Heterokontophyta II Division: Heterokontophyta- 13,151 Species

Total Page:16

File Type:pdf, Size:1020Kb

Heterokontophyta II Division: Heterokontophyta- 13,151 Species Division: Heterokontophyta- 13,151 species Heterokontophyta II Class: Phaeophyceae – 1,836 species Order: 19 orders but we will focus on 6 4. Dictyotales- 242 species - Saxicolous - Common in tropical waters; also found locally subtidal - Pheromone= dictyotene Genus Dictyota Padina 1 14 Life history of Dictyota Order: Dictyotales • Reproductive structures in “sori” = cluster of gametangia or 1. Life History and Reproduction: sporangia • Tetraspores (non-flagellated) released by 2N sporophyte 2. Macrothallus Construction: • Gametophyte dioecious • Large egg one per “oogonium” = female reproductive structure 3. Growth: containing one or more eggs • Sperm single hairy flagella but has second basal body 20 21 1 Life History of Dictyota: A Dictyota Story: (Stachowicz and Hay 2000) Isomorphic Alternation of Generations Cape Hatteras Local adaptation Associational defences Southern Sites Northern Sites + Libinia dubia, the decorator crab + Libinia dubia, the decorator crab + Dictyota menstrualis, + No chemically noxious the chemically algae defended brown alga (diterpenes) + Carnivorous fishes + Omnivorous fishes + Crabs are specialists + Crabs are generalists in decoration in decoration 17 preference preference 21 The only calcified Phaeophycean: Padina Division: Heterokontophyta- 13,151 species Class: Phaeophyceae – 1,836 species Order: 19 orders but we will focus on 6 5. Ralfsiales- 54 species - Saxicolous or epiphytic - Common intertidally, tropics to poles - crustose in atleast one life history stage Increased Grazing Genus: Ralfsia Analipus 22 14 2 Analipus japonicus Order: Ralfsiales -perennial crustose base up to 5cm with erect axes that die back in the fall 1. Life History and Reproduction: 2. Macrothallus Construction: Ralfsia 3. Growth: 10 27 Division: Heterokontophyta- 13,151 species General Morphology: Class: Phaeophyceae – 1,836 species sorus (pl: sori) Order: 6. Laminariales- 129 species - Saxicolous - Sporangia always unilocular - Most have sieve cells/elements blade - Pheromone released by female gametes lamoxirene sporophylls Genus: Egregia stipe Postelsia haptera Pterogophora holdfast Macrocystis Nereocystis 12 14 3 Order Laminariales: Microscopic gametophytes 1. Life History and Reproduction 2. Macrothallus Construction: 3. Growth 13 14 Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate General Morphology: multicellular diploid sporophyte and haploid gametophyte stage 15 All the baby kelps look the same 16 4 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements) Meristodermal growth gives thallus girth (mostly), mostly periclinal cell division “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth • Growth in both directions away from meristem •Anticlinal = cell division • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the meristoderm height 17 18 Phaeophyceae Morphology of intercellular connections Transport: Only alga to transport sugar/photosynthate in sieve elements sieve elements, sieve cells, or trumpet hyphae • Transport photosynthetic products Plasmodesmata = connections between adjacent cells, formed during cell division • Outgrowths of cortex cells that grow into the medulla - Used for cell-to-cell transport of photosynthetic products • Don’t divide again after formation, so they get drawn out and cell communication into long thin “trumpets”= trumpet hyphae • Sieve plates are specialized plasmodesmata between the sieve elements that allow transport of sugars between cells 20 9 5 Transport in Plants vs. Algae completely independent evolutionary origins Egregia menziesii = feather boa kelp Plants Algae • Have water and sugar • Only conduct sugars and conducting cells some nutrients • Midrib = rachis • Xylem non-living •All cells living • Sporophylls – deeper brown color; shorter and more narrow • Sieve elements alive than vegetative blades and • Sieve elements alive dispersed among them • Sieve elements lack • Sieve elements lack • Intercalary meristem in organelles organelles except upper portion of rachis mitochondria • Have companion cells • No companion cells 21 22 5 Postelsia palmaeformis = the sea palm Pteryogophora californica = the walking kelp • Grows