazil. – Journal of Vertebrate Journal of the Linnean Society 151 (2): 377- Paleontology 22 (3): 535-547. 421. Sues, H.-D., Nesbitt, S. J., Berman, D. S. & Henrici, Soto, M. & Perea, D. 2008. A ceratosaurid (Di- A. C. 2011. A late-surviving basal theropod nosauria, Theropoda) from the Late jurassic- dinosaur from the latest Triassic of North Early Cretaceous of Uruguay. – Journal of America. – Proceedings of the Royal Society Vertebrate Paleontology 28 (2): 439-444. B: Biological Sciences 278 (1723): 3459-3464. Spalding, D. E. A. & Sarjeant, W. A. S. 2012. Di- Suzuki, S., Chiappe, L. M. & Dyke, G. J. 2002. A nosaurs: The earliest discoveries. In: Brett- new specimen of Shuvuuia deserti Chiappe Surman, M. K., Holtz, T. R. J. & Farlow, J. O. et al., 1998, from the Mongolian late Creta- (eds.). The complete dinosaur. Second edi- ceous with a discussion of the relationships tion. – Bloomington, Indiana University of alvarezsaurids to other theropod dino- Press: 3-24. saurs. – Contributions in Science 194: 1-18. Sternberg, R. M. 1940. A toothless bird from the Taquet, P. 2010. The dinosaurs of Maghreb: The Cretaceous of Alberta. – Journal of Paleontol- history of their discovery. – Historical Biol- ogy 14 (1): 81-85. ogy 22 (1-3): 88-99. Stevens, K. A. 2006. in thero- Taquet, P. and Russell, D. A. 1998. New data on pod dinosaurs. – Journal of Vertebrate Pale- spinosaurid dinosaurs from the Early Creta- ontology 26 (2): 321-330. ceous of the Sahara. – Comptes Rendus de Stiegler, J., Wang, S., Xu, X. & Clark, J. M. 2014. l’Académie des Sciences-Series IIA-Earth New anatomical details on the basal cera- and Planetary Science 327 (5): 347-353. tosaur Limusaurus and implications for the Thulborn, R. A. 1984. The avian relationships Jurassic radiation of Theropoda. In: [No Edi- of Archaeopteryx, and the origin of birds. –

PalArch Foundation 55 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Zoological Journal of the Linnean Society 82 Varricchio, D. J., Moore, J. R., Erickson, G. M., (1-2): 119-158. Norell, M. A., Jackson, F. D. & Borkowski, J. J. Thulborn, T. 1990. Dinosaur Tracks. – London / 2008. Avian paternal care had dinosaur ori- New York, Chapman and Hall. gin. – Science 322 (5909): 1826-1828. Tortosa, T., Buffetaut, E., Vialle, N., Dutour, Y., Vianey-Liaud, M., Jain, S. L. & Sahni, A. 1988. Turini, E. & Cheylan, G. 2014. A new abelis- Dinosaur eggshells (Saurischia) from the aurid dinosaur from the Late Cretaceous of Late Cretaceous Intertrappean and Lameta southern France: Palaeobiogeographical im- Formations (Deccan, India). – Journal of Ver- plications. – Annales de Paléontologie 100 tebrate Paleontology 7 (4): 408-424. (1): 63-86. Vullo, R. & Néraudeau, D. 2010. Additional dino- Tsuihiji, T., Barsbold, R., Watabe, M., Tsogt- saur teeth from the Cenomanian (Late Creta- baatar, K., Chinzorig, T., Fujiyama, Y. & ceous) of Charentes, southwestern France. – Suzuki, S. 2014. An exquisitely preserved Comptes Rendus Palevol 9 (3): 121-126. troodontid theropod with new information Wagner, A. 1859. Über einige, im lithogra- on the palatal structure from the Upper Cre- phischen Schiefer neu aufgefundene Schild- taceous of Mongolia. – Naturwissenschaften kröten und Saurier. – Gelehrte Anzeigen der 101 (2): 131-142. königlich-bayerischen Akademie der Wis- Tsuihiji, T., Watabe, M., Tsogtbaatar, K., Tsub- senschaften 22 (69): 553. amoto, T., Barsbold, R., Suzuki, S., Lee, A. H., Wagner, A. 1861. Neue Beiträge zur Kenntnis Ridgely, R. C., Kawahara, Y. & Witmer, L. M. der urweltlichen Fauna des lithographischen 2011. Cranial osteology of a juvenile specimen Schiefers; V. Compsognathus longipes Wag- of Tarbosaurus bataar (Theropoda, Tyranno- ner. – Abhandlungen der Bayerischen Akad- sauridae) from the (Up- emie der Wissenschaften 9: 30-38. per Cretaceous) of Bugin Tsav, Mongolia. – Walker, A. D. 1964. Triassic reptiles from the Journal of Vertebrate Paleontology 31 (3): Elgin Area: and the origin of 497-517. carnosaurs. – Philosophical Transactions of Turner, A. H., Makovicky, P. J. & Norell, M. A. the Royal Society of London. Series B, Bio- 2007. Feather quill knobs in the dinosaur Ve- logical Sciences 248 (744): 53-134. lociraptor. – Science 317 (5845): 1721-1721. Welles, S. P. 1984. Dilophosaurus wetherilli (Di- Turner, A. H., Makovicky, P. J. & Norell, M. A. nosauria, Theropoda). Osteology and com- 2012. A review of dromaeosaurid systemat- parisons. – Palaeontographica Abteilung A ics and paravian phylogeny. – Bulletin of the 185 (4-6): 85-180. American Museum of Natural History 371: Wellnhofer, P. 2008. Archaeopteryx: Der Urvo- 1-206. gel von Solnhofen. – München, Pfeil, F. Tykoski, R. S. 2005. Anatomy, ontogeny, and Wilson, J. A., Sereno, P. C., Srivastava, S., Bhatt, phylogeny of coelophysoid theropods. – D. K., Khosla, A. & Sahni, A. 2003. A new Ph.D. Dissertation, The University of Texas, abelisaurid (Dinosauria, Theropoda) from Austin. the (Cretaceous, Maas- Tykoski, R. S. & Rowe, T. 2004. Ceratosauria. trichtian) of India. – Contributions from In: Weishampel, D., Dodson, P. & Osmólska, the Museum of Paleontology, University of H. (eds.). The Dinosauria. Second edition. – Michigan 31 (1): 1-42. Berkeley, University of California Press: 47- Witmer, L. M. & Ridgely, R. C. 2009. New in- 70. sights into the , braincase, and ear Upchurch, P., Mannion, P. D., Benson, R. B. region of tyrannosaurs (Dinosauria, Thero- J., Butler, R. J. & Carrano, M. T. 2011. Geo- poda), with implications for sensory organi- logical and anthropogenic controls on the zation and behavior. – The Anatomical Re- sampling of the terrestrial fossil record: A cord: Advances in Integrative Anatomy and case study from the Dinosauria. London, Evolutionary Biology 292 (9): 1266-1296. Geological Society, Special Publications 358 Woodward, A. S. 1901. On some extinct rep- (1): 209-240. tiles from Patagonia, of the genera Miola- Varricchio, D. J. 1997. Troodontidae. In: Currie, nia, Dinilysia, and Genyodectes. – Proceed- P. J. & Padian, K. (eds.). Encyclopedia of dino- ings of the Zoological Society of London 70 saurs. – San Diego, Academic Press: 749-754. (2): 169-184.

