Structural and Functional Analysis of Moraxella Catarrhalis Adhesins MCAP and OMPCD

Total Page:16

File Type:pdf, Size:1020Kb

Structural and Functional Analysis of Moraxella Catarrhalis Adhesins MCAP and OMPCD Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Sciences Structural and Functional Analysis of Moraxella catarrhalis Adhesins MCAP and OMPCD Submitted by: Chritine Akimana In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Examination Committee Major Advisor: Eric Lafontaine, Ph.D. Academic Robert Blumenthal, Ph.D. Advisory Committee: R. Mark Wooten, Ph.D. Ray Larsen, Ph.D. Venkatesha Basrur, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 16, 2007 Structural and Functional Analysis of Moraxella catarrhalis Adhesins McaP and OMPCD Christine Akimana University of Toledo Health Science Campus 2007 DEDICATION This dissertation is dedicated to my son, Bennett Kiza, who has filled my life with untold blessings. I would like to thank my husband, Nicolas Kiza, and my mother-in-law, whose support and encouragement has enabled me to complete this work. I also would like to thank my parents for their love, inspiration, and support, especially for their hard work that has enabled me to achieve so much in life. There are several people, family members, friends, and mentors, whose support and inspiration has helped me throughout my academic years. For those as well, I offer my full gratitude. ii ACKNOWLEDGEMENTS I would like to thank my major advisor Dr. Eric Lafontaine for giving me the opportunity to work on this very exciting project. I thank him for training me, for sharing his expertise, and for providing me with the opportunity to attend several scientific conferences. I also thank him for his kindness, support, and patience. I would like to thank my committee members, Dr. Mark Wooten, Dr. Robert Blumenthal, Dr. Ray Larsen, and Dr. Venkatesha Basrur for taking time out of their busy schedule, and for their helpful suggestions and discussions during our meetings. I would like to thank Dr. Mark Wooten for agreeing to become my administrative advisor when Dr. Eric Lafontaine moved to the University of Georgia and for bleeding mice in the antibody production experiments. I would like to thank Serena Lipski, Rachel Balder, and Brian Bullard, the former members of Dr. Eric Lafontaine’s laboratory, for their help in lab and for their friendship. I would like to acknowledge Serena Lipski for her contribution to manuscript 1. I want to thank all the members of the Club Coli Conclave for their friendship, support, and for their help during our weekly laboratory meeting. iii I would like to thank Dr. Louise Smithson for proofreading the drafts of this dissertation. I also would like to thank the Medical Microbiology and Immunology Department, especially the secretaries for making this department an enjoyable place to work. I would also like to thank the graduate school and the Molecular Basis of Diseases Program for giving me the opportunity to obtain a Ph.D. degree at the University of Toledo – Health Science Campus. iv TABLE OF CONTENTS Page DEDICATION-------------------------------------------------------------------------------------ii ACKNOWLEDGMENTS-----------------------------------------------------------------------iii TABLE OF CONTENTS------------------------------------------------------------------------v INTRODUCTION---------------------------------------------------------------------------------1 LITERATURE -------------------------------------------------------------------------------------5 History and Taxonomy--------------------------------------------------------------------5 Characterization and identification-----------------------------------------------------7 Respiratory tract colonization------------------------------------------------------------9 Diseases caused by M. catarrhalis----------------------------------------------------9 Otitis media--------------------------------------------------------------------------9 Exacerbation of chronic obstructive pulmonary disease----------------13 Sinusitis and other diseases---------------------------------------------------14 Treatment of M. catarrhalis infections and antibiotic resistance M. catarrhalis surface antigens--------------------------------------------------------16 Porin proteins----------------------------------------------------------------------17 Autotransporter proteins--------------------------------------------------------20 UspA1 and UspA2---------------------------------------------------------------22 UspA2H----------------------------------------------------------------------------29 Hag/MID---------------------------------------------------------------------------30 Lipooligosacharide--------------------------------------------------------------34 v Pili------------------------------------------------------------------------------------35 