in high wave exposed habitats • Understory kelp • Blade surface with deep • Woody stipe, terminal longitudinal grooves vegetative blade and lateral sporophylls • Sporangia in linear sori lining grooves • Perennial – up to 25 years old! • Zoospores released drip down • Growth rings in stipe, just like grooves to land on: trees • Mussels • Bare rock • “Walking” • Below mussels • Winter storms rip out mussels 23 which open up space for light 24 6 Macrocystis pyrifera = the giant kelp Nereocystis luetkeana = the bull kelp • Major canopy kelp, up to 60 m in length • Major canopy species locally • Hapterous holdfast • Hapterous holdfast • Capable of high growth rates: 1-2 ft/day! • Stipe to 35 m long • Perennial, but individual blades only last ~ 2 - 6 Months • Single big pneumatocyst filled with carbon dioxide and monoxide • Apical scimitar blade at growing tip • Annual!!! Most growth March-Sept • Intercalary meristem between (~200 days to get that big… ave. of blade and pneumatocyst 7”/day!) •Sporophylls- above holdfast, no pneumatocysts, •Sori on main blade, pop out and are chemically defended negatively buoyant 25 26 History of Kelp Harvest Laminariales -17th century – kelp ash – French peasants Family: used for glazing pottery and making low Laminariaceae quaility glass Macrocystis, Nereocystis, Pelagophycus, Postelsia, Laminaria -1811 – discovery of iodine in kelps – used Alariaceae to treat goiter – enlargement of the Stipe derived sporophylls thyroid gland Alaria, Pterogophora,Undaria, Lessoniopsis, Pleurophycus (but not this one) - Current industrial use is for alginates Lessoniaceae -West coast of U.S. = Macrocystis, Eckolonia, Egregia, Eisenia, Lessonia Nereocystis - Harvest regulated by CA DFG: can cut Costariacea only upper 1.2 m Flattened stipe with a perforated or reticulate blade - Kelp beds designated by number, some Costaria, Agarum, Dictyoneurum, are leased by harvesting companies -San Diego based firm, ISP alginates (AKA Kelco) largest in world 27 28 7 .
Recommended publications
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sugar kelp (Saccharina latissima) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White & Charlotte Marshall 2007-09-06 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1375]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. & Marshall, C.E. 2007. Saccharina latissima Sugar kelp. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1375.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-09-06 Sugar kelp (Saccharina latissima) - Marine Life Information Network See online review for distribution map Buoy line with Saccharina latissima.
    [Show full text]
  • The-Minnesota-Seaside-Station-Near-Port-Renfrew.Pdf
    The Minnesota Seaside Station near Port Renfrew, British Columbia: A Photo Essay Erik A. Moore and Rebecca Toov* n 1898, University of Minnesota botanist Josephine Tilden, her sixty-year-old mother, and a field guide landed their canoe on Vancouver Island at the mouth of the Strait of Juan de Fuca. This Iconcluded one journey – involving three thousand kilometres of travel westward from Minneapolis – and began another that filled a decade of Tilden’s life and that continues to echo in the present. Inspired by the unique flora and fauna of her landing place, Tilden secured a deed for four acres (1.6 hectares) along the coast at what came to be known as Botanical Beach in order to serve as the Minnesota Seaside Station (Figure 1). Born in Davenport, Iowa, and raised in Minneapolis, Minnesota, Josephine Tilden attended the University of Minnesota and completed her undergraduate degree in botany in 1895. She continued her graduate studies there, in the field of phycological botany, and was soon ap- pointed to a faculty position (the first woman to hold such a post in the sciences) and became professor of botany in 1910. With the support of her department chair Conway MacMillan and others, Tilden’s research laboratory became the site of the Minnesota Seaside Station, a place for conducting morphological and physiological work upon the plants and animals of the west coast of North America. It was inaugurated in 1901, when some thirty people, including Tilden, MacMillan, departmental colleagues, and a researcher from Tokyo, spent the summer there.1 * Special thanks to this issue’s guest editors, Alan D.