PalArch Foundation 56 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Woodward, A. S. 1906. On a tooth of Ceratodus Xu, X. & Wang, X.-L. 2004. A new troodontid (The- and a dinosaurian claw from the Lower Ju- ropoda: Troodontidae) from the lower Creta- rassic of Victoria, Australia. – Journal of Nat- ceous Yixian Formation of western Liaoning, ural History Series 7 18 (103): 1-3. China. – Acta Geologica Sinica 78 (1): 22-26. Woodward, A. S. 1910. On remains of a megalo- Xu, X. & Wu, X.-C. 2001. Cranial morphology saurian dinosaur from New South Wales. – of Sinornithosaurus millenii Xu et al. 1999 Report of the British Association for the Ad- (Dinosauria: Theropoda: Dromaeosauridae) vancement of Science 79: 482-483. from the Yixian Formation of Liaoning, Chi- Woodward, J. M. D. 1729. An attempt towards a na. – Canadian Journal of Earth Sciences 38 natural history of the fossils of England in a (12): 1739-1752. catalogue of the English fossils in the collec- Xu, X. & Zhang, F. 2005. A new maniraptoran tion of J. Woodward, M.D. – London, Printed dinosaur from China with long feathers on for F. Fayram, J. Senex, and J. Osborn and T. the metatarsus. – Naturwissenschaften 92 Longman. (4): 173-177. Xing, L. 2012. Sinosaurus from southwestern Xu, X., Tang, Z. & Wang, X. 1999 [Xu et al., China. – MSc. Dissertation, University of Al- 1999a]. A therizinosauroid dinosaur with berta, Edmonton. integumentary structures from China. – Na- Xing, L., Bell, P. R., Persons, W. S., Ji, S., Miyas- ture 399 (6734): 350-354. hita, T., Burns, M. E., Ji, Q. & Currie, P. J. 2012. Xu, X., Wang, X.-L. & Wu, X.-C. 1999 [Xu Abdominal contents from two large Early et al., 1999b]. A dromaeosaurid dino- Cretaceous compsognathids (Dinosauria: saur with a filamentous integument Theropoda) demonstrate feeding on confu- from the Yixian Formation of China. – ciusornithids and dromaeosaurids. – PLoS Nature 401 (6750): 262-266. ONE 7 (8): e44012. Xu, X., Zhao, X. & Clark, J. M. 2001 [Xu et al., Xing, L., Bell, P. R., Rothschild, B. M., Ran, H., 2001a]. A new therizinosaur from the Lower Zhang, J., Dong, Z., Zhang, W. & Currie, P. J. Jurassic lower Lufeng Formation of Yunnan, 2013a. Tooth loss and alveolar remodeling China. – Journal of Vertebrate Paleontology in Sinosaurus triassicus (Dinosauria: Thero- 21 (3): 477-483. poda) from the Lower Jurassic strata of the Xu, X., Zhou, Z. & Prum, R. O. 2001 [Xu et al., Lufeng Basin, China. – Chinese Science Bul- 2001b]. Branched integumental structures in letin 58 (16): 1931-1935. Sinornithosaurus and the origin of feathers. – Xing, L., Persons, W. S., Bell, P. R., Xu, X., Zhang, Nature 410 (6825): 200-204. J., Miyashita, T., Wang, F. & Currie, P. J. Xu, X., Cheng, Y.-N., Wang, X.-L. & Chang, C.-H. 2013b. Piscivory in the feathered dinosaur 2002 [Xu et al., 2002a]. An unusual ovirap- Microraptor. – Evolution 67 (8): 2441-2445. torosaurian dinosaur from China. – Nature Xing, L., Paulina-Carabajal, A., Currie, P. J., Xu, 419 (6904): 291-293. X., Zhang, J., Wang, T., Burns, M. E. & Dong, Xu, X., Norell, M. A., Wang, X., Makovicky, P. J. & Z. 2014. Braincase anatomy of the basal the- Wu, X. 2002 [Xu et al., 2002b]. A basal ropod Sinosaurus from the Early Jurassic of troodontid from the Early Cretaceous of Chi- China. – Acta Geologica Sinica - English Edi- na. – Nature 415 (6873): 780-784. tion 88 (6): 1653-1664. Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F. & Xu, X. & Han, F. L. 2010. A new oviraptorid di- Du, X. 2003. Four-winged dinosaurs from nosaur (Theropoda: Oviraptorosauria) from China. – Nature 421 (6921): 335-340. the Upper Cretaceous of China. – Vertebrata Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, PalAsiatica 48: 11-18. Q. & Jia, C. 2004. Basal tyrannosauroids Xu, X. & Norell, M. A. 2004. A new troodontid from China and evidence for protofeathers dinosaur from China with avian-like sleep- in tyrannosauroids. – Nature 431 (7009): ing posture. – Nature 431 (7010): 838-841. 680-684. Xu, X. & Pol, D. 2014. Archaeopteryx, paravian Xu, X., Clark, J. M., Forster, C. A., Norell, M. A., Er- phylogenetic analyses, and the use of prob- ickson, G. M., Eberth, D. A., Jia, C. & Zhao, Q. ability-based methods for palaeontological 2006. A basal tyrannosauroid dinosaur from datasets. – Journal of Systematic Palaeontol- the Late Jurassic of China. – Nature 439 ogy 12 (3): 323-334. (7077): 715-718.