McaP--------------------------------------------------------------------------------36 OMPE-------------------------------------------------------------------------------38 OMPCD-----------------------------------------------------------------------------39 Iron regulated proteins----------------------------------------------------------43 OMPG1a and OMPG1b--------------------------------------------------------49 OMP J-------------------------------------------------------------------------------48 McmA--------------------------------------------------------------------------------48 OMP M35 and OlpA--------------------------------------------------------------49 Animal models for M. catarrhalis infections-----------------------------------------50 Adherence mechanisms of bacterial proteins--------------------------------------52 CHAPTER 3 - MANUSCRIPT 1 -------------------------------------------------------------56 Moraxella catarrhalis McaP Autotransporter Adhesin CHAPTER 4 – MANUSCRIPT 2------------------------------------------------------------102 Moraxella catarrhalis OMPCD adherence epitopes CHAPTER 4 ADDENDUM-------------------------------------------------------------------133 CHAPTER 5 – DISCUSSION and SUMMARY-----------------------------------------140 REFERENCES---------------------------------------------------------------------------------149 ABSTRACT--------------------------------------------------------------------------------------180 vi INTRODUCTION Moraxella catarrhalis (M. catarrhalis) is an aerobic, non-encapsulated Gram-negative bacterium that colonizes the human nasopharynx and causes up to 20% of otitis media and approximately 20% cases of sinusitis in children (Karalus and Campagnari, 2000; Verduin et al., 2002). Furthermore, M. catarrhalis causes up to 30% of respiratory tract infection cases in adults with chronic obstructive pulmonary diseases (COPD) (Sethi and Murphy, 2001). In addition, some cases of invasive infections by M. catarrhalis have been reported (Karalus and Campagnari, 2000). Other bacteria that cause otitis media and exacerbation of COPD along with M. catarrhalis are Streptococcus pneumoniae and non-typeable Haemophilus influenzae (H. influenzae). In addition to these, Pseudomonas aeruginosa (P. aeroginasa) and H. influenzae are involved in COPD secondary infections. Of importance, 80% of infants in developed countries will experience otitis media by age three (Murphy, 1996). Otitis media is a highly prevalent pediatric disease worldwide and the primary cause of emergency room visits (Klein, 2000). Direct and indirect treatment costs associated with ear infections exceed $5 billion annually in the United States (US) alone (Klein, 2000). In addition, repeated episodes of otitis media may result in complications such as hearing loss or to a lesser extent behavioral, educational and language development (Klein, 2000). Chronic obstructive pulmonary disease is the fourth-leading cause of death in the US and in the world, (Sethi and Murphy, 2001) and direct cost for treatment of COPD is 1 estimated at $18 billion each year in US (McCrory et al., 2001). Thus, M. catarrhalis is a significant health problem. Currently M. catarrhalis remains susceptible to some antibiotic treatments such as amoxicillin-clavulanic acid, however there has been an increase in antibiotic resistance in the past 30 years that has led to the need for improved treatments (Verduin et al., 2002). Since M. catarrhalis is not encapsulated, a vaccine targeting its surface exposed outer membrane proteins may result in a protective immune response. Most efforts towards designing a vaccine against M. catarrhalis infections are directed at studying surface antigens, especially outer membrane proteins of M. catarrhalis, for their vaccine potential. The Vaccine Panel Report from the 1999 meeting on otitis media specified desirable characteristics of bacterial antigens to be included in a vaccine formulation to prevent this disease. Such antigens should (i) have conserved surface epitope(s), and (ii) be conserved among strains of the same bacterial species. Furthermore in vivo, these antigens should (iii) be good immunogens (i.e., generate protective antibodies and/or cellular responses) in the target population, (iv) generate antibodies that prevent otitis media, and (v) not increase middle ear inflammation via immune complex formation with other otitis media etiological agents; i.e., viral proteins (Giebink et al., 2005). Adhesins are desirable vaccine candidates because they likely fulfill 2 the first two requirements of being conserved within the bacterial species, and contain conserved surface exposed epitope(s); e.g., the receptor binding domain (Ofek et
Recommended publications
  • Biofilm Formation by Moraxella Catarrhalis
    BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work.
