[Ilex Coindetii and Todaropsis Eblanae (Cephalopoda, Ommastrephidae): Their Preserit Status in Gaiician Fisheries By

Total Page:16

File Type:pdf, Size:1020Kb

[Ilex Coindetii and Todaropsis Eblanae (Cephalopoda, Ommastrephidae): Their Preserit Status in Gaiician Fisheries By , .. 1 '" j \ ... , '. International Council for the C.M. 1992/K: 5 Exploration of the Sea Shellfish Commitee . ~ 1 [Ilex coindetii and Todaropsis eblanae (Cephalopoda, Ommastrephidae): their preserit status in GaiiCian Fisheries by Angel F.Gonzalez, Mario Rasero and Angel Guerra Instituto de Investigaciones Mannas (CSIC), Eduardo Cabello 6. 36208 Vigo, Spain Summary • Post-recruit //lex coindetii and Todaropsis eb/anae were collectCd from the fishery on the Galician shelf between November 1991 and April 1992. Sampies were anaiysed separately considering two area~ with different hydrognlphycal characteristics. ~iaturity was assessed using a maturity scale. Growth was determined using length-frequency and modal-progression analysis. I.coinderii males were more precoucious thim females in both areas; the size at first maturity of this species was the same for males in both areas considered, and higher in the north than in the south area for females. T.eb/anae males were more Precoucious than females in both areas;the length at frrst maturity of this species was the same in both areas for males, and higher in ~e nonh than in the south for females. April in both areas was the begining of a spawriing period for I. coinderii . Tbe spawning season ofT. eblariae in the nonh area stans on February, extending at least until April .Sex moos for both species were calculatCd. In I. coiTufeiii four micrOCohons for females and tJrree for males were found in both areas. Growth rate for each micmcohorts was estimated. Two different growth rhythms , one for Spring broods and other for squi'ds born on ea:rly Summer, were observCd~ Femates 'grow fast(~r änd reach larges size than Jrlales. Life Span oftlus S}iecies waS estil11atCd ofone yeu. In T. eblanae only one micmcoholt for each sex and area was fOllOd, except fcr males in thc north area where two micrOCohöns were defuied. GrOwth rates were estirriatCd. Tbe life span of this species was found to bC cf one year. The relationships between D~ and BW of 1. coindetii. and T. eblanae were estimated too. Tbe landing statistics for the Galichin fishery from 1980 to 1991 are presented. .. 2 • Introduction This paper presents the preliminary results of some reeent work on the biology of lI/ex coinderii (Verany,1837) and Todaropsis eb/anae (Ball, 1841) in Galician waters (NW Spain), together with the annuallanding statistics of the Galician fishery from 1980 to 1991. Data are presented on reproduction and growth of both ommastrephid squid species around Galician coast. The present status ofominastrephid squid fishing in Galicia is described. This paper constitutes the first contribution to the knowledge of the life eycle and fishery of lI/ex coindetii in the Atlantie waters of Spain, and the first study ofTodaropsis eb/anae in the Atlantie ocean. \laterials and methods • Sarnples ofl.coinderii and T.eb/anae were obtained from eommerciallandings in two pons of the north ofGalicia (Burela and Celeiro) and one pon of the south of Galicia (Ribeira) (Fig. 1). A total of 3000 l.coinderii and 2425 T.eb/anae in 6 sarnples were examined from ;'!ovember 1991 to April 1992. Sampies were eolleeted from both otter and pair trawlers where squids are taken as by-catch of the hake and blue witting fishery. Squid sarnples were separated in two groups according with the area where they were eaught, the north group comprised all squids colleeted from Ribadeo to Finisterre and the south group was formed by the squids eaught from Finisterre to Miiio river (Fig.l). The distinction of both areas was done.. taking into account the existenee of clear different hydrographie conditions (Fraga et al.,1982), which eould have produced two different stocks. Thc squid colleeted in these sampies were sexed and the total body weight (BW) obtained. Thc dorsal mantle length (DML) was measured to the nearest millimiter. Monthly length e frequeney distributions were analysed using Battaeharya method (1967) employing the software paebge ELEFAN (Gayanilo et al.,1989). This modal-progression analysis provides ~ different population subunits, whieh ean be eonsidered as microcohons (Caddy.199l). Growth rates in length for each of these microcohons were ealeulated. Tbe maturity stage was assessed by a maturity seale of 5 stages for males and 6 stages for females. aeeording to the universal maturity seale (Lipinski.1979). but eonsidering the stages 1 and 2 for males as stage 1. ICES SC r I I 0')< CI) w U Figure 1. Chan of Galicia (NW Spain) showing the main commercial ports of the nonh (Ribadeo-Finisterre) and south one (Finisterre-Mifio River). 3 Results Maruration , . Table 1 shows the percentage ofI.coindetii males and females in each maturiyty stage and DML in the Galician north area. Table 2 shows the same information for the south area. Table 1. Percentage (%) of I. coindetii males and females in each maturity stage and DML classes in nonh area. Males Females ~ laturity stage 1 2 3 4 5 1 2 3 4 5 6 DML(mm) 60-79 100 • 80-99 100 100 100-119 92.8 6.0 0.6 0.6 100 120-139 48.5 27.8 19.7 4.0 93.3 6.7 1~0-159 3.8 22.3 29.9 44.0 69.1 27.3 1.8 1.8 160-179 0.7 2.8 9.2 87.3 27.0 47.67.9 6.4 11.1 180-199 2.7 2.7 94.6 3.7 53.7 13.4 6.1 23.1 200-219 100 35.6 28.8 13.6 22.0 220-239 5.6 94.4 9.1 38.6 13.7 38.6 240-259 100 11.8 11.8 17.6 52.9 5.9 260-279 100 22.2 22.2 44.4 11.2 280-299 22.2 11.1 55.6 11.1 300-319 16.7 16.7 49.9 16.7 320-339 20.0 60.0 20.0 340-359 60.0 20.0 20.0 360-379 50.0 50.0 I.coindetii males are more precoucious than females in both areas. The smallest mature male measured 119 mm DML in the nonh area and 93 mm in the south one, while the smallest mature fern ales were of 148 and 160 mm DML respectively. The size of the mature males ranged from 119-263 mm DML in the nonh , and from 93-230 mm DML in the south, while the size ofthe mature females ranged from 148-345 mm DML in the nonh area, and from 160­ 325 mm DML in the south one. Spent males were not found, and very few spent females were caught in the sampies. 4 Tbe size at first maturity ( DML at which 50% of the specimens were mature in the population) was the same (160-179 mm) for males in both areas considered, and higher in the ,.I' north (220-239 mm) than in the south (200-219 mm) for females. Table 2. Percentage (%) ofI. coindetii males and females in each maturity stage and DML classes in south area. Males Females Maturity stage 1 2 3 4 5 1 2 3 4 5 6 DML(mm) 60-79 100 100 80-99 98 0.7 1.3 100 100-119 76.0 14.8 3.7 5.5 96.6 3.1 120-139 35.9 29.6 19.5 15.0 92.5 5.7 1.2 0.6 • 140-159 6.3 13.0 33.2 47.5 71.4 24.3 0.7 3.6 160-179 3.3 13.0 83.7 14.8 69.4 9.3 5.6 0.9 180-199 100 5.3 66.7 17.5 5.3 3.5 1.7 200-219 25.0 75.0 14.3 28.6 22.8 34.3 220-239 100 15.2 9.1 30.3 45.4 240-259 21.4 28.6 50.0 260-279 50.0 50.0 280-299 25.0 75.0 300-319 100 320-339 100 , Table 3 shows the percentage ofT.eb/anae males and females in each maturity stage and DML in north area. Table 4 shows the same information for south area. T.eb/anae males are more precoucious than fernales in both areas. Tbe smallest mature male measured 104 mm DML in the north and 98 mrn DML in the south , while the smallest fern ales were af 140 mrn and 141 mrn DML respectively. The size ofthe mature males ranged from 104-169 mm DML in the north area, and from 98-149 in the south, while the size of the mature females ranged from 140-219 mm DML in the north , and from 141-219 mm DML in the south. Spent males (stage 5) were found in both areas,while very few spent females were caught in the sarnples. The size at fIrst maturity was the same (130-149 mm DML) in both areas for males, and higher (180-199 mm) in the nanh than in the south (160-179 mm) far females. 5 Table 3. Percentage(%) of T.eblanae males and females in each maturity stage and DML classes in nonh area. Males Females Maturity stage 1 2 3 4 5 1 234 5 6 DML(mm) DML 50-69 100 40-59 100 70-89 95.2 4.8 60-79 100 90-109 50.0 46.0 3.6 0.4 80-99 97.6 1.7 0.7 110-129 3.5 61.0 22.7 12.0 0.8 100-119 78.7 20.7 0.6 130-149 4.8 25.3 65.0 4.9 120-139 41.5 48.8 9.7 150-169 15.8 73.7 11.5 140-159 4.2 45.8 45.8 4.2 • 160-179 6.6 13.4 40.0 20.0 20.0 180-199 12.5 18.8 68.7 200-219 10.0 10.0 80.0 Table 4.