PalArch Foundation 57 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

Xu, X., Zheng, X. & You, H. 2009 [Xu et al., 2009a]. Zanno, L. E. 2006. The pectoral girdle and fore- A new feather type in a nonavian theropod limb of the primitive therizinosauroid Fal- and the early evolution of feathers. – Proceed- carius utahensis (Theropoda, Maniraptora): ings of the National Academy of Sciences 106 analyzing evolutionary trends within Ther- (3): 832-834. izinosauroidea. – Journal of Vertebrate Pale- Xu, X., Clark, J. M., Mo, J., Choiniere, J., Forster, ontology 26 (3): 636-650. C. A., Erickson, G. M., Hone, D. W. E., Sul- Zanno, L. E. 2010a. A taxonomic and phyloge- livan, C., Eberth, D. A., Nesbitt, S., Zhao, Q., netic re-evaluation of Therizinosauria (Dino- Hernandez, R., Jia, C., Han, F. & Guo, Y. 2009 sauria: Maniraptora). – Journal of System- [Xu et al., 2009b] b. A Jurassic ceratosaur atic Palaeontology 8 (4): 503-543. from China helps clarify avian digital ho- Zanno, L. E. 2010b. Osteology of Falcarius uta- mologies. – Nature 459 (7249): 940-944. hensis (Dinosauria: Theropoda): Character- Xu, X., Zheng, X. & You, H. 2010 [Xu et al., izing the anatomy of basal therizinosaurs. – 2010a]. Exceptional dinosaur fossils show Zoological Journal of the Linnean Society ontogenetic development of early feathers. – 158 (1): 196-230. Nature 464 (7293): 1338-1341. Zanno, L. E. & Makovicky, P. J. 2011. Herbivo- Xu, X., Wang, D.-Y., Sullivan, C., Hone, D. W., rous ecomorphology and specialization Han, F.-L., Yan, R.-H. & Du, F.-M. 2010 [Xu patterns in theropod dinosaur evolution. – et al., 2010b]. A basal parvicursorine (Thero- Proceedings of the National Academy of Sci- poda: Alvarezsauridae) from the Upper Cre- ences 108 (1): 232-237. taceous of China. – Zootaxa 2413: 1-19. Zanno, L. E. & Makovicky, P. J. 2013. Neovena- Xu, X., You, H., Du, K. & Han, F. 2011 [Xu et torid theropods are apex predators in the al., 2011a]. An Archaeopteryx-like theropod Late Cretaceous of North America. – Nature from China and the origin of Avialae. – Na- Communications 4 (2827): 1-9. ture 475 (7357): 465-470. Zanno, L. E., Gillette, D. D., Albright, L. B. & Xu, X., Sullivan, C., Pittman, M., Choiniere, J. N., Titus, A. L. 2009. A new North American Hone, D., Upchurch, P., Tan, Q., Xiao, D., Tan, therizinosaurid and the role of herbivory in L. & Han, F. 2011 [Xu et al., 2011b]. A mono- ‘predatory’ dinosaur evolution. – Proceed- dactyl nonavian dinosaur and the complex ings of the Royal Society B: Biological Sci- evolution of the alvarezsauroid hand. – Pro- ences 276 (1672): 3505-3511. ceedings of the National Academy of Scienc- Zanno, L. E., Varricchio, D. J., O’Connor, P. M., Ti- es 108 (6): 2338-2342. tus, A. L. & Knell, M. J. 2011. A new troodon- Xu, X., Wang, K., Zhang, K., Ma, Q., Xing, L., Sul- tid theropod, gen. et sp. nov., livan, C., Hu, D., Cheng, S. & Wang, S. 2012. from the Upper Cretaceous Western Interior A gigantic feathered dinosaur from the Low- Basin of North America. – PLoS ONE 6 (9): er Cretaceous of China. – Nature 484 (7392): e24487. 92-95. Zelenitsky, D. K., Therrien, F. & Kobayashi, Y. Xu, X., Upchurch, P., Ma, Q., Pittman, M., 2009. Olfactory acuity in theropods: Palaeo- Choiniere, J., Sullivan, C., Hone, D. W., Tan, biological and evolutionary implications. – Q., Tan, L., Xiao, D. & others. 2013. Osteology Proceedings of the Royal Society B: Biologi- of the Late Cretaceous alvarezsauroid Lin- cal Sciences 276 (1657): 667-673. henykus monodactylus from China and com- Zelenitsky, D. K., Therrien, F., Erickson, G. M., ments on alvarezsauroid biogeography. – DeBuhr, C. L., Kobayashi, Y., Eberth, D. A. & Acta Palaeontologica Polonica 58 (1): 25-46. Hadfield, F. 2012. Feathered non-avian dino- Yates, A. M. 2005. A new theropod dinosaur saurs from North America provide insight from the Early Jurassic of South Africa and into wing origins. – Science 338 (6106): 510- its implications for the early evolution of 514. theropods. – Palaeontologia Africana 41: Zhang, F., Zhou, Z., Xu, X. & Wang, X. 2002. A 105-122. juvenile coelurosaurian theropod from Chi- You, H.-L., Azuma, Y., Wang, T., Wang, Y.-M. & na indicates arboreal habits. – Naturwissen- Dong, Z.-M. 2014. The first well-preserved schaften 89 (9): 394-398. coelophysoid theropod dinosaur from Asia. – Zhang, F., Zhou, Z., Xu, X., Wang, X. & Sullivan, Zootaxa 3873 (3): 233. C. 2008. A bizarre Jurassic maniraptoran