    [Show full text]
  • Blocking Transmission of Vector-Borne Diseases
    International Journal for Parasitology: Drugs and Drug Resistance 7 (2017) 90e109 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Review Blocking transmission of vector-borne diseases * Sandra Schorderet-Weber a, Sandra Noack b, Paul M. Selzer b, Ronald Kaminsky c, a Sablons 30, 2000 Neuchatel,^ Switzerland b Boehringer Ingelheim Animal Health GmbH, Binger Str. 173, 55216 Ingelheim, Germany c ParaC Consulting for Parasitology and Drug Discovery, Altenstein 13, 79685 Haeg-Ehrsberg, Germany article info abstract Article history: Vector-borne diseases are responsible for significant health problems in humans, as well as in companion Received 14 November 2016 and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass Accepted 22 January 2017 on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission Available online 30 January 2017 might work when transmission is delayed during blood meal, as often happens in ticks. The recently described systemic isoxazolines have been shown to successfully prevent disease transmission under Keywords: conditions of delayed pathogen transfer. However, if the pathogen is transmitted immediately at bite as it Vector-borne diseases is the case with most insects, blocking transmission becomes only possible if ectoparasiticides prevent Transmission blocking Drug discovery the vector from landing on or, at least, from biting the host. Chemical entities exhibiting repellent activity Speed of kill in addition to fast killing, like pyrethroids, could prevent pathogen transmission even in cases of im- mediate transfer. Successful blocking depends on effective action in the context of the extremely diverse life-cycles of vectors and vector-borne pathogens of medical and veterinary importance which are summarized in this review.
    [Show full text]
  • Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
    研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS.
    [Show full text]
  • Phase and Antigenic Variation Mediated by Genome Modifications
    Antonie van Leeuwenhoek (2008) 94:493–515 DOI 10.1007/s10482-008-9267-6 REVIEW PAPER Phase and antigenic variation mediated by genome modifications Florence Wisniewski-Dye´ Æ Ludovic Vial Received: 6 April 2008 / Accepted: 9 July 2008 / Published online: 29 July 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Phase and antigenic variation is used by Keywords Adaptation Á Antigenic variation Á several bacterial species to generate intra-population Genome plasticity Á Phenotypic switch diversity that increases bacterial fitness and is important in niche adaptation, or to escape host defences. By this adaptive process, bacteria undergo frequent and usually reversible phenotypic changes Introduction resulting from genetic or epigenetic alterations at specific genetic loci. Phase variation or phenotypic One of the most obvious features of phase variation is switch allows the expression of a given phenotype to the appearance of a minority of colonies or colony be switched ON or OFF. Antigenic variation refers to sectors displaying a different aspect. Phase variation the expression of a number of alternative forms of an or phenotypic switch is used by several bacterial antigen on the cell surface, and at a molecular level, species to generate intra-population diversity that shares common features with phase variation mech- increases bacterial fitness and is important in niche anisms. This review will focus on phase and antigenic adaptation, or to escape host defences. Phase varia- variation mechanisms implying genome modifica- tion allows that the expression of a given phenotype tions, with an emphasis on the diversity of is either ON or OFF; these events are usually phenotypes regulated by these mechanisms, and the reversible (ON $ OFF) but may be irreversible ecological relevance of variant appearance within a (ON ? OFF or OFF ? ON), and result from genetic given population.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Autodisplay: One-Component System for Efficient Surface Display And
    JOURNAL OF BACTERIOLOGY, Feb. 1997, p. 794–804 Vol. 179, No. 3 0021-9193/97/$04.0010 Copyright q 1997, American Society for Microbiology Autodisplay: One-Component System for Efficient Surface Display and Release of Soluble Recombinant Proteins from Escherichia coli 1 2 1,2 JOCHEN MAURER, JOACHIM JOSE, AND THOMAS F. MEYER * Downloaded from Abteilung Infektionsbiologie, Max-Planck-Institut fu¨r Biologie, 72076 Tu¨bingen,1 and Abteilung Molekulare Biologie, Max-Planck-Institut fu¨r Infektionsbiologie, 10117 Berlin,2 Germany Received 26 August 1996/Accepted 24 September 1996 The immunoglobulin A protease family of secreted proteins are derived from self-translocating polypro- tein precursors which contain C-terminal domains promoting the translocation of the N-terminally attached passenger domains across gram-negative bacterial outer membranes. Computer predictions identified the C-terminal domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I) as a member of the autotransporter family. A model of the b-barrel structure, proposed to be responsible for http://jb.asm.org/ outer membrane translocation, served as a basis for the construction of fusion proteins containing heterologous passengers. Autotransporter-mediated surface display (autodisplay) was investigated for the cholera toxin B subunit and the peptide antigen tag PEYFK. Up to 5% of total cellular protein was detectable in the outer membrane as passenger autotransporter fusion protein synthesized under control of the constitutive PTK promoter. Efficient presentation of the passenger domains was demonstrated in the outer membrane protease T-deficient (ompT) strain E. coli UT5600 and the ompT dsbA double mutant JK321. Surface exposure was ascertained by enzyme-linked immunosorbent assay, immunofluorescence microscopy, and immunogold electron microscopy using antisera specific for the passenger domains.