Recommended publications
  • <I>Todaropsis Eblanae</I>
    BULLETIN OF MARINE SCIENCE, 71(2): 711–724, 2002 RECRUITMENT, GROWTH AND REPRODUCTION IN TODAROPSIS EBLANAE (BALL, 1841), IN THE AREA FISHED BY FRENCH ATLANTIC TRAWLERS J. P. Robin, V. Denis, J. Royer and L. Challier ABSTRACT Short-finned squid landed by the French fishery are by-catch of trawlers operating in the Northern Bay of Biscay and Southern Celtic sea. In the period November 1997–June 1999 samples of commercial specimen were collected monthly. A total 1065 Todaropsis eblanae were analysed for biological parameters. In a subsample of animals age was determined using statoliths. Mature animals are observed almost all year round, however juvenile recruitment occurred mainly in winter and sexual maturation increased in spring. Size at sexual maturity (DML50) was 16.5 cm in females and 13.5 cm in males. Length frequencies showed that the range of exploited stages was 9–29 cm in females and 8–22 cm in males. Statolith analysis indicated that youngest recruits were about 4 mo old and that growth was faster in females than in males (3.41 and 1.86 cm mo−1, respectively). Sex-related differences in growth and size at maturity are in agreement with previously published data from the Galician coast. Todaropsis eblanae (Ball, 1841) is an oceanic squid, which lives near the bottom on the shelf break. In the Mediterranean, it has been observed at depths between 200 and 600 m in the Western area (Quetglas et al., 2000) and in shallower waters in the Central and Eastern areas (Belcari and Sartor, 1993; Tursi and D’Onghia, 1992).
    [Show full text]
  • ICES CM 2000/G:04 Ref: ACFM, ACME
    Living Resources Committee ICES CM 2000/G:04 Ref: ACFM, ACME REPORT OF THE WORKING GROUP ON CEPHALOPOD FISHERIES AND LIFE HISTORY Aberdeen, Scotland 7–11 February 2000 This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2–4 DK–1261 Copenhagen K Denmark TABLE OF CONTENTS Section Page 1 INTRODUCTION......................................................................................................................................................1 1.1 Terms of Reference .........................................................................................................................................1 1.2 Attendance.......................................................................................................................................................1 1.3 Opening of the Meeting...................................................................................................................................2 1.4 Arrangements for the Preparation of the Report..............................................................................................2 2 CEPHALOPOD LANDING STATISTICS (TOR A) ................................................................................................2 2.1 Compilation
    [Show full text]
  • Cephalopod Id Guide for the North Sea
    CEPHALOPOD ID GUIDE FOR THE NORTH SEA Christian Drerup – University of Algarve, Portugal Dr Gavan Cooke – Anglia Ruskin University, UK PREFACE The intention of this guide is to help identifying cephalopod species in the North Sea which you may find while SCUBA diving, snorkelling, a boat trip or even while walking along a rocky shore. It focuses on shallow water and subsurface-inhabiting species or those which at least partially spent their life in depths less than 50 meters. As you may encounter these animals in the wild most likely just for a short glance, we kept the description of each cephalopod rather simple and based on easy-to-spot external features. This guide was made within the scope of the project “Cephalopod Citizen Science”. This project tries to gather scientific information about the “daily life” of cephalopods by analysing pictures of those animals which were posted in several, project-related facebook groups. For further information about this project, please follow the link below: https://www.researchgate.net/project/Cephalopod-Citizen-Science We hope this guide will provide useful information and help you to identify those cephalopods you may encounter soon. Christian Drerup – University of Algarve, Portugal Dr. Gavan Cooke – Anglia-Ruskin-University, UK Common octopus (Octopus vulgaris). © dkfindout.com 2 CONTENTS HOW SHOULD WE INTERACT WITH CEPHALOPODS WHEN DIVING WITH THEM? ............... 4 SIGNS THAT A CEPHALOPOD IS UNHAPPY WITH YOUR PRESENCE ...................................... 5 OCTOPUSES (OCTOPODA) ................................................................................................