PalArch Foundation 58 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

from China with elongate ribbon-like feath- Copyright: © 2015. Hendrickx, Hartman & Ma- ers. – Nature 455 (7216): 1105-1108. teus. This is an open-access article distributed Zhang, F., Kearns, S. L., Orr, P. J., Benton, M. under the terms of the Creative Commons At- J., Zhou, Z., Johnson, D., Xu, X. & Wang, X. tribution License, which permits unrestricted 2010. Fossilized melanosomes and the co- use, distribution, and reproduction in any me- lour of Cretaceous dinosaurs and birds. – Na- dium, provided the original author and source ture 463 (7284): 1075-1078. are credited. Zhang, X.-H., Xu, X., Zhao, X.-J., Sereno, P., This publication is deposited as hard copy in Kuang, X.-W. & Tan, L. 2001. A long-necked four archival libraries and the archive of the therizinosauroid dinosaur from the Upper PalArch Foundation. All of PalArch’s publica- Cretaceous of Nei tions are stored in the e-depot of The National Mongol, People’s Republic of China. – Verte- Library, The Hague, The Netherlands (www. brata PalAsiatica 39 (4): 283-294. kb.nl). Zhao, X. and Xu, X. 1998. The oldest coelurosau- rian. – Nature 394 (6690): 234-235. Het Natuurhistorisch Zheng, X., Xu, X., You, H., Zhao, Q. & Dong, Z. Westzeedijk 345 2010. A short-armed dromaeosaurid from 3015 AA Rotterdam the Jehol Group of China with implications The Netherlands for early dromaeosaurid evolution. – Pro- ceedings of the Royal Society B: Biological Royal Belgian Institute of Natural Sciences Sciences 277 (1679): 211-217. Library Zhou, C.-F., Wu, S., Martin, T. & Luo, Z.-X. 2013. rue Vautier 29 B- 1000 A Jurassic mammaliaform and the earliest Brussels mammalian evolutionary adaptations. – Na- Belgium ture 500 (7461): 163-167. Zhou, Z.-H. & Wang, X. L. 2000. A new species Library Naturalis of Caudipteryx from the Yixian Formation National Museum of Natural History of Liaoning, northeast China. – Vertebrata P.O. Box 9517 PalAsiatica 38 (2): 113-130. 2300 RA Leiden Zhou, Z.-H., Wang, X.-L., Zhang, F.-C. & Xu, X. The Netherlands 2000. Important features of Caudipteryx- evidence from two nearly complete new PalArch Foundation specimens. – Vertebrata PalAsiatica 38 (4): Spieregerweg 1 243-265. 7991 NE Dwingeloo Zinke, J. 1998. Small theropod teeth from the The Netherlands Upper Jurassic mine of Guimarota (Por- tugal). – Paläontologische Zeitschrift 72 (1): Vrije Universiteit 179-189. UBVU-Library of Earth Sciences De Boelelaan 1079 Submitted: 13 December 2014 1081 HV Amsterdam Published: 18 August 2015 The Netherlands

PalArch Foundation 59 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) 2012 2003 et al. et al. Definitional author Sereno 2005 Carrano New Sereno 2005 Sereno 2005 Wilson Wilson

- -

- -

- sas sas

leali

fragi

leali

Passer Megalo Sinraptor Sinraptor Passer , and , Noasaurus Carnotaurus Afrovenator Allosaurus Allosaurus Allosaurus Carnotaurus but not but not Definition Noasaurus Carcharodontosaurus bucklandii but not but not Carcharodontosau

, saharicus and but not

and The least inclusive clade The least inclusive containing trei clade The most inclusive containing abakensis saurus clade The most inclusive containing lis saharicus dongi clade The most inclusive containing fragilis dongi rus domesticus clade The most inclusive containing fragilis domesticus The most inclusive clade The most inclusive containing trei Definition type Stem-based Stem-based Stem-based Stem-based Node-based Stem-based -

, sastrei

] Majungasaurus , Carnotaurus , and all descendants Ceratosaurus Megalosaurus Sinraptor and all descendants of their com -Abelisauridae clade which shared -Abelisauridae clade which comahuensis than to

and all Allosauroidea closer to it and all and First phylogenetic definition phylogenetic First Sinraptor All megalosaurids more closely related to All megalosaurids Afrovenator / Allosaurus than to Allosaurus crenatissimus mon ancestor Abelisaurids and those members of the Ceratosaurus a more recent common ancestry than with the American genus [ North of their most recent common ancestor (Node- based definition) Abelisaurus Indosaurus bonapartei, raptorius matleyi, - - 2012 et al. author First definitional First Carrano / and Hutchin Padian son 1997 and Hutchin Padian son 1997 Novas 1997b Novas Holtz 1994

et al. Taxon Afrovenatorinae Carrano Afrovenatorinae 2012 Allosauria (Marsh 1878) Paul 1988 Allosauridae Marsh 1878 Allosauroidea (Marsh 1878) Currie & Zhao 1993a Abelisauroidea (Bonaparte and 1985) Bonaparte 1991a Novas Abelisauridae Bonaparte and 1985 Novas

PalArch Foundation 60 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) -

et al. 2012 2004 et al. et al. 2009 ska et al. ń et al. et al. 2004 Definitional author 2002 Modified from Ca nale Modified from Choiniere 2010b Modified from Choiniere 2010b Allain Modified from Holtz et al. Marya Holtz

- -

- - -

- sas

fragi

do

domes walkeri

aegyp

domesti

Passer Passer domesticus Troodon

Majungasaurus Dromaeosaurus Carnotaurus Alvarezsaurus Ceratosaurus Allosaurus Passer Baryonyx Mononykus or and Definition Spinosaurus Passer and but not but not but not and The most inclusive clade The most inclusive containing trei crenatissimus The least inclusive clade The least inclusive containing calvoi olecranus clade The most inclusive containing calvoi ticus clade The least inclusive containing nasicornis mesticus clade The least inclusive containing lis clade The most-inclusive containing cus albertensis formosus clade The most inclusive containing but not tiacus Definition type Node-based Stem-based Stem-based Node-based Stem-based Node-based Stem-based

- than Shuvuuia Alvarezsaurus , Majungasaurus and all descendants of Spinosaurus than to Patagonykus (Stem-based definition) sastrei

than to Allosaurus First phylogenetic definition phylogenetic First Mononykus Baryonyx Ornithomimus The most recent common ancestor of Neor nithes and that ancestor. All spinosaurids that are more closely related to All the abelisaurids more closely related to Carnotaurus crenatissimus All ornithomimosaurs closer to to Clade containing and and abelisaurs megalosaurs, [All] ceratosaurs, maniraptorans plus all extinct are to that are closer to Ornithurae than they Deinonychosauria 1998 2009 1999 et al. et al. et al. author First definitional First Livezey and Zusi Livezey 2007 2002 Paul Padian Gauthier 1986 Sereno Canale Sereno 1998 -

2009 1998 sensu et al. et al. Taxon Avetheropoda Paul 1988 Paul Avetheropoda (Charig & Mil Baryonychinae ner 1986) Sereno Canale Brachyrostra Alvarezsauridae Bonaparte Alvarezsauridae 1991b Bonaparte Alvarezsauroidea 1991b 2002 ( Paul Averostra Ezcurra 2006) Gauthier 1986 Avialae