    [Show full text]
  • Localization of Lactobacillus Plantarum in Bacterial Profile of Conjunctiva of Clinically Healthy Cattle
    Turkish Journal of Veterinary and Animal Sciences Turk J Vet Anim Sci (2013) 37: 302-305 http://journals.tubitak.gov.tr/veterinary/ © TÜBİTAK Research Article doi:10.3906/vet-1111-31 Localization of Lactobacillus plantarum in bacterial profile of conjunctiva of clinically healthy cattle Abdullah ARAGHI-SOOREH*, Meisam BANIARDALAN Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran Received: 27.11.2011 Accepted: 14.08.2012 Published Online: 03.06.2013 Printed: 27.06.2013 Abstract: The aim of this study was to determine the normal conjunctival bacterial flora and the effects of sex and age variations on them in healthy cattle in Urmia, Iran. The animals (n = 50) were selected from 2 sexes and divided into 2 age groups. Swabs were taken from the inferior conjunctival sac of both eyes (n = 100) and were cultured on blood and MacConkey agar. All (100%) of the specimens yielded positive bacterial isolations. The bacterial isolates (in order of decreasing frequency) wereLactobacillus plantarum, Escherichia coli, Bacillus cereus, Proteus mirabilis, Enterobacter aerogenes, Staphylococcus epidermidis, and S. aureus. There was no significant difference in number of isolates between sexes and age groups (P > 0.05). In the present study L. plantarum, as a normal flora organism, was reported from the conjunctival sac in cattle for the first time. Key words: Lactobacillus plantarum, bacterial flora, conjunctiva, cattle 1. Introduction 2. Materials and methods Being rich in nutrients, several microorganisms are often Iranian Holstein crossbred cattle were examined from found on the eye’s surface, i.e. the ocular flora (1).
    [Show full text]
  • Genome-Wide Detection of Conservative Site- Specific Recombination in Bacteria
    RESEARCH ARTICLE Genome-wide detection of conservative site- specific recombination in bacteria Ognjen Sekulovic1*, Elizabeth Mathias Garrett2, Jacob Bourgeois1, Rita Tamayo2, Aimee Shen1, Andrew Camilli1* 1 Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America, 2 Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America * [email protected] (OS); [email protected] (AC) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 The ability of clonal bacterial populations to generate genomic and phenotypic heterogene- ity is thought to be of great importance for many commensal and pathogenic bacteria. One common mechanism contributing to diversity formation relies on the inversion of small geno- mic DNA segments in a process commonly referred to as conservative site-specific recom- OPEN ACCESS bination. This phenomenon is known to occur in several bacterial lineages, however it Citation: Sekulovic O, Mathias Garrett E, Bourgeois remains notoriously difficult to identify due to the lack of conserved features. Here, we report J, Tamayo R, Shen A, Camilli A (2018) Genome- an easy-to-implement method based on high-throughput paired-end sequencing for wide detection of conservative site-specific recombination in bacteria. PLoS Genet 14(4): genome-wide detection of conservative site-specific recombination on a single-nucleotide e1007332. https://doi.org/10.1371/journal. level. We demonstrate the effectiveness of the method by successfully detecting several pgen.1007332 novel inversion sites in an epidemic isolate of the enteric pathogen Clostridium difficile. Editor: Ivan Matic, Universite Paris Descartes, Using an experimental approach, we validate the inversion potential of all detected sites in INSERM U1001, FRANCE C.
