Early Pleistocene Integration of the Yellow River I Detrital-Zircon Evidence from the North China Plain

Total Page:16

File Type:pdf, Size:1020Kb

Early Pleistocene Integration of the Yellow River I Detrital-Zircon Evidence from the North China Plain Palaeogeography, Palaeoclimatology, Palaeoecology 546 (2020) 109691 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain T ⁎ ⁎⁎ Guoqiao Xiaoa,b, , Yuqi Suna, Jilong Yangc, , Qiuzhen Yind, Guillaume Dupont-Nivete,f,g, Alexis Lichth, Alan E. Kehewi, Yunzhuang Huc, Jianzhen Gengc, Gaowen Daia, Qingyu Zhaoa, Zhipeng Wua,d a State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China b Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China c Tianjin Centre, China Geological Survey, Key Laboratory of Coast Geo-Environment, Tianjin 300170, China d Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve 1348, Belgium e Geosciences Rennes UMR 6118, CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France f Institute of Earth and Environmental Science, Potsdam University, 14476 Potsdam, Germany g Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University, Beijing 100871, China h Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA i Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008, USA ARTICLE INFO ABSTRACT Editor: Paul Hesse The Yellow River (YR) is one of the longest and most sediment-laden rivers in the world. However, the timing Keywords: and mechanism of the integration of upstream and downstream reaches of the YR is still debated, with estimates Quaternary ranging from > 34 Ma to ~0.15 Ma. Here we address this debate by studying the detrital-zircon age spectra from Late Pliocene three boreholes that penetrate late Miocene sediment in the lower YR floodplain. Our results show a significant Sanmen Gorge provenance change between 1.6 and 1.5 Ma marking the input of new materials from the Middle Reach and/or Provenance the Upper Reach, suggesting the upstream and downstream parts of the YR were connected between 1.6 and River capture 1.5 Ma. This late establishment of the YR is not consistent with the timing of uplift of the northeastern Tibetan Sea level changes Plateau and surrounding mountain ranges and thus precludes a tectonic control; however, it follows the Plio- Pleistocene onset of large-amplitude sea level changes, associated with a worldwide increase of fluvial incision. We propose that Plio-Pleistocene base level fluctuations likely triggered fluvial erosion propagating upstream from the YR lower reach and were thus the main driving force for river integration. 1. Introduction history of the northeastern Tibetan Plateau in the Upper Reaches (Zhu, 1989; Li et al., 1996, 1997), the origin of the Chinese Loess Plateau in The 5464 km long Yellow River, or Huang He, is the 2nd longest the Middle Reaches (Nie et al., 2015), and the formation of the North river in China and the 6th longest river in the world. It originates on the China Plain and continental shelf in the Lower Reaches (Zhang et al., northeastern Tibetan Plateau, makes a great angular bend around the 2004; Yao et al., 2017). Ordos Block, flows out of the Sanmen Gorge and on to the North China Despite over a century of scientific investigations (Willis, 1907; Plain, and finally empties into the Bohai Sea (Fig. 1). It traverses a Wang, 1925; Barbour, 1933), there is still no agreement on the timing series of sedimentary basins and 30 consecutive gorges within its main of the integration of the YR, with estimates ranging from > 34 Ma to course. Previous studies suggested that the YR achieved its present ~0.15 Ma (Zhu, 1989; Lin et al., 2001; Zhang et al., 2004; Pan