PalArch Foundation 61 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) -

2010 2010 et al. 2013 et al. et al. ska ń et al. Definitional author Brusatte & Sereno 2008 2002 Modified from Lon grich Modified from Sereno 2005 Benson Benson Marya ------

Sinrap Allosau and and but not but not or , carolinii Oviraptor

Sinraptor salerii dongi Carcharodon Caenagnathus Oviraptor philo Carcharodon Carcharodon Caenagnathus

fragilis or

Definition saharicus saharicus saharicus

and but not but not fragilis dongi

The least inclusive clade The least inclusive containing tosaurus Giganotosaurus The most inclusive clade The most inclusive containing collinsi rarus clade The least inclusive containing ceratops collinsi clade The most inclusive containing tosaurus Neovenator Allosaurus tor clade The most inclusive containing tosaurus Neovenator rus dongi The most inclusive clade The most inclusive containing collinsi philoceratops Definition type Node-based Stem-based Stem-based Node-based Stem-based Stem-based

- -

- - , than salerii

dongi

Carchar Elmisau Carcha or Sinraptor Giganotosaurus Neovenator or Monolophosaurus Carcharodontosaurus , their most recent , , and and Sinraptor Caenagnathus collinsi fragilis

, or , saharicus Allosaurus

saharicus

Caenagnathus , and the most recent common an , First phylogenetic definition phylogenetic First Allosaurus Caenagnathasia martinsoni rodontosaurus carolinii Oviraptor, Oviraptor, common ancestor and all descendants clade comprising The most inclusive odontosaurus but not All allosauroids closer to than to either Cryolophosaurus clade containing The least inclusive All species closer to either rus elegans Caenagnathus pergracilis, Chirostenotes Caenagnathus pergracilis, Caenagnathasia “Elmisaurus rarus”, elegans, martinsoni taxa (Node-based cestor of the aforementioned definition) 2013 2010 et al. et al. author First definitional First Sereno 1998 Brusatte & Sereno 2008 Sereno 1998 Benson Longrich Longrich Sues 1997

et al. 2010 et al. Taxon Caenagnathoidea (Sternberg 1940) Sereno 1998 (Stromer Carcharodontosauria 1931) Benson Stromer Carcharodontosauridae 1931 Carcharodontosaurinae (Stromer 1931) Carrano 2012 Caenagnathinae (Sternberg 1988 1940) Paul Caenagnathidae Sternberg 1940

PalArch Foundation 62 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015)

sensu Definitional author Modified from Sereno 1998 New Sereno 2005 Holtz and Padian 1995 Modified from Rauhut 2004b Sereno 1998 Sereno 2005

- -

- na

- -

zoui -

leali

nasi

Passer domes

Carnotaurus Skorpiovena Carnotaurus Caenagnathus Noasaurus Passer Caudipteryx Ceratosaurus Ceratosaurus Coelophysis Coelophysis Carnotaurus Procompsogna but not Definition Oviraptor philoc Ceratosaurus but not and but not and , , and , and but not triassicus

bustingorryi

tor clade The most inclusive containing but not eratops collinsi clade The most inclusive containing nasicornis domesticus clade The most inclusive containing sicornis sastrei clade The least inclusive containing bauri thus clade The most inclusive containing bauri sastrei cornis ticus The most inclusive clade The most inclusive containing sastrei Definition type Stem-based Stem-based Stem-based Stem-based Node-based Stem-based - , - - , lilienster

than to than to nasicornis

rhodesiensis , their most ,

than to abelis Carnotaurus Liliensternus Segisaurus halli, Sar Segisaurus halli, Coelophysis , , Syntarsus Ceratosaurus , Ceratosaurus bauri , and all other taxa stemming , wetherilli

Procompsognathus , kayentakatae First phylogenetic definition phylogenetic First

Coelophysis , aurids All abelisaurids closer to Abelisaurus / The group including Dilophosaurus ni Syntarsus cosaurus woodi from their most recent common ancestor Clade containing all ceratosaurs that are more closely related to Coelophysis recent common ancestor and all descendants All ceratosaurs closer to Carnotaurus author First definitional First / and Gauthier Rowe 1990 Rauhut 2004b Sereno 1998 Sereno 1998 Sereno 1998 Taxon Carnotaurinae Sereno 1998 Wang Caudipteridae Zhou and 2000 Ceratosauria Marsh 1884b Ceratosauridae Marsh 1884b (Nopcsa 1928) Coelophysidae 1988 Paul (Nopcsa 1928) Coelophysoidea Holtz 1994

PalArch Foundation 63 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) 2004 2014 et al. et al. Definitional author Modified from Sereno 2005 Lee New Sereno 2005 Holtz

, - -

- -

- Passer and fragilis for

Ornitho

Comp , domes dongi ,

Ornithomi Passer Allosaurus but not Troodon Deinocheirus Coelurus Passer Compsognathus Velociraptor Velociraptor fragilis longipes

Tyrannosaurus rex Tyrannosaurus Definition but not but not , Sinraptor Proceratosaurus edmontonicus ,

and but not velox Carcharodontosaurus

The least inclusive clade The least inclusive containing mosus mongoliensis domesticus The most inclusive clade The most inclusive containing mirificus mus The most inclusive clade The most inclusive containing but not bradleyi Allosaurus sognathus mimus antirrhopus Deinonychus clade The most inclusive containing ticus fragilis and saharicus clade The most inclusive containing longipes domesticus Definition type Node-based Stem-based Stem-based Stem-based Stem-based than Deinonychus and all taxa sharing and all taxa sharing a velox

longipes

mirificus

domesticus

First phylogenetic definition phylogenetic First Ornithomimus Passer All maniraptorans closer to to birds (Stem-based definition) / Deinocheirus more recent common ancestor with it than with Birds and all other theropods that are closer to are to Carnosauria birds than they Compsognathus a more recent common ancestor with it than with 2004 2014 author et al. et al. First definitional First Padian 1997 Padian / Gauthier 1986 Holtz Lee Taxon Deinonychosauria Colbert & Deinonychosauria Russell 1969 Coeluridae Marsh 1881 Osmólska and Deinocheiridae Roniewicz 1970 Coelurosauria Huene 1914c Compsognathidae Cope 1871