    [Show full text]
  • Todaropsis Eblanae (Cephalopoda, Ommastrephidae) in the North Sea
    ICES CM 2004 CC:37 Karsten Zumholz Uwe Piatkowski New data on the biology of the Lesser Flying Squid, Todaropsis eblanae (Cephalopoda, Ommastrephidae) in the North Sea Karsten Zumholz & Uwe Piatkowski Leibniz-Institute of Marine Sciences, IFM–GEOMAR, Kiel, Germany Abstract Materials and Methods A total of 319 specimens of the ommastrephid Specimens were collected on board of FRV squid Todaropsis eblanae, collected from “Walther Herwig III” during ten bottom trawl bottom trawl surveys in the North Sea were surveys carried out each winter (January/ examined. New information on seasonal length February) and summer (Juli/ August) from 1998 frequency distributions, reproductive biology to 2002. Trawls were carried out using the GOV- and relationships of beak size to mantle length trawl (mesh-size of 50mm in the codend, for and wet body mass from a hitherto not very detailed information see: IBTS Report, ICES well studied area is supplied. 2000) at depth from 20 to 180 meters during daytime from 7.00h to 19.00 UTC. T. eblanae has been described as rare in Scottish Waters, but occasionally it can appear in very large numbers and is found regularly in bottom trawls presented in the current study. Ecologically, squid play an important part in the North Sea both as predators and particularly prey. Former investigations showed very poor correlations between biological cephalopod data from research cruises and from commercial landings in the North Sea. This emphasizes the importance of scientific Fig. 1: Map showing the survey area and sampling sites. ICES rectangles where trawls surveys and especially the value of long time were carried out are given in light grey, red dots stand for sampling sites of Todaropsis Squids were frozen immediately after capture.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Wgceph Report 2018
    ICES WGCEPH REPORT 2018 ECOSYSTEM PROCESSES AND DYNAMICS STEERING GROUP ICES CM 2018/EPDSG:12 REF. SCICOM Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH) 5-8 June 2018 Pasaia, San Sebastian, Spain International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5–8 June 2018, Pasaia, San Sebastian, Spain. ICES CM 2018/EPDSG:12. 194 pp. https://doi.org/10.17895/ices.pub.8103 The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, imag- es, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on ICES website. All extracts must be acknowledged. For other re- production requests, please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2019 International Council for the Exploration of the Sea ICES WGCEPH REPORT 2018 | i Contents Executive summary ...............................................................................................................
    [Show full text]
  • Field Guide to the Living Marine Resources of Namibia.Pdf
    FAOSPECIESIDENTIFICATIONGUIDEFORFISHERYPURPOSES ISSN 1020-6868 FIELD GUIDE TO THE LIVING MARINE RESOURCES OF NAMIBIA Food and NORAD Agriculture Organization Norwegian of Agency for the International United Nations Development FAO SPECIES IDENTIFICATION FIELD GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF NAMIBIA by G. Bianchi Institute of Marine Research P.O. Box 1870, N-5024 Bergen, Norway K.E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia 23529 USA J.-P. Roux Ministry of Fisheries and Marine Resources P.O. Box 394 Lüderitz, Namibia F.J. Molloy Biology Departmant Faculty of Science University of Namibia Private Bag 31 Windhoek, Namibia D. Boyer and H.J. Boyer Ministry of Fisheries and Marine Resources P.O. Box 912 Swakopmund, Namibia With the financial support of NORAD Norwegian Agency for International Development INDEX FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS ROME, 1999 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agricultural Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-40 ISBN 92-5-104345-0 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organiztion of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • Genetic Variation in the Lesser Flying Squid Todaropsis Eblanae (Cephalopoda, Ommastrephidae) in East Atlantic and Mediterranean Waters
    MARINE ECOLOGY PROGRESS SERIES Vol. 292: 225–232, 2005 Published May 12 Mar Ecol Prog Ser Genetic variation in the lesser flying squid Todaropsis eblanae (Cephalopoda, Ommastrephidae) in east Atlantic and Mediterranean waters E. Dillane1,*, P. Galvin2, J. Coughlan1, M. Lipinski3, T. F. Cross1 1Department of Zoology, Ecology and Plant Science/Environmental Research Institute, National University of Ireland, Cork, Ireland 2Tyndall Institute, National University of Ireland, Cork, Ireland 3Marine and Coastal Management Branch, DEAT, Private Bag X2, Roggebaai 8012, Cape Town, South Africa ABSTRACT: Samples of Todaropsis eblanae from throughout the species range in east Atlantic and Mediterranean waters were screened for genetic variability at 1 minisatellite and 4 microsatellite loci. Extremely high levels of variability were observed within samples at all loci, with the mean observed heterozygosity per locus ranging from 0.82 to 0.91. Tests of allele frequency heterogeneity and mea- sures of FST (Wright’s fixation index) suggest that significant genetic differentiation occurs between samples taken in African waters and those taken in European waters (overall FST = 0.014, p < 0.001). Furthermore, significant differentiation was evident between the samples taken from South African waters and those taken from off Mauritania (between sample FST = 0.012, p < 0.001). More subtle structuring was suggested within the European samples, largely attributable to differences between the Mediterranean sample and Atlantic samples (within Europe FST = 0.002, p < 0.03). However, the high levels of heterozygosity associated with the examined loci means that biological implications of marginally significant statistical results must be considered. One consistent aspect of the observed variation is that the Mauritanian sample is more genetically differentiated from European samples than from the more geographically isolated South African sample.