et al., geometry by integrating a series of ancestral local drainages in the 2005, 2011; Zheng et al., 2007; Li et al., 2017; Liu, 2017; Guo et al., Chinese Loess Plateau and northeastern Tibetan Plateau (Zhu, 1989; Li 2018; Shang et al., 2018). Lin et al. (2001) have proposed that a proto- et al., 1996; Pan et al., 2012; Craddock et al., 2010). Understanding the YR existed in the Eocene as an eastward-draining river running through integration timing of the YR is crucial as it has been linked to the uplift the course of the Weihe River directly to the Sanmen Gorge, and later ⁎ Correspondence to: G. Xiao, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China. ⁎⁎ Corresponding author. E-mail addresses: [email protected] (G. Xiao), [email protected] (J. Yang). https://doi.org/10.1016/j.palaeo.2020.109691 Received 20 December 2019; Received in revised form 27 February 2020; Accepted 28 February 2020 Available online 05 March 2020 0031-0182/ © 2020 Elsevier B.V. All rights reserved. G. Xiao, et al. Palaeogeography, Palaeoclimatology, Palaeoecology 546 (2020) 109691 Fig. 1. Geotectonic setting and location of the Yellow River course. (a) Simplified geotectonic map of the drainage area of the Yellow River showing the principal source regions (modified after Yang et al., 2009 and Weislogel et al., 2010). The North China Craton (NCC) consists of the Eastern North China Craton (ENCC), the Trans-North China Orogen (TNCO), and the Western North China Craton (WNCC). OB—Ordos Block; CAOB—Central Asian Orogenic Belt; JB—Junggar Basin; TB—Tarim Block; QB—Qiangtang Block; Q&Q—Qilian and Qaidam; YC—Yangtze Craton; S-G—Songpan-Ganzi; Q-D—Qinling-Dabie. (b) Map of the Yellow River course (revised from Nie et al., 2015) and location of the studied boreholes (red squares). The Upper (U), Middle (M), and Lower (L) Reaches of the Yellow River are divided by black bold lines. The black dashed line denotes the modern watershed boundary. The green dots and numbers show the sites of published detrital-zircon samples cited in the Fig. 4(j) and (k) (see Table 1 for sample information), and the red triangles denote the previously studied sites and their estimates of the Yellow River age (see the text for details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) developed a 1500-km-long loop around the Ordos Block in late Mio- major dust supply for these loess deposits at least since 0.9 Ma (Shang cene–early Pliocene. However, dating of the uppermost fluvial terraces et al., 2018). A second line of evidence is from the sedimentary record lying along the Upper and Middle Reaches has yielded much younger of the Sanmen paleolake, a Cenozoic mega lake situated in the Fenwei and dissimilar ages for the integration of the YR (e.g., ~3.6 Ma or Graben to the west of the Sanmen Gorge (Fig. 1). The occurrence of 1.7 Ma at Linxia (Li et al., 1997; Nie et al., 2015) and Lanzhou (Li et al., some non-marine foraminiferal fauna and brackish ostracods in the 1996; Guo et al., 2018), 1.4–1.6 Ma in the Chinese Loess Plateau (Zhu, upper Neogene and lower Pleistocene deposits (Wang et al., 1982) in- 1989), ~8 Ma (Liu, 2017) or 3.7–1.2 Ma (Cheng et al., 2002; Pan et al., dicate that the Sanmen paleolake was once an endorheic basin. In- 2011; Hu et al., 2016) in the Jinshaan Gorge, Fig. 1). In addition, vestigations demonstrated that lacustrine deposition in the Sanmen Craddock et al. (2010) suggested that the development of the upper- paleolake terminated between 1.2 and 1.8 Ma and was followed by most reaches of the YR in northeastern Tibet did not occur earlier than loess deposition (Yue, 1996; Han et al., 1997; Wang et al., 2002a; Li 