PalArch Foundation 64 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) 2012 et al. Definitional author New Sereno 2005 Sereno 2005 New Modified from Turner

, -

- and - rarus ,

Troodon Passer Coelo Velociraptor Velociraptor Passer but not , and , Ceratosaurus Dromaeosaurus zhaoianus ,

, Dilophosaurus Dromaeosaurus Dromaeosau Elmisaurus

comahuensis but not and , Deinonychus Deinonychus

Ornithomimus and but not Definition , , Caenagnathus col domesticus bauri

The most-inclusive clade The most-inclusive containing wetherilli physis nasicornis domesticus clade The most inclusive containing albertensis formosus edmontonicus domesticus clade The most inclusive containing rus albertensis mongoliensis Velociraptor Microraptor Unenlagia Passer clade The most inclusive containing but not linsi clade The least inclusive containing langstoni antirrhopus albertensis mongoliensis Definition type Stem-based Stem-based Stem-based Stem-based Node-based -

, than - Saurornit Velociraptor Velociraptor Velociraptor Dromaeosaurus , and , Deinonychus antirrhopus Deinonychus , , and all its descendants ,

First phylogenetic definition phylogenetic First Velociraptor Troodon / than to All deinonychosaurs closer to All deinonychosaurs to All dromaeosaurids closer to / group contain The node-based monophyletic ing the last common ancestor of holestes langstoni Dromaeosaurus albertensis mongoliensis 2012 et al. author First definitional First / Sereno 1998 Sereno 1998 / Turner Taxon Dilophosauridae (Paul 1988) Dilophosauridae (Paul Charig & Milner 1990 Dromaeosauridae (Matthew & Brown 1922) Colbert & Russell 1969 Dromaeosaurinae Matthew & Brown 1922 Elmisaurinae (Osmólska 1981) Currie 2000 & Eudromaeosauria Longrich Currie 2009b

PalArch Foundation 65 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) - -

2012 et al. et al. 2004 2014 2012 ska ska et al. ń ń et al. et al. et al. Definitional author 2002 2002 Modified from Tor Modified from tosa Marya Marya Al Modified from lain Holtz Sereno 2005 Modified from Turner -

- - -

-

for

velox

Car changii

Allosau domesti domesti

Passer but not Troodon Spinosaurus but not , and , Ornithomimus Spinosaurus Majungasaurus Passer Passer Megalosaurus Megalosaurus Herrerasaurus domesticus ,

and but not sastrei Definition

Ornithomimus but not Sinovenator domesticus

, Passer fragilis but not and

The most inclusive clade The most inclusive containing crenatissimus notaurus clade The most-inclusive containing cus velox clade The least-inclusive containing cus clade The least inclusive containing bucklandii aegyptiacus clade The most inclusive containing bucklandii rus aegyptiacus domesticus The most inclusive clade The most inclusive containing ischigualastensis Passer clade The most inclusive containing elegans mosus and Definition type Stem-based Node-based Node-based Stem-based Stem-based Stem-based Stem-based - - - -

- and but Ornitho Carnotau Passer Spinosau , domesticus and their

tanneri

Torvosaurus , than to changii

formosus Passer

, and all coelurosaurs , , and , Torvosaurus Troodon Sinovenator valesdunensis crenatissimus and

fragilis ?

and , and all descendants of their com , , and , First phylogenetic definition phylogenetic First and birds (i.e., The most recent common and birds (i.e., Allosaurus aegyptiacus sastrei

All coelurosaurs that are closer to birds than are to Ornithomimidae they The most recent common ancestor of mimus Arctometatarsalia and Manirap ancestor of and all descendants of that common tora), ancestor clade containing The most inclusive rus not (Stem-based definition) Poekilopleuron Afrovenator mon ancestor (Node-based definition) All the abelisaurids more closely related to Majungasaurus rus Herrerasaurus most recent common ancestor group containing A stem-based monophyletic elegans Jinfengopteryx closer to it than domesticus 2014 2012 2012 et al. et al. author et al. First definitional First Holtz 1996 Allain Gauthier 1986 Allain 2002 Turner Turner Tortosa Novas 1992 Novas

et et al. Taxon 2012 Maniraptora Gauthier 1986 Holtz 1995 Maniraptoriformes 1843) (Fitzinger Megalosauria Bonaparte 1850 1843) (Fitzinger Megalosauridae Bonaparte 1850 Majungasaurinae Tortosa Tortosa Majungasaurinae 2014 Herrerasauridae Benedetto 1973 Benedetto Herrerasauridae Turner Jinfengopteryginae al.

PalArch Foundation 66 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) - 2012 2010 et al. 2013 et al. 2004 et al. Definitional author Carrano Modified from Holtz et al. Benson Modified from No vas Modified from Sereno 2005

- - , , - , - - - -

- or , or , Chi Chi Fu

, Carcha Carcha Baryonyx Carcha Afrovena Passer , , , , but not but not saharicus saharicus saharicus but not

tashuikouensis tashuikouensis

salerii salerii Megalosaurus Megalosaurus Megaraptor Megaraptor Metriacantho

domesticus fragilis fragilis fragilis

but not but not

kitadaniensis

Definition Tyrannosaurus rex Tyrannosaurus , parkeri domesticus

Passer abakensis

The most inclusive clade The most inclusive containing bucklandii tor clade The most inclusive containing bucklandii domesticus clade The most inclusive containing namunhuaiquii lantaisaurus Neovenator rodontosaurus Allosaurus clade The most inclusive containing namunhuaiquii kuiraptor lantaisaurus Neovenator rodontosaurus Allosaurus walkeri and clade The most inclusive containing saurus Allosaurus rodontosaurus Passer Definition type Stem-based Stem-based Stem-based Stem-based Stem-based - - -

- - ,

than fragilis Megarap

, and , than to fragilis

Carchar Carchar , , Megalosaurus salerii salerii Chilantaisaurus

Allosaurus Chilantaisaurus , , their most recent , Allosaurus or , namunhuaiquii

but not Tyrannosaurus rex Tyrannosaurus , Neovenator Neovenator , , saharicus saharicus

Torvosaurus (Definition given to Sinraptori (Definition given kitadaniensis ,

walkeri First phylogenetic definition phylogenetic First and all Allosauroidea closer to it than and all