    [Show full text]
  • An Experiment to Guide Sustainable Exploitation of An
    BALANCING CONSERVATION WITH COMMERCIAL USE: AN EXPERIMENT TO GUIDE SUSTAINABLE EXPLOITATION OF AN ECOLOGICALLY VULNERABLE KELP by Sarah Ann Thompson A thesis submitted to Sonoma State University In partial fulfillment of the requirements for the degree of Master of Science in Biology _________________________________ Dr. Karina J. Nielsen _________________________________ Dr. J. Hall Cushman _________________________________ Dr. Eric Sanford _________________________________ Date ii Copyright 2007 by Sarah Ann Thompson iii AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS I grant permission for the reproduction of this thesis in its entirety, without further authorization from me, on the condition that the person or agency requesting reproduction absorb the cost and provide proper acknowledgment of authorship. DATE: ___________________ ______________________________ Sarah Ann Thompson iv BALANCING CONSERVATION WITH COMMERCIAL USE: EXPERIMENTS TO GUIDE SUSTAINABLE EXPLOITATION OF AN ECOLOGICALLY VULNERABLE KELP Thesis by Sarah Ann Thompson ABSTRACT The Sea Palm, Postelsia palmaeformis, is an intertidal kelp of the Order Laminariales, has a heteromorphic life history, and is endemic to the wave- exposed rocky shorelines of the Northeast Pacific. Postelsia is also among the most valued of seaweeds collected for the health- and wild-foods industry, and it is collected commercially in Oregon and California. When collectors cut fronds leaving the meristem intact they will regrow, allowing multiple collections per season to be made from the same individuals. Commercial collection takes place in California with minimal management or regulation, despite the fact that Postelsia’s life history characteristics make it especially vulnerable to overexploitation. Though many California collectors advocate and use this cutting method and maintain that it is sustainable, there is no scientific evidence to support this claim.
    [Show full text]
  • Macrocystis Mariculture in Chile : Growth Performance of Heterosis
    Erschienen in: Journal of Applied Phycology ; 23 (2011), 5. - S. 819-825 https://dx.doi.org/10.1007/s10811-010-9581-z Macrocystis mariculture in Chile: growth performance of heterosis genotype constructs under field conditions Renato Westermeier & David J. Patiño & Pedro Murúa & Dieter G. Müller Abstract Recent progress in Macrocystis mariculture is Introduction based on clonal stock cultures of gametophyte parents. Batches of up to 105 genetically identical sporophyte Macrocystis (giant kelp) is an important natural resource in seedlings can be produced at any time in the laboratory the coastal waters of Chile. Dried material is used for and explanted in the field for production of biomass. Sexual alginate production, while fresh fronds are harvested in crosses of selected Macrocystis pyrifera gametophyte large quantities as food for mariculture of herbivorous high- parents of different geographic origin along the coast of value mollusks (abalone, Haliotis rufescens and H. discus Chile showed heterosis and produced sporophyte batches hannai). Intense harvesting pressure on natural kelp beds with superior growth performance. Starting from zygotes, has led to over-exploitation damage (Vásquez 2008). This after 10 weeks in the laboratory and 5 months in the sea, situation calls for efforts to supplement the available kelp our best hybrid genotypes grew up to 11 kg fresh weight biomass by laboratory-based culture methods. per frond, which corresponds to 66 kg m 1 of line in a Traditional mariculture techniques make use of meio- commercial mariculture installation. In contrast, average spores from natural populations, which are collected and yields of 14.4 and 22 kg m 1 are reported in the literature manipulated to settle on ropes in laboratory tanks.
    [Show full text]
  • Phaeophyceae – the Brown Algae
    Phaeophyceae – The Brown Algae Anyone who has walked along the California seashore can easily recognize that brown algae are among the most conspicuous representatives of our local marine flora. In addition to a plethora of intertidal species, brown algae comprise the impressive kelp forests that characterize subtidal regions of California waters and those of many other regions of the world, especially along shores where coastal upwelling occurs. The brown algae, of which there are approximately 225 genera and 1400 species, are almost entirely found in the marine environment. They are the predominant algae in terms of biomass in the intertidal and subtidal zones of polar, boreal and cold temperate waters, getting progressively less abundant as latitude decreases. With the exception of a few species, they are not generally found in at depths greater than ca. 25 meters. Certain brown algae, such as the giant kelp Macrocystis, are the largest of the nonvascular plants and may reach in excess of 150 feet. Plants as large as this are found along the West Coast of North America, from Alaska to Baja California. The greatest degree of tissue differentiation found in the algae occurs in this group. No unicellular or colonial forms are known and only certain reproductive stages (zoospores and some gametes) are planktonic. The evolutionary origins of these organisms remain obscure. Many brown algae are commercially valuable either for human consumption, or as a source of natural chemicals, such as alginic acid. Many species of brown algae contain toxic chemicals as a defense against herbivores. Some systematic treatments of algae consider that the brown algae comprise a separate taxonomic Division – The Phaeophyta whereas many texts include them as a class, the Phaeophyceae in the Division Chromophyta.