0.5 Ma. et al., 2004; Kong et al., 2014). The disappearance of the Sanmen pa- Exploring the timing of the YR integration requires age control on leolake is most likely related to incision of the Sanmen Gorge. However, the connection of the Upper and Middle Reaches to the Lower Reaches, others proposed that the termination of lacustrine deposition in the which was formerly blocked by the ~100 km-wide Xiaoshan Mountain Sanmen paleolake occurred later, at ~0.15 Ma (Wang et al., 2002b; uplift block (belongs to the southern part of the Taihang Mountains). Jiang et al., 2007). A third line of evidence for the incision of the The development of the Sanmen Gorge cut through Xiaoshan Mountain Sanmen Gorge is based on the ages of the regional planation surface and and connected the Upper and Middle Reaches to the Lower Reaches of the uppermost terrace along the gorge, which suggested the incision of YR (Fig. 1). Therefore, the incision timing of the Sanmen Gorge is the Sanmen Gorge occurred between 3.6 and 1.2 Ma (Pan et al., 2005; crucial to constraining the integration of the whole YR. However, its Kong et al., 2014; Hu et al., 2017). A fourth line of evidence is based on timing is still under debate. provenance studies from sedimentary cores in the Lower YR, which Four lines of evidence have been proposed as proxies for de- have suggested that the incision of the Sanmen Gorge occurred at least termining the excavation age of the Sanmen Gorge. First, some have ~0.8 Ma based on changes in lanthanum to samarium (La/Sm) ratios, proposed that incision occurred at ~0.24 or 0.15 Ma based on changes SreNd isotopic compositions, and clay mineral assemblages (Yao et al., in sedimentation rates, magnetic susceptibility values and grain-size in 2017; Zhang et al., 2019), as these signals probably reflected the input the loess deposits of Mangshan near the outlet of the gorge (Jiang et al., of large amount of loess materials from the Chinese Loess Plateau.
Recommended publications
  • Bibliography [PDF]
    Bibliography, Ancient TL, Vol. 35, No. 2, 2017 Bibliography _____________________________________________________________________________________________________ Compiled by Sebastien Huot From 15th May 2017 to 1st December 2017 Various geological applications - aeolian Arbogast, A.F., Luehmann, M.D., William Monaghan, G., Lovis, W.A., Wang, H., 2017. Paleoenvironmental and geomorphic significance of bluff-top dunes along the Au Sable River in Northeastern Lower Michigan, USA. Geomorphology 297, 112-121, http://dx.doi.org/10.1016/j.geomorph.2017.09.017. Guedes, C.C.F., Giannini, P.C.F., Sawakuchi, A.O., DeWitt, R., Paulino de Aguiar, V.Â., 2017. Weakening of northeast trade winds during the Heinrich stadial 1 event recorded by dune field stabilization in tropical Brazil. Quaternary Research 88, 369-381, http://dx.doi.org/10.1017/qua.2017.79. Ho, L.-D., Lüthgens, C., Wong, Y.-C., Yen, J.-Y., Chyi, S.-J., 2017. Late Holocene cliff-top dune evolution in the Hengchun Peninsula of Taiwan: Implications for palaeoenvironmental reconstruction. Journal of Asian Earth Sciences 148, 13-30, http://dx.doi.org/10.1016/j.jseaes.2017.08.024. Hu, G., Yu, L., Dong, Z., Lu, J., Li, J., Wang, Y., Lai, Z., 2018. Holocene aeolian activity in the Zoige Basin, northeastern Tibetan Plateau, China. Catena 160, 321-328, http://dx.doi.org/10.1016/j.catena.2017.10.005. Huntley, D.H., Hickin, A.S., Lian, O.B., 2016. The pattern and style of deglaciation at the Late Wisconsinan Laurentide and Cordilleran ice sheet limits in northeastern British Columbia. Canadian Journal of Earth Sciences 54, 52-75, http://dx.doi.org/10.1139/cjes-2016-0066.