Megaraptor domesticus

namunhuaiquii

Afrovenator Allosaurus All megalosaurids closer to All megalosaurids to clade comprising The most inclusive tor tashuikouensis odontosaurus A stem based clade including all theropods closer to Fukuiraptor tashuikouensis odontosaurus Baryonyx Passer Spinosaurus common ancestor and all descendants (Defini to Spinosauroidea) tion given Sinraptor to dae) - 2012 2010 2013 et al. et al. author et al. First definitional First Carrano Sereno 1998 Benson Novas and Hutchin Padian son 1997

2010 et al. et al. 2013 2012 Taxon et al. et al. Megalosaurinae (Fitzinger 1843) (Fitzinger Megalosaurinae Carrano (Benson Megaraptoridae 2010) Novas Megalosauroidea (Fitzinger (Fitzinger Megalosauroidea 1964 Walker 1843) Benson Megaraptora 1988 Metriacanthosauridae Paul

PalArch Foundation 67 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) - 2010 2003 2012 et al. et al. et al. Definitional author Modified from Car rano Wilson Sereno 2005 Sereno 2005 Modified from Holtz 1994 Sereno 2005 Benson

-

- -

, - -

- , and ,

olec sale

Yang

leali

, sastrei deserti dongi

Drom Allosaurus domesticus

, Carnotaurus but not shangyouensis

Metriacantho Noasaurus Microraptor Mononykus Ceratosaurus Coelophysis Neovenator Carcharodonto comahuensis Shuvuuia Sinraptor Passer

but not and Definition Carnotaurus parkeri saharicus or domesticus

and and but not The most inclusive clade The most inclusive containing saurus chuanosaurus clade The most inclusive containing but not The most inclusive clade The most inclusive containing zhaoianus aeosaurus albertensis mongoliensis Velociraptor Unenlagia Passer clade The least inclusive containing ranus clade The least inclusive containing nasicornis sastrei clade The least inclusive containing bauri clade The most inclusive containing rii saurus fragilis Definition type Stem-based Stem-based Stem-based Node-based Node-based Node-based Stem-based

, - - - -

- - sahari

Cera Shuvuuia Neovena , Microrap Noasaurus dongi

Unenlagia , Yangchuanosaurus sastrei Mononykus Sinraptor

or Dromaeosaurus alber domesticus

than to Carcharodontosaurus , plus all their descendants , fragilis

Passer but not Carnotaurus , , Neornithes, their most recent com Neornithes, , First phylogenetic definition phylogenetic First but not and Abelisauridae and all of its and Velociraptor mongoliensis Velociraptor , Parvicursor Allosaurus but not zhaoianus salerii ,

All metriacanthosaurids more closely related to clade containing The most inclusive tor tensis comahuensis The common ancestor of and descendants clade comprising The most inclusive tor cus clade containing The most inclusive leali The most recent common ancestor of tosaurus Coelophysis mon ancestor and all descendants 1998 2012 2010 2003 et al. et al. et al. et al. author First definitional First Carrano Sereno 2005 Chiappe Holtz 1994 Sereno 1998 Benson Wilson -

et al. et al. et al. 2012 et al. Taxon Metriacanthosaurinae (Paul Metriacanthosaurinae (Paul 1988) Carrano Microraptorinae Senter 2004 Noasauridae Bonaparte & Pow ell 1980 Mononykinae Chiappe Mononykinae 1998 1991 Neoceratosauria Novas 1986 Neotheropoda Bakker Benson Neovenatoridae 2010

PalArch Foundation 68 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) -

2004 et al. et al. et al. 2012 2014 2014 ska ska ń ń et al. et al. et al. Definitional author 2002 Marya Osmólska Modified from Car rano Lee Lee Marya 2002

- - - ,

-

, ,

fragi Passer

Citipati , and , Caenagna longipes

domesticus Deinocheirus Allosaurus

but not and Allosaurus Oviraptor Oviraptor Megalosaurus Ornithomimus Ornithomimus Oviraptor philo , Definition formosus but not

Tyrannosaurus rex Tyrannosaurus Passer , domesticus

but not but not and The most-inclusive clade The most-inclusive containing philoceratops domesticus The least inclusive clade The least inclusive containing philoceratops osmolskae The least-inclusive clade The least-inclusive containing bucklandii lis clade The most inclusive containing velox mirificus clade The most inclusive containing velox fragilis Compsognathus Ther Alvarezsaurus calvoi, izinosaurus cheloniformis, antirrhopus Deinonychus Troodon Passer clade The most inclusive containing ceratops thus collinsi Definition type Stem-based Node-based Node-based Stem-based Stem-based Stem-based -

, than to than to Oviraptor Ornithomimus Oviraptor Ornithomimus Citipati osmolskae , First phylogenetic definition phylogenetic First Erlikosaurus Oviraptoridae and all taxa closer to than to birds Megalosauroidea, Avetheropoda, their most re Avetheropoda, Megalosauroidea, and all its descendants cent common ancestor, All bullatosaurs closer to Troodon closer to All oviraptorosaurs Caenagnathus Oviraptor philoceratops and all their most recent common ancestor, descendants. All ornithomimosaurs closer to than to 2004 2012 et al. et al. author First definitional First Barsbold 1997 Carrano Osmólska 1997 Sereno 1998 Osmólska Sereno 1998 2012 et al. Taxon Oviraptorosauria Barsbold 1976a Orionides Carrano Ornithomimosauria (Marsh 1890) Barsbold 1976a Oviraptoridae Barsbold 1976b Oviraptorinae (Barsbold 1976b) (Barsbold 1981) Ornithomimidae Marsh 1890

PalArch Foundation 69 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) 2012 2010 2008 2014 et al. 2011b et al. et al. et al. et al. Definitional author Holtz & Osmólska 2004 Xu Foth Carrano Rauhut Zhang

- ,

-

-

-

- - - -

fragi

and Epidexi longipes

domesti

Ornitho Megalosau Tyranno Passer , and Spinosaurus Patagonykus Deinonychus Deinonychus , and Oviraptor philoc Oviraptor and Parvicursor re Parvicursor Oviraptor Piatnitzkysaurus Proceratosaurus Epidendrosaurus Passer Allosaurus , fragilis Definition

but not edmontonicus

but not but not bucklandii Compsognathus but not but

, The most inclusive clade The most inclusive containing floresi eratops clade The most inclusive containing motus puertai clade The least inclusive containing philoceratops antirrhopus domesticus aegyptiacus rus clade The most inclusive containing bradleyi saurus rex lis Coelurus mimus antirrhopus Deinonychus clade The least-inclusive containing ningchengensis pteryx hui The most inclusive clade The most inclusive containing cus Definition type Stem-based Stem-based Stem-based Node-based Stem-based Node-based - - - - -

or - Dei Al , , Parvicur Epidendro Ornithomi , domesticus

Spinosaurus Epidexipteryx hui Passer Coelurus , Tyrannosaurus and and than to either Oviraptor philoceratops than to and their most recent common First phylogenetic definition phylogenetic First Compsognathus , Deinonychus ningchengensis