    [Show full text]
  • Reproductive Biology of <I>Illex Coindetii</I> and <I>Todaropsis
    BULLETIN OF MARINE SCIENCE, 71(1): 347–366, 2002 REPRODUCTIVE BIOLOGY OF ILLEX COINDETII AND TODAROPSIS EBLANAE (CEPHALOPODA: OMMASTREPHIDAE) OFF NORTHWEST AFRICA (4°N, 35°N) Vicente Hernández-García ABSTRACT From 1352 Illex coindetii and 713 Todaropsis eblanae obtained from the by-catches of trawlers fishing off Northwest Africa (4°03'N, 34°40'N), body size at sexual maturity and spawning seasons were estimated. An approximation to the potential reproductive output was estimated for female and male Illex coindetii and for male Todaropsis eblanae. For Illex coindetii, in both sexes, sexual maturity occurred at a wide range body size. However both, range and size at maturity for both sexes decreased from north to south. The maturing and spawning periods were extended to the whole year, although they seemed to take place with higher intensity during the spring-summer in the northern and central zones, but during autumn at the Gulf of Guinea. The difference in temperature between the different zones may be the main physical condition influencing the inter- zonal differences. Significant correlation between spermatophore mean size and DML was observed. The highest number of spermatophores was 1412. The potential fecundity in females was estimated to be over 729,000 oocytes. The maximal number of spermatangue groups was six, and the highest number of spermatangues observed was 1996. High genetic diversity should be expected in the progeny of one female I. coindetii after they mate with several males. For T. eblanae, sexual maturity in females occurred at a larger size than in males. The estimated sizes at maturity were 168 and 130 mm DML for females and males respectively.
    [Show full text]
  • NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report
    NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report Volume 4: Marine and Coastal Component National Biodiversity Assessment 2011: Marine & Coa stal Component NATIONAL BIODIVERSITY ASSESSMENT 2011: Technical Report Volume 4: Marine and Coastal Component Kerry Sink 1, Stephen Holness 2, Linda Harris 2, Prideel Majiedt 1, Lara Atkinson 3, Tamara Robinson 4, Steve Kirkman 5, Larry Hutchings 5, Robin Leslie 6, Stephen Lamberth 6, Sven Kerwath 6, Sophie von der Heyden 4, Amanda Lombard 2, Colin Attwood 7, George Branch 7, Tracey Fairweather 6, Susan Taljaard 8, Stephen Weerts 8 Paul Cowley 9, Adnan Awad 10 , Ben Halpern 11 , Hedley Grantham 12 and Trevor Wolf 13 1 South African National Biodiversity Institute 2 Nelson Mandela Metropolitan University 3 South African Environmental Observation Network 4 Stellenbosch University 5 Department of Environmental Affairs 6 Department of Agriculture, Forestry and Fisheries 7 University of Cape Town 8 Council for Scientific and Industrial Research 9 South African Institute for Aquatic Biodiversity 10 International Ocean Institute, South Africa 11 National Centre for Ecological Analyses and Synthesis, University of California, USA 12 University of Queensland, Australia 13 Trevor Wolf GIS Consultant 14 Oceanographic Research Institute 15 Capfish 16 Ezemvelo KZN Wildlife 17 KwaZulu-Natal Sharks Board Other contributors: Cloverley Lawrence 1, Ronel Nel 2, Eileen Campbell 2, Geremy Cliff 17 , Bruce Mann 14 , Lara Van Niekerk 8, Toufiek Samaai 5, Sarah Wilkinson 15, Tamsyn Livingstone 16 and Amanda Driver 1 This report can be cited as follows: Sink K, Holness S, Harris L, Majiedt P, Atkinson L, Robinson T, Kirkman S, Hutchings L, Leslie R, Lamberth S, Kerwath S, von der Heyden S, Lombard A, Attwood C, Branch G, Fairweather T, Taljaard S, Weerts S, Cowley P, Awad A, Halpern B, Grantham H, Wolf T.