    [Show full text]
  • Protein Secretion Systems in Fusobacterium Nucleatum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1713 (2005) 92 – 112 http://www.elsevier.com/locate/bba Protein secretion systems in Fusobacterium nucleatum: Genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis Mickae¨l Desvauxa,b, Arshad Khana, Scott A. Beatsona, Anthony Scott-Tuckera, Ian R. Hendersona,* aThe Institute for Biomedical Research (IBR), The University of Birmingham-The Medical School, Division of Immunity and Infection, Bacterial Pathogenesis and Genomics Unit, Edgbaston, Birmingham B15 2TT, UK bInstitut National de la Recherche Agronomique (INRA), Centre de Recherches de Clermont-Ferrand-Theix, Unite´ de Recherche 370, Equipe Microbiologie, F-63122 Saint-Gene`s Champanelle, France Received 23 February 2005; received in revised form 11 April 2005; accepted 2 May 2005 Available online 8 June 2005 Abstract Recent genomic analyses of the two sequenced strains F. nucleatum subsp. nucleatum ATCC 25586 and F. nucleatum subsp. vincentii ATCC 49256 suggested that the major protein secretion systems were absent. However, such a paucity of protein secretion systems is incongruous with F. nucleatum pathogenesis. Moreover, the presence of one or more such systems has been described for every other Gram- negative organism sequenced to date. In this investigation, the question of protein secretion in F. nucleatum was revisited. In the current study, the absence in F. nucleatum of a twin-arginine translocation system (TC #2.A.64.), a Type III secretion system (TC #3.A.6.), a Type IV secretion system (TC #3.A.7.) and a chaperone/usher pathway (TC #1.B.11.) was confirmed.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family
    GBE Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family Eva Heinz1,2,y, Christopher J. Stubenrauch1,y, Rhys Grinter1,3, Nathan P. Croft4, Anthony W. Purcell4, Richard A. Strugnell5, Gordon Dougan2, and Trevor Lithgow1,* 1Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia 2 Wellcome Trust Sanger Institute, Hinxton, United Kingdom Downloaded from https://academic.oup.com/gbe/article-abstract/8/6/1690/2574022 by guest on 13 December 2018 3Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom 4Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia 5Department of Microbiology & Immunology, University of Melbourne, Parkville, Australia *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: May 3, 2016 Abstract The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The b-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”.
    [Show full text]
  • Autodisplay of Enzymes—Molecular Basis and Perspectives
    Journal of Biotechnology 161 (2012) 92–103 Contents lists available at SciVerse ScienceDirect Journal of Biotechnology j ournal homepage: www.elsevier.com/locate/jbiotec Autodisplay of enzymes—Molecular basis and perspectives a,∗ b a Joachim Jose , Ruth Maria Maas , Mark George Teese a Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany b Autodisplay Biotech GmbH, Merowingerplatz 1a, D-40225 Düsseldorf, Germany a r t i c l e i n f o a b s t r a c t Article history: To display an enzyme on the surface of a living cell is an important step forward towards a broader use of Received 8 October 2011 biocatalysts. Enzymes immobilized on surfaces appeared to be more stable compared to free molecules. It Received in revised form 14 February 2012 is possible by standard techniques to let the bacterial cell (e.g. Escherichia coli) decorate its surface with the Accepted 4 April 2012 enzyme and produce it on high amounts with a minimum of costs and equipment. Moreover, these cells Available online 30 April 2012 can be recovered and reused in several subsequent process cycles. Among other systems, autodisplay has some extra features that could overcome limitations in the industrial applications of enzymes. One major Keywords: advantage of autodisplay is the motility of the anchoring domain. Enzyme subunits exposed at the cell Autodisplay Biocatalysis surface having affinity to each other will spontaneously form dimers or multimers. Using autodisplay Synthesis enzymes with prosthetic groups can be displayed, expanding the application of surface display to the 5 6 Enzymes industrial important P450 enzymes.
    [Show full text]