    [Show full text]
  • Final Study Report
    OCS Study BOEMRE 2010-05 Multi-Agency Rocky Intertidal Network (MARINe) Study of Rocky Intertidal Communities Adjacent to OCS Activities – Final report (2007-2010) Final Technical Summary Final Study Report U.S. Department of the Interior BOEMRE Bureau of Ocean Energy Management, Regulation and Enforcement Pacific OCS Region OCS Study BOEMRE 2010-05 Multi-Agency Rocky Intertidal Network (MARINe) Study of Rocky Intertidal Communities Adjacent to OCS Activities – Final report (2007-2010) Final Technical Summary Final Study Report Project Manager Peter T. Raimondi Principal Investigators Richard Ambrose Jack Engle Steve Murray Jayson Smith Study design, oversight, and funding were provided by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Environmental Studies Program, Washington, DC under Agreement Number M07AC12503 by Center for Ocean Health Long Marine Laboratory University of California Santa Cruz, CA 93106 Disclaimer This report has been reviewed by the Pacific Outer Continental Shelf Region, Bureau of Ocean Energy Management, Regulation and Enforcement, U.S. Department of the Interior and approved for publication. The opinions, findings, conclusions, and recommendations in this report are those of the authors, and do not necessarily reflect the views and policies of the Bureau of Ocean Energy Management, Regulation and Enforcement. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use. This report has not been edited for conformity with Bureau of Ocean Energy Management, Regulation and Enforcement editorial standards. Availability of Report Extra copies of the report may be obtained from: U.S. Dept. of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement Pacific OCS Region 770 Paseo Camarillo Camarillo, CA 93010 Phone: 805-389-7621 Suggested Citation The suggested citation for this report is: Raimondi, P.T.
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • Bull Kelp, Nereocystis Luetkeana, Abundance in Van Damme Bay, Mendocino County, California
    Bull kelp, Nereocystis luetkeana, abundance in Van Damme Bay, Mendocino County, California Item Type monograph Authors Barns, Allison; Kalvass, Peter Publisher California Department of Fish and Game, Marine Resources Division Download date 06/10/2021 14:12:56 Link to Item http://hdl.handle.net/1834/18330 State ofCalifornia The Resources Agency DEPARTMENT OF FISH AND GAME BULL KELP, NEREOCYSTIS LUETKEANA, ABUNDANCE IN VAN DAMME BAY, MENDOCINO COUNTY, CALIFORNIA by ALLISON BARNS and PETER KALVASS MARINE RESOURCES DIVISION Administrative Report No. 93-6 1993 Bull Kelp, Nereocystis luetkeana, Abundance in Van Damme Bay, Mendocino County, California1 by Allison Barns2 and Peter Kalvass3 ABSTRACT Size and density data were collected for Nereocystis luetkeana sporophytes from kelp beds in Van Damme Bay, Mendocino County during May, June and July 1990. Length and weight measurements were made on individual plants from representative size groups collected from depths of 6.1 m and 12.2 m. Mean sporophyte weight was 268 g (SD 393 g), while mean stipe length was 214 cm (SD 275 cm). Densities were determined separately for those plants which had reached the surface and for all plants within the water column. Sixty­ five 12.7 m2 surface quadrats yielded mean surface densities of 2.2 (SD 1.5) and 2.7 plants/m2 (SD 1.3) in June and July, respectively. Individual plants were counted within 42 1x5 m plots along benthic transect lines yielding average densities of 2.7 (SD 4.5) and 5.2 plants/m2 (SD 3.0) in May and July, respectively. Combined density and size data from July 1990 and kelp bed area estimates from fall 1988 for Van Damme Bay yielded a biomass estimate of 640 metric tons distributed over 45.7 hectares.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Molecular Phylogeny of Zeacarpa (Ralfsiales, Phaeophyceae) Proposing a New Family Zeacarpaceae and Its Transfer to Nemodermatales1