    [Show full text]
  • <I>Todaropsis Eblanae</I>
    BULLETIN OF MARINE SCIENCE, 71(2): 711–724, 2002 RECRUITMENT, GROWTH AND REPRODUCTION IN TODAROPSIS EBLANAE (BALL, 1841), IN THE AREA FISHED BY FRENCH ATLANTIC TRAWLERS J. P. Robin, V. Denis, J. Royer and L. Challier ABSTRACT Short-finned squid landed by the French fishery are by-catch of trawlers operating in the Northern Bay of Biscay and Southern Celtic sea. In the period November 1997–June 1999 samples of commercial specimen were collected monthly. A total 1065 Todaropsis eblanae were analysed for biological parameters. In a subsample of animals age was determined using statoliths. Mature animals are observed almost all year round, however juvenile recruitment occurred mainly in winter and sexual maturation increased in spring. Size at sexual maturity (DML50) was 16.5 cm in females and 13.5 cm in males. Length frequencies showed that the range of exploited stages was 9–29 cm in females and 8–22 cm in males. Statolith analysis indicated that youngest recruits were about 4 mo old and that growth was faster in females than in males (3.41 and 1.86 cm mo−1, respectively). Sex-related differences in growth and size at maturity are in agreement with previously published data from the Galician coast. Todaropsis eblanae (Ball, 1841) is an oceanic squid, which lives near the bottom on the shelf break. In the Mediterranean, it has been observed at depths between 200 and 600 m in the Western area (Quetglas et al., 2000) and in shallower waters in the Central and Eastern areas (Belcari and Sartor, 1993; Tursi and D’Onghia, 1992).
    [Show full text]
  • Biotic Relationships of Illex Coindetii and Todaropsis Eblanae (Cephalopoda, Ommastrephidae) in the Northeast Atlantic: Evi De
    BIOTIC RELATIONSHIPS OF ILLEX COINDETII AND TODAROPSIS EBLANAE (CEPHALOPODA, OMMASTREPHIDAE) IN THE NORTHEAST ATLANTIC: EVI­ DENCE FROM PARASITES SANTIAGO PASCUAL, ANGEL GONZALEZ, CRISTINA ARIAS & ANGEL GUERRA Pascual Santiago, Angel Gonzalez, Cristina Arias & Angel Guerra. 1996 1015. Biotic relationships of Illex coindetii and Todaropsis eblanae (Cephalopoda, Ommastrephidae) in the Northeast Atlantic: evi­ dence from parasites. - Sarsia 81:265-274. Bergen. ISSN 0036-4827. Parasites were collected from 1,200 short-finned squid (Illex coindetii, Todaropsis eblanae) caught as by- catch in a multispecies trawling fishery in the northwest Spanish Atlantic waters in 1992-1993. Parasites found included six species of helminths, three tetraphyllidean cestodes (Phyllobothrium sp., Pelichnibothrium speciosum, Dinobothrium sp.), two trypanorhynchidean cestodes (Nybelinia yamagutii, Nybelinia lingualis), and one ascaridoid nematode (Anisakis simplex B). Two of these parasites (Phyllobothrium sp., A. simplex B), which could be recognised as component species, were used in analyses of host-parasite relationships. Levels of infection varied significantly with host size or stage of maturation for both squid species. Regional variation in infection level seems attributable to geographical variation in availability of prey, discreteness and movements of host populations and to size or age-related changes in the prey selec­ tion of their host. Parasite evidences suggest that both ommastrephid squids are sympatric species sharing similar econiches, and serve as diet for large top predators (selachians and marine mammals) of Northeast Atlantic. Parasites may also be useful as an indirect indicator of the migratory habits of the squid. Santiago Pascual and Cristina Arias, Laboratorio de Parasitología, Facultad de Ciencias del Mar, Universidad de Vigo, Ap. 874 Vigo, Spain.
    [Show full text]