    [Show full text]
  • Ecosystem Services Changes Between 2000 and 2015 in the Loess Plateau, China: a Response to Ecological Restoration
    RESEARCH ARTICLE Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: A response to ecological restoration Dan Wu1, Changxin Zou1, Wei Cao2*, Tong Xiao3, Guoli Gong4 1 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China, 2 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 3 Satellite Environment Center, Ministry of Environmental Protection, Beijing, China, 4 Shanxi Academy of Environmental Planning, Taiyuan, China a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Loess Plateau of China is one of the most severe soil and water loss areas in the world. Since 1999, the Grain to Green Program (GTGP) has been implemented in the region. This OPEN ACCESS study aimed to analyze spatial and temporal variations of ecosystem services from 2000 to Citation: Wu D, Zou C, Cao W, Xiao T, Gong G 2015 to assess the effects of the GTGP, including carbon sequestration, water regulation, (2019) Ecosystem services changes between 2000 soil conservation and sand fixation. During the study period, the area of forest land and and 2015 in the Loess Plateau, China: A response grassland significantly expanded, while the area of farmland decreased sharply. Ecosystem to ecological restoration. PLoS ONE 14(1): services showed an overall improvement with localized deterioration. Carbon sequestration, e0209483. https://doi.org/10.1371/journal. pone.0209483 water regulation and soil conservation increased substantially. Sand fixation showed a decreasing trend mainly because of decreased wind speeds. There were synergies Editor: Debjani Sihi, Oak Ridge National Laboratory, UNITED STATES between carbon sequestration and water regulation, and tradeoffs between soil conserva- tion and sand fixation.
    [Show full text]
  • Optical and Physical Characteristics of the Lowest Aerosol Layers Over the Yellow River Basin
    atmosphere Article Optical and Physical Characteristics of the Lowest Aerosol Layers over the Yellow River Basin Miao Zhang 1,*, Jing Liu 2, Muhammad Bilal 3,* , Chun Zhang 1, Feifei Zhao 1, Xiaoyan Xie 4,5 and Khaled Mohamed Khedher 6,7 1 School of Environmental Science and Tourism, Nanyang Normal University, Wolong Road No.1638, Nan Yang 473061, China; [email protected] (C.Z.); zff@nynu.edu.cn (F.Z.) 2 Lingnan College, Sun Yat-sen University, Guangzhou 510275, China; [email protected] 3 School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 2100444, China 4 South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; [email protected] 5 College of Marine Science, Shanghai Ocean University, Shanghai 201306, China 6 Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; [email protected] 7 Department of Civil Engineering, Institut Superieur des Etudes Technologiques, Campus Universitaire Mrezgua, Nabeul 8000, Tunisia * Correspondence: [email protected] (M.Z.); [email protected] (M.B.) Received: 17 September 2019; Accepted: 19 October 2019; Published: 22 October 2019 Abstract: Studying the presence of aerosols in different atmospheric layers helps researchers understand their impacts on climate change, air quality, and human health. Therefore, in the present study, the optical and physical properties of aerosol layers over the Yellow River Basin (YERB) were investigated using the CALIPSO Level 2 aerosol layer products from January 2007 to December 2014. The Yellow River Basin was divided into three sub-regions i.e., YERB1 (the plain region downstream of the YERB), YERB2 (the Loess Plateau region in the middle reaches of the YERB), and YERB3 (the mountainous terrain in the upper reaches of the YERB).
    [Show full text]
  • Landslides on the Loess Plateau of China: a Latest Statistics Together with a Close Look
    Landslides on the Loess Plateau of China: a latest statistics together with a close look Xiang-Zhou Xu, Wen-Zhao Guo, Ya- Kun Liu, Jian-Zhong Ma, Wen-Long Wang, Hong-Wu Zhang & Hang Gao Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards ISSN 0921-030X Volume 86 Number 3 Nat Hazards (2017) 86:1393-1403 DOI 10.1007/s11069-016-2738-6 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Nat Hazards (2017) 86:1393–1403 DOI 10.1007/s11069-016-2738-6 SHORT COMMUNICATION Landslides on the Loess Plateau of China: a latest statistics together with a close look 1,2 2 2 Xiang-Zhou Xu • Wen-Zhao Guo • Ya-Kun Liu • 1 1 3 Jian-Zhong Ma • Wen-Long Wang • Hong-Wu Zhang • Hang Gao2 Received: 16 December 2016 / Accepted: 26 December 2016 / Published online: 3 January 2017 Ó Springer Science+Business Media Dordrecht 2017 Abstract Landslide plays an important role in landscape evolution, delivers huge amounts of sediment to rivers and seriously affects the structure and function of ecosystems and society.