    J. Phycol. 52, 682–686 (2016) © 2016 Phycological Society of America DOI: 10.1111/jpy.12419 NOTE MOLECULAR PHYLOGENY OF ZEACARPA (RALFSIALES, PHAEOPHYCEAE) PROPOSING A NEW FAMILY ZEACARPACEAE AND ITS TRANSFER TO NEMODERMATALES1 Hiroshi Kawai,2 Takeaki Hanyuda Kobe University Research Center for Inland Seas, 1-1 Rokkodai, Kobe 657-8501, Japan John Bolton Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa and Robert Anderson Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa Department of Agriculture, Forestry and Fisheries, Private Bag X2, Roggebaai 8012, South Africa Zeacarpa leiomorpha is a crustose brown alga unique unilocular zoidangia formed in sori, laterally endemic to South Africa. The species has been in tufts, intercalary in loose upright filaments (Fig. 1, tentatively placed in Ralfsiaceae, but its ordinal b and c). It was first placed in the Ralfsiaceae, how- assignment has been uncertain. The molecular ever the ordinal position of the family was controver- phylogeny of brown algae based on concatenated sial at the time. Nakamura (1972) established the DNA sequences of seven chloroplast and order Ralfsiales to accommodate brown algal taxa mitochondrial gene sequences (atpB, psaA,psaB, having crustose thalli, an isomorphic life history, dis- psbA, psbC, rbcL, and cox1) of taxa covering most of coidal early development of the thallus, and each cell the orders revealed the most related phylogenetic containing a single, plate-shaped chloroplast without relationship of Z. leiomorpha to Nemoderma tingitanum pyrenoids. However, the validity of the order has (Nemodermatales) rather than Ralfsiaceae been questioned because a number of taxa exhibit- (Ralfsiales).
    [Show full text]
  • Microsatellite) Markers for the Kelp Postelsia Palmaeformis (Laminariales
    Molecular Ecology Notes (2004) 4, 372–375 doi: 10.1111/j.1471-8286.2004.00657.x PRIMERBlackwell Publishing, Ltd. NOTE Dominant (AFLP) and co-dominant (microsatellite) markers for the kelp Postelsia palmaeformis (Laminariales) HANDOJO T. KUSUMO, CATHERINE A. PFISTER and J. TIMOTHY WOOTTON Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA Abstract To aid in understanding the structure, dispersal and genetic dynamics of their populations, we developed microsatellite and amplified fragment length polymorphism (AFLP) markers for the sea palm, Postelsia palmaeformis (Laminariales) for samples taken from nine sites in the area of Cape Flattery, Washington State, USA. We identified two AFLP primers that yielded 798 variable fragments and five microsatellite markers with three to seven alleles each. We also report patterns of allelic variation for four previously identified microsatellite markers in this species and several new alleles. Keywords: AFLP, algae, kelp, microsatellite, Postelsia palmaeformis, seaweed Received 29 December 2003; revision received 28 January 2003; accepted 2 March 2004 The sea palm, Postelsia palmaeformis (Laminariales), occurs logically important non-model organisms. However, as a widely on rocky wave-swept shores of the northeast Pacific dominant marker system, AFLP suffers from problems in Ocean from Monterey Bay, California to the northern identifying homologous alleles, which is essential for some end of Vancouver Island, British Columbia (Abbott & analytical studies (e.g. heterozygosity analyses; Mueller & Hollenberg 1976). In areas where it occurs, it is an extre- Wolfenbarger 1999). Therefore, microsatellite markers were mely productive annual plant (Leigh et al. 1987), and it is also developed as a potential supplement and methodological also harvested in parts of its range, making it an important check for the AFLP approaches.
    [Show full text]
  • Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1
    4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells,
    [Show full text]