, or , Mononykus , sor ancestor (Node-based definition) more closely related to All megalosauroids Piatnitzkysaurus Megalosaurus losaurus mus clade containing The least-inclusive saurus All maniraptorans closer to Neornithes than Oviraptor clade containing The least inclusive Clade including antirrhopus nonychus and all descendants of their most recent com mon ancestor All theropods that are more closely related to Proceratosaurus

2012 2010 2008 et al. 2014 et al. et al. author et al. et al. First definitional First Choiniere 2010b Carrano Rauhut Zhang Sereno 1998 Foth

et et al. 2014 et al. Taxon 2012 Piatnitzkysauridae Carrano Piatnitzkysauridae al. Paraves Sereno 1997 Paraves Karhu and Parvicursorinae Rautian 1996 Foth Pennaraptora Proceratosauridae Rauhut 2010 Scansoriopterygidae Czerkas 2002 Yuan and

PalArch Foundation 70 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) 2009 2012 2004 2004 et al. et al. et al. et al. Definitional author Zanno 2010b Modified from Zanno Clark Sereno 2005 Holtz Allain

- -

- -

- -

an

- -

ae

Tyran Torvo formosus domes

domes Baryonyx

Therizino Allosaurus Mononykus , , Ornithomimus but not Ceratosaurus , Passer Erlikosaurus but not Therizinosaurus Nothronychus Beipiaosaurus Spinosaurus Spinosaurus Passer , Troodon Oviraptor philoc and Segnosaurus but not , Definition , or tanneri and , and ,

but not The most inclusive clade The most inclusive containing cheloniformis nosaurus rex edmontonicus olecranus eratops clade The least inclusive containing graffami galbinensis drewsi cheloniformis clade The least inclusive containing inexpectus saurus cheloniformis The most inclusive clade The most inclusive containing aegyptiacus saurus fragilis ticus clade The most inclusive containing gyptiacus walkeri clade The most inclusive containing ticus nasicornis Definition type Node-based Node-based Stem-based Stem-based Stem-based Stem-based , -

-

than Nan than to , Erlikosaurus Therizinosaurus , Spinosaurus Erlikosaurus , Therizinosaurus and all taxa sharing Oviraptor, Velociraptor Oviraptor, , (Stem-based definition) Segnosaurus walkeri

, aegyptiacus

Enigmosaurus , First phylogenetic definition phylogenetic First Ornithomimus Ornithomimus Baryonyx than to All coelurosaurs closer to to either or Neornithes (Stem-based definition) All spinosauroids closer to Torvosaurus Birds and all other theropods closer to birds are to Ceratosauria than they Alxasaurus shiungosaurus and all others closer to them than ovirapto and troodontids ornithomimids, rosaurs, All ornithomimosaurs closer to Spinosaurus a more recent common ancestor with it than with 2001 2004 author et al. et al. First definitional First Sereno 1998 Zhang Sereno 1998 Holtz Gauthier 1986 Russell 1997 Taxon 1998 et al. Spinosauridae Stromer 1915 Gauthier 1986 Tetanurae Therizinosauria (Maleev 1954) Russell 1997 Maleev 1954 Therizinosauroidea (Maleev 1954) Russell & Dong 1993 Spinosaurinae (Stromer 1915) Sereno

PalArch Foundation 71 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) Definitional author Sereno 2005 Sereno 2005 Sereno 2005 Sereno 2005 Sereno 2005

-

-

-

formo

Passer sarcopha domes

libratus

Troodon Ornithomimus , and , , Saltasaurus , Velociraptor Velociraptor Albertosaurus Velociraptor Velociraptor Ornithomimus Passer Troodon Tyrannosaurus Tyrannosaurus Tyrannosaurus Definition , or , and but not Albertosaurus Gorgosaurus but not but not but not , The most inclusive clade The most inclusive containing ticus loricatus clade The most inclusive containing sus mongoliensis edmontonicus domesticus clade The least inclusive containing rex and gus clade The most inclusive containing rex libratus sarcophagus clade The most inclusive containing rex edmontonicus formosus mongoliensis Definition type Stem-based Stem-based Node-based Stem-based Stem-based , or ,

Aublysodon Daspletosaurus Tyrannosaurus Tyrannosaurus , and Albertosaurus Tyrannosaurus , and all coelurosaurs closer to them , First phylogenetic definition phylogenetic First , Saurornithoides, Saurornithoides, Sinornithoides, , Birds and all saurischians that are closer to Birds and all saurischians are to sauropodomorphs birds than they Troodon or oviraptorosaurs, than to ornithomimids, taxa other well-defined All descendants of the most recent common ancestor of All tyrannosaurids closer to than to either Gorgosaurus All maniraptorans closer to than to Neornithes author First definitional First Gauthier 1986 1997 Varricchio Holtz 2001 Sereno 1998 Sereno 1998 Taxon Theropoda Marsh 1881 Troodontidae Gilmore 1924 Troodontidae Osborn 1906 Tyrannosauridae (Osborn 1906) Tyrannosaurinae Matthew & Brown 1922 (Osborn Tyrannosauroidea 1964 Walker 1906)

PalArch Foundation 72 Hendrickx et al., Non-Avian Theropods PalArch’s Journal of Vertebrate Palaeontology, 12, 1 (2015) Definitional author Sereno 2005 - -

- coma

Passer Velociraptor Velociraptor Microrap , Dromaeosau and , Unenlagia Definition but not zhaoianus

The most inclusive clade The most inclusive containing huensis mongoliensis rus albertensis tor domesticus Definition type Stem-based than comahuensis

Unenlagia First phylogenetic definition phylogenetic First Velociraptor mongoliensis Velociraptor All taxa closer to to

et al. author First definitional First Makovicky Makovicky 2005 Taxon Unenlagiinae Bonaparte 1999

PalArch Foundation 73