    [Show full text]
  • Archaeological Perspectives on the Early Relations of the Korean Peninsula with the Eurasian Steppe
    SINO-PLATONIC PAPERS Number 301 May, 2020 Archaeological Perspectives on the Early Relations of the Korean Peninsula with the Eurasian Steppe by Kang, In Uk Victor H. Mair, Editor Sino-Platonic Papers Department of East Asian Languages and Civilizations University of Pennsylvania Philadelphia, PA 19104-6305 USA [email protected] www.sino-platonic.org SINO-PLATONIC PAPERS FOUNDED 1986 Editor-in-Chief VICTOR H. MAIR Associate Editors PAULA ROBERTS MARK SWOFFORD ISSN 2157-9679 (print) 2157-9687 (online) SINO-PLATONIC PAPERS is an occasional series dedicated to making available to specialists and the interested public the results of research that, because of its unconventional or controversial nature, might otherwise go unpublished. The editor-in-chief actively encourages younger, not yet well established scholars and independent authors to submit manuscripts for consideration. Contributions in any of the major scholarly languages of the world, including romanized modern standard Mandarin and Japanese, are acceptable. In special circumstances, papers written in one of the Sinitic topolects (fangyan) may be considered for publication. Although the chief focus of Sino-Platonic Papers is on the intercultural relations of China with other peoples, challenging and creative studies on a wide variety of philological subjects will be entertained. This series is not the place for safe, sober, and stodgy presentations. Sino-Platonic Papers prefers lively work that, while taking reasonable risks to advance the field, capitalizes on brilliant new insights into the development of civilization. Submissions are regularly sent out for peer review, and extensive editorial suggestions for revision may be offered. Sino-Platonic Papers emphasizes substance over form.
    [Show full text]
  • Pizu Group Holdings Limited
    THIS CIRCULAR IS IMPORTANT AND REQUIRES YOUR IMMEDIATE ATTENTION If you are in any doubt as to any aspect of this circular or as to the action to be taken, you only should consult your stockbroker, bank manager, solicitor, professional accountant or other professional adviser. If you have sold or transferred all your shares in Pizu Group Holdings Limited (the “Company”), you should at once hand this circular and the accompanying form of proxy to the purchaser or other transferee or to the bank, stockbroker or other agent through whom the sale or transfer was effected for transmission to the purchaser or transferee. Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this circular, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this circular. Pizu Group Holdings Limited (Incorporated in the Cayman Islands with limited liability) (Stock Code: 8053) MAJOR TRANSACTION CAPITAL INJECTION TO TARGET COMPANY AND NOTICE OF EXTRAORDINARY GENERAL MEETING A notice convening the Extraordinary General Meeting of the Company to be held at Flat A, 11/F., Two Chinachem Plaza, 68 Connaught Road Central, Hong Kong on Friday, 25 September 2020 at 2:00 p.m. (or immediately after the conclusion or adjournment of the Annual General Meeting of the Company to be held on the same day) is set out on pages EGM-1 to EGM-2 of this circular.
    [Show full text]
  • Changing Climate and Implications for Water Use in the Hetao Basin, Yellow River, China
    Hydrological processes and water security in a changing world Proc. IAHS, 383, 51–59, 2020 https://doi.org/10.5194/piahs-383-51-2020 Open Access © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Changing climate and implications for water use in the Hetao Basin, Yellow River, China Ian White1, Tingbao Xu1, Jicai Zeng2, Jian Yu3, Xin Ma3, Jinzhong Yang2, Zailin Huo4, and Hang Chen4 1Fenner School of Environment and Society, Australian National University, Canberra, ACT, 0200, Australia 2State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430068, China 3Water Resources Research Institute of Inner Mongolia, No. 11, Genghis Khan East Road, New Town, Hohhot, Inner Mongolia, 010020, China 4Centre for Agricultural Water Research in China, China Agricultural University, No. 17, East Rd, Haidian, Beijing, 100083, China Correspondence: Ian White ([email protected]) Published: 16 September 2020 Abstract. Balancing water allocations in river basins between upstream irrigated agriculture and downstream cities, industry and environments is a global challenge. The effects of changing allocations are exemplified in the arid Hetao Irrigation District on the Yellow River, one of China’s three largest irrigation districts. Amongst the many challenges there, the impact of changing climate on future irrigation water demand is an underlying concern. In this paper we analyse trends in local climate data from the late 1950s and consider the implications for irrigation in the Basin. Since 1958, daily minimum temperatures, Tmin in the Basin have increased at three times the rate of daily maximum temperatures, Tmax. Despite this, there has been no significant increases in annual precipitation, P or pan evaporation, Epan.
    [Show full text]
  • Eco-Environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China Eco-environment Status Evaluation and Change Analysis of Qinghai Based on National Geographic Conditions Census Data Min Zheng1,2, Maoliang Zhu1,2, Yuan Wang1,2, Changjun Xu1,2, Honghai Yang1,2 1Provincial Geomatics Center of Qinghai, Xining, China; 2Geomatics Technology and Application key Laboratory of Qinghai Province, Xining, China; KEY WORDS: national geographic conditions census, remote sensing, eco-environment status, ecological index, ecological change analysis ABSTRACT: As the headstream of the Yellow River, the Yangtze River and the Lantsang River, located in the hinterland of Qinghai-Tibet Plateau, Qinghai province is hugely significant for ecosystem as well as for ecological security and sustainable development in China. With the accomplishment of the first national geographic condition census, the frequent monitoring has begun. The classification indicators of the census and monitoring data are highly correlated with Technical Criterion for Ecosystem Status Evaluation released by Ministry of Environmental Protection in 2015. Based on three years’ geographic conditions data (2014-2016), Landsat-8 images and thematic data (water resource, pollution emissions, meteorological data, soil erosion, etc.), a multi-years and high-precision eco-environment status evaluation and spatiotemporal change analysis of Qinghai province has been researched on the basis of Technical Criterion for Ecosystem Status Evaluation in this paper. Unlike the evaluation implemented by environmental protection department, the evaluation unit in this paper is town rather than county. The evaluation result shows that the eco-environment status in Qinghai is generally in a fine condition, and has significant regional differences.
    [Show full text]
  • China: Xining Flood and Watershed Management Project
    E2007 V4 Public Disclosure Authorized China: Xining Flood and Watershed Management Project Public Disclosure Authorized Environmental Assessment Summary Public Disclosure Authorized Environmental Science Research & Design Institute of Gansu Province October 1, 2008 Public Disclosure Authorized Content 1. Introduction .................................................................................................................................. 1 1.1 Project background............................................................................................................ 1 1.2 Basis of the EA.................................................................................................................. 3 1.3 Assessment methods and criteria ...................................................................................... 4 1.4 Contents of the report........................................................................................................ 5 2. Project Description....................................................................................................................... 6 2.1 Task................................................................................................................................... 6 2.2 Component and activities.................................................................................................. 6 2.3 Linked projects................................................................................................................ 14 2.4 Land requisition and resettlement
    [Show full text]
  • Dams on the Mekong
    Dams on the Mekong A literature review of the politics of water governance influencing the Mekong River Karl-Inge Olufsen Spring 2020 Master thesis in Human geography at the Department of Sociology and Human Geography, Faculty of Social Sciences UNIVERSITY OF OSLO Words: 28,896 08.07.2020 II Dams on the Mekong A literature review of the politics of water governance influencing the Mekong River III © Karl-Inge Olufsen 2020 Dams on the Mekong: A literature review of the politics of water governance influencing the Mekong River Karl-Inge Olufsen http://www.duo.uio.no/ IV Summary This thesis offers a literature review on the evolving human-nature relationship and effect of power struggles through political initiatives in the context of Chinese water governance domestically and on the Mekong River. The literature review covers theoretical debates on scale and socionature, combining them into one framework to understand the construction of the Chinese waterscape and how it influences international governance of the Mekong River. Purposive criterion sampling and complimentary triangulation helped me do rigorous research despite relying on secondary sources. Historical literature review and integrative literature review helped to build an analytical narrative where socionature and scale explained Chinese water governance domestically and on the Mekong River. Through combining the scale and socionature frameworks I was able to build a picture of the hybridization process creating the Chinese waterscape. Through the historical review, I showed how water has played an important part for creating political legitimacy and influencing, and being influenced, by state-led scalar projects. Because of this importance, throughout history the Chinese state has favored large state-led scalar projects for the governance of water.
    [Show full text]
  • 9781107069879 Index.Pdf
    Cambridge University Press 978-1-107-06987-9 — The Qing Empire and the Opium War Mao Haijian , Translated by Joseph Lawson , Peter Lavelle , Craig Smith , Introduction by Julia Lovell Index More Information Index 18th Regiment , 286 , 306 35 – 37 , 45 , 119 – 21 , 122 , 209 ; coastal , 34 , 26th Regiment , 205 , 242 , 286 35 – 36 , 38 , 115 ; concealed , 208 ; early- 37th Regiment , 257 warning , 199 ; fortii ed , vi , 36 , 121 , 209 , 37th Regiment of Madras Native Infantry , 206 218 – 20 , 281 , 493 ; sand- bagged , 210 , 218 , 49th Regiment , 205 , 286 232 , 309 55th Regiment , 286 , 306 Battle at Dinghai, showing the British attacks, 98th Regiment , 384 Qing defensive positions, and the walled town of Dinghai , 305 Ackbar , 385 Battle at Guangzhou, showing British Aigun , 500 attacks , 241 American citizens , 452 , 456 – 58 , 460 , 462 , Battle at Humen, showing the British attacks 463 – 64 , 465 – 68 , 475 , 478 , 511 , 513 and Qing defensive positions , 198 American envoys , 458 – 59 , 461 Battle at Wusong, showing British attacks and American merchants , 96 , 97 – 99 , 152 , 218 , Qing defensive positions , 380 227 , 455 – 57 , 503 Battle at Xiamen, showing main British American ships , 103 , 456 – 57 , 467 attacks and Qing defensive positions , 287 American treaties , 478 Battle at Zhapu, showing Qing defensive Amoy , 427 , 452 positions and British attacks , 376 Anhui , 50 – 51 , 88 , 111 , 163 – 64 , 178 , 324 , 328 , Battle at Zhenhai, showing the Qing defensive 331 , 353 – 54 , 358 positions and British attacks , 311 Ansei
    [Show full text]
  • The Later Han Empire (25-220CE) & Its Northwestern Frontier
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Wai Kit Wicky Tse University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Asian History Commons, Asian Studies Commons, and the Military History Commons Recommended Citation Tse, Wai Kit Wicky, "Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier" (2012). Publicly Accessible Penn Dissertations. 589. https://repository.upenn.edu/edissertations/589 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/589 For more information, please contact [email protected]. Dynamics of Disintegration: The Later Han Empire (25-220CE) & Its Northwestern Frontier Abstract As a frontier region of the Qin-Han (221BCE-220CE) empire, the northwest was a new territory to the Chinese realm. Until the Later Han (25-220CE) times, some portions of the northwestern region had only been part of imperial soil for one hundred years. Its coalescence into the Chinese empire was a product of long-term expansion and conquest, which arguably defined the egionr 's military nature. Furthermore, in the harsh natural environment of the region, only tough people could survive, and unsurprisingly, the region fostered vigorous warriors. Mixed culture and multi-ethnicity featured prominently in this highly militarized frontier society, which contrasted sharply with the imperial center that promoted unified cultural values and stood in the way of a greater degree of transregional integration. As this project shows, it was the northwesterners who went through a process of political peripheralization during the Later Han times played a harbinger role of the disintegration of the empire and eventually led to the breakdown of the early imperial system in Chinese history.
